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Abstract
Latin interchanges have been used to establish the existence of critical sets
in latin squares, to search for subsquare-free latin squares and to investigate
the intersection sizes of latin squares. Donald Keedwell was the first to study
latin interchanges in their own right. This paper builds on Keedwell’s work,
and proves new results about the existence of latin interchanges.

1 Definitions

A latin square L = [l; ;] of order n is an n X n array with entries chosen from a set
N ={1,...,n} in such a way that each element of N occurs precisely once in each
row and column of the array. For example, the following array is a latin square of
order 5:

1 2 3 45
2 3 4 5 1
34 5 1 2
4 5 1 2 3
5 1 2 3 4

For ease of exposition, a latin square will be represented by a set of ordered triples
{(3,7; k) | where element k occurs in cell (7, j) of the array}.

Two latin squares are said to be isotopic if one can be transformed into the other
by rearranging rows, rearranging columns or renaming elements. Formally, let L; =
{(31,j1; k1) | 41,51, k1 € N} and Ly = { (42, jo; ko) | 12, J2, k2 € N} be two latin squares
of order n. Then L, is said to be isotopic to L, if there exist permutations «, 5 and
v such that Ly = {(i1c, j10; k17) | (41,415 k1) € L1}. In this case Lo is said to be an
isotope of Ly. If a« = B =  then L; is said to be isomorphic to Ls.

*Supported by New Staff Research Grant at the University of Queensland.
tResearch supported by Australian Research Council Grant A49532750



Each latin square L = {(i,7;k) | ¢,7,k € N} has five conjugates associated with
it. These are:

o L*={(j,i;k) | (4,55k) € L};

o 'L={(k,j;i)| (i,4;k) € L};

o L' ={(i,k; j) | (i,5;k) € L};

o (L) ={(j,k;9) | (4,7; k) € L}; and
o (L)t ={(k,5;4) | (4,4;k) € L}.

For more details on latin squares, isotopisms and conjugates, see [8].

A partial latin square P of order n is an n X n array with entries chosen from a
set N ={1,...,n} in such a way that each element of V occurs at most once in each
row and at most once in each column of the array.

Let I be a partial latin square of order n. Then |I| is said to be the size of the
partial latin square and the set of cells {(7,7) | (4,7; k) € I, for some k € N} is said
to determine the shape of I. Let I and I’ be two partial latin squares of the same
order, with the same size and shape. Then I and I’ are said to be mutually balanced if
the entries in each row (and column) of I are the same as those in the corresponding
row (and column) of I'. They are said to be disjoint if no cell in I’ contains the same
entry as the corresponding cell of I. A latin interchange I is a partial latin square for
which there exists another partial latin square I’, of the same order, size and shape
with the property that I and I’ are disjoint and mutually balanced. The partial latin
square I’ is said to be a disjoint mate of 1.

Below is an example of a latin interchange of order 7 together with its disjoint
mate. The size of the latin interchange is 9 as there are 9 non—empty cells.
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e o 3 4 e e o e o 4 3 e e o
e o 4 e 6 e o e o 06 e 4 e o
e o o o o o o e o o o o e o
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The concept of a latin interchange in a latin square is similar to the concept of a
mutually balanced set (see [19]) or a trade (see [15]) in a block design.

Latin interchanges have been classified according to the number of elements ap-
pearing in the non-empty rows and columns. These configurations are referred to as
types (see Keedwell [17]). (The term type will be rigorously defined in Section 3.)
The type of the latin interchange above is

2+2+4+2+3
2424243 )7



as there are 3 entries in column 3 and 2 entries in each of columns 4, 5 and 7, and 3
entries in row 1 and 2 entries in each of rows 2, 3 and 5. Within each type one can
further classify the latin interchanges according to their shape.

In this paper we discuss latin interchanges in detail, and build on the results
obtained by Keedwell in [17]. Some general results pertaining to latin interchanges
are stated, and we find all possible types of latin interchanges of size less than or
equal to 11, and then all possible shapes for these types. We achieve these results
by representing a latin interchange as a tripartite graph and then decomposing this
graph into subgraphs.

2 History and Applications

A brief summary of the existing literature is given in this section. The motivation for
studying latin interchanges comes from the fact that they are frequently used in the
study of latin squares. To emphasise this point, three different problems which use
the existence of latin interchanges in their solutions are documented in this section.

2.1 Subsquare-free latin squares

In [11] Elliot and Gibbons found subsquare-free latin squares of orders 16 and 18.
A subsquare of order s is a latin square of order s obtained by deleting n — s rows
and columns from a latin square of order n. A proper subsquare has 1 < s < n. A
subsquare-free latin square is one which contains no proper subsquares.

Elliot and Gibbons used simulated annealing to generate subsquare free latin
squares. Omne of the procedures they used involves the rearrangement of elements
within a latin square. Thus a latin square is chosen and the elements are rearranged,
two at a time, until all subsquares are eliminated. This procedure involves choosing
two elements, x and y, from a row i, for some i. Assume x occurs in cell (4, 7) and
y occurs in (i,1). The entry z in cell (4, j) is replaced by y. The result is an array
with two 4’s in column j, and no z’s. To maintain the latin property, (that is, each
element must occur precisely once in each row and column of the latin square), the
original y (not the one in cell (7, j)) is replaced by an z. However, once this is done
there are two z’s in a row, so the original z (not the one in column j) is replaced by
a y. This process is repeated until the y in cell (¢,1) is replaced by an z. The result
is a latin square distinct from the first, and hopefully one with fewer subsquares than
the first. Using this rearranging process, Elliot and Gibbons were able to destroy all
subsquares and obtain subsquare-free latin squares of orders 16 and 18.

This rearranging procedure is equivalent to identifying a latin interchange in which
each column and each row contains precisely two non—empty cells. This latin inter-
change is then replaced by its disjoint mate. Elliot and Gibbons termed such latin
interchanges cycles.



2.2 The intersection of two latin squares

Fu [13] investigated the problem of finding pairs of latin squares which intersect in a
given number of elements. He defined the intersection of two latin squares as follows.
Two latin squares L = [I; ;| and M = [m, ;] are said to have intersection k if there are
exactly & cells (4, j) such that I, ; = m; ;. See also Fu, Fu and Guo [12] for results on
the intersection of commutative latin squares, and Butler and Hoffman [2].

It is clear that if one removes from both L and M (where L # M) the cells which
they have in common, then the remaining partial latin squares are examples of a latin
interchange and its disjoint mate.

In [13] Fu verified that:

1. for any n > 5 there exists a pair of latin squares of order n which have inter-
section k, where k € {0,1,2,...,n% — 6,n% — 4,n°};

2. for n = 1,2, 3,4 there exists a pair latin squares of order n which have inter-
section £ € {0,1}, k € {0,4}, k € {0,3,9} and k£ € {0,1,2,3,4,6,8,9,12,16}
respectively.

Therefore his results verify that:

1. for any n > 5 there exists a partial latin square of order n which has the proper-
ties of a latin interchange and is of size h, where h € {4,6,...,
n? —2,n% — 1,n%};

2. for n = 2,3,4 there exists a partial latin square of order n which has the
properties of a latin interchange and is of size h, where h € {4}, h € {6,9} and
he{4,7,8,...,14,15,16} respectively.

2.3 Critical sets

The papers [3], [4], [6], [7], [9], [10], [17] and [23] address the problem of finding
critical sets for latin squares. A critical set is a partial latin square C of order n, with
the property that it is contained in a unique latin square L of order n, and such that
any subset of C' is contained in at least two latin squares of order n. When proving
that a partial latin square C' is a critical set, one must verify that the partial latin
square is contained in precisely one latin square of order n and that for each subset
of C there are at least two latin squares of order n which intersect in this subset. In
other words, one needs to show that for each entry in the critical set there exists a
latin interchange in L which intersects the critical set in this element alone. Therefore
establishing the existence of latin interchanges in given latin squares is a vital part of
finding critical sets for latin squares.

2.4 Latin interchanges in their own right

Even though latin interchanges have been used extensively in the study of latin
squares, very few papers have appeared which deal specifically with the properties of



latin interchanges. To the authors’ knowledge there are only two such papers, [17]
and [5].

In 1993 Keedwell, [17], rigorously defined a latin interchange, though it should be
noted that Keedwell used the term critical partial latin square for a latin interchange.
In [17], Keedwell categorised latin interchanges by their types, then proceeded to show
that latin interchanges of every possible type exist for all sizes up to 10 inclusive. In
this paper we extend these results to 11.

In 1994 Cooper and Donovan [5] presented a paper which discussed the possible
representations for a latin interchange. They pointed out that a latin interchange
may be thought of as a decomposition of a tripartite graph into triangles. This
representation forms the basis for the results presented in this paper.

2.5 The paper at hand

This paper extends Keedwell’s results and verifies that latin interchanges of every
possible type exist for all sizes up to 11 inclusive. A review of some basic results ob-
tained by Keedwell will be given in Section 3. Additionally, this section also includes
some basic techniques for constructing latin interchanges.

In his paper [17], Keedwell listed the permissible types of latin interchanges of sizes
up to 10. Once the possible types have been established, this information can then
be used to find the possible shapes for latin interchanges of a given size. Keedwell
found latin interchanges of all possible shapes for sizes 4, 5, 6, 7, and 8. In the case
of latin interchanges of size 9 he listed four different shapes, and in the case of size
10 he listed 22 different shapes. In this paper we extend Keedwell’s results and find
all possible shapes for size 9, of which there are seven (it should be noted that in this
case the three new types are conjugates of ones given by Keedwell), size 10, of which
there are 40, and size 11, of which there are 62 possible shapes. The possible shapes
of latin interchanges of size 10, not documented by Keedwell, and size 11 are listed
in Section 5.

In searching for latin interchanges of size 11 we first generated all possible partial
latin squares of order 5 with precisely 11 non—empty cells, then identified those which
satisfy the necessary conditions for a latin interchange. These are mentioned in the
following section. Due to the large number of possible latin interchanges, it was
necessary to computerise the search and develop efficient algorithms to implement the
search. We began by compiling a list of all possible partial latin squares. To achieve
this we noted that a partial latin square may be thought of as a decomposition of a
tripartite graph into triangles. We then generated all possible tripartite graphs with
a given set of parameters corresponding to each type. These were then checked to
see which ones could be decomposed into triangles. At this point we had a list of
all relevant partial latin squares, and the next step was to efficiently identify which
of these were latin interchanges. This was done by modifying the tripartite graphs
and then checking to see if the modified graph could be decomposed into copies of
K, minus an edge. The representation of a latin interchange as a decomposition of
a tripartite graph into copies of K; minus an edge is the central idea in this paper
and the basis for our searching technique. The justification for this representation of



a latin interchange is given in Section 4.

3 Keedwell’s paper and more

Keedwell’s paper [17] was the first to study latin interchanges in detail and so the
following definitions and background information have been taken from this paper.
Let I be a latin interchange of order n. Let r denote the number of non—empty
rows, ¢ the number of non—empty columns and e the number of elements of N which
occur at least once in I. We will use r; to denote the number of non-empty cells
in row ¢ of the latin interchange I, c¢; to denote the number of non—-empty cells in
column j of the latin interchange I, and e, to denote the number of times the element

k occurs in the latin interchange I, for 7,5,k =1,...,n. It is obvious that
n n n
2= ¢=) ex=|I|.
i=1 j=1 k=1

Thus the rows, (columns, elements), partition the elements of the latin interchange
I, and this partition must satisfy the conditions given by Gale [14] and Ryser [20]
or pages 61-65 of [21]. Keedwell used these partitions to define the type of a latin
interchange. So the type of the latin interchange I is

ci+c+c3+...+¢,
™ +T9+T3+...+7Ty '

Note that the type describes the number of non—empty cells in the columns and rows
of I. Since the empty rows and columns of I give very little useful information, where
ever possible they are deleted, and the latin interchange [ is taken to be a partial
latin square of order n, where n = max{r,c}. Then the type is written as

Ci+c+c3+...+c
TN +7Te+T3+...+71, '

Any isotope of a latin interchange is a latin interchange. Therefore it will be
assumed that 0 < ¢1 < e <3< ... <c.<nand0<r <rp, <rg<...<r. <n,
and any two latin interchanges which are isotopic are said to be of the same type.
Similarly it follows that the conjugate of a latin interchange is a latin interchange.
However, since the definition of type only refers to the non—empty columns and rows of
I, the following distinctions are made. Two latin interchanges which are the transpose
of one another are said to be of the same type. The remaining conjugates will be
listed separately.

The following constraints on 7;, ¢; and e, may be deduced.

LEMMA 3.1 Let I be a latin interchange of order n. Then for all 1 < 1,5,k <n,

ri>2, ¢;>2 and e > 2.



Proof. If ] is a latin interchange, then by definition there exists a partial latin square
I' of the same shape and size, which is disjoint from I and mutually balanced. It
follows that these inequalities hold.

O
COROLLARY 3.2 If I is a latin interchange of order n, then for 1 <1,j5,k <mn,

ri < |1]/2,
¢ < |11/2
and e, < |I|/2.

COROLLARY 3.3 If I is a latin interchange with r = 2, then r1 = ro. Similarly,
if c =2 then ¢; = cq, and if e = 2 then e; = e,.

COROLLARY 3.4 A latin interchange of size § cannot exist.
LEMMA 3.5 Let I be a latin interchange of order n. Then

Vi 1<i<n, c>ry
Vi 1 <k<n, c2> e
Vi 1<j<n, r=>c;
Vi 1<k<n, r>e
Vi 1<i<n, e>r;
Vi 1<j5j<n, e>cg.

We now list some methods which can be used to construct latin interchanges. The
first such method is an obvious construction, but has been included for completeness.

LEMMA 3.6 Let P = {(pi,p;; px) | pispjspe € N} and Q = {(qi, 45 a) | 445> Gk €
N} be latin interchanges of orders p and q respectively. Assume that P has type

cp1+cp2+cp3+...+cpc
rp1+rp2+rp3+---+rp7" ’

and @) has type
cq1+cq2+cq3+...+cqc
Tq1+7nq2+rq3+---+7nqr )

Then there exists a latin interchange P + @ of order p+ q and type

Cpl T Cp2+Cp3+ ...+ CpetCq1 +Cp2F+Cg3 + ...+ Cye
Tpl+Tp2+Tp3+ .o+ T+ T T+ T3+ ... +7Tg )



Proof. Let P + @) be the partial latin square

{(i,pj300), P+ 1,0+ a5;0+ @) | (Ps, j3 k) € P A (43,955 ) € Q}-

To show that P+ ( is a latin interchange we must find a partial latin square which
is the disjoint mate of P + (). Consider the partial latin square

P'+Q ={(pivsive), 0+ a0+ 4550+ q;,) | (0i-psi0;) € PP A (035453 4;) € Q'},

where P’ and @' are the disjoint mates of P and ) respectively. The result is imme-
diate.

|

The latin interchanges of size 8, types 1a, 1b, 1c, and size 10, types 1a, 1b, 1c given
by Keedwell [17] can be constructed using this result or a variation of it where the
rows, columns or elements have been appropriately relabelled.

One may vary this method by placing the latin interchanges one on top of the
other or side by side. For example, assume pc > gc, then P and () may be used to
construct a latin interchange of type

(cp1 +cq) + (2 + cg2) + (cp3 +€g3) + - 4 (Cge + Cge) + -+ -+ Cpe
Tpl +Tp2 +Tp3.e. +Tpr +Tq1 + T2 +Tg3+ ... +Tg '

In Keedwell’s paper the latin interchanges of size 8, types 2, 4a, and size 10 types
2,4, ba, Ta, 8a, 11a, have been constructed using this result or a variation if it where
the rows, columns or elements have been appropriately relabelled.

The next method of construction is analogous to the construction of group divisible
designs given by Hanani in [16].

LEMMA 3.7 Let P = {(pi,pjipx) | pi,Pjs o € N} and Q = {(¢i, 45 ax) | 605, @ €
N} be latin interchanges of order p and q respectively. Assume that P has type

Cp1+Cp2+Cp3+...+Cpc
T'p1+’l‘p2+’f'p3+...+7'pr ’

and Q) has type

cq1—|—cq2+cq3+...+cqc
Tq1+7nq2+rq3+---+7nqr )

Then there exists a latin interchange PQ of order pq and type

Cp1Cq1 + - ..+ Cp1Cgr + CpaCq1 + -+ -+ CpaCygr + ... .. + CpcCq1 + - - -+ CpcCyr
Tp1Tgl + oo+ Tp1Tgr + Tp2Tqr + -+ Tp2Tgr + ..ot + TpeTqr + -0+ TpeTyr



Proof. In this case we simply take the direct product of the latin interchange P
with the latin interchange ). Thus P(Q is taken to be a pg X pg array which contains
entries as follows:

PQ = {((pi, 4:), (pj» 43); x> ax)) | (03> js o) € P A (64,455 a) € Q}

To show that PQ is a latin interchange we need to establish that it has a disjoint
mate. Since P and @ are latin interchanges there exists partial latin squares P’ and
Q" which are the disjoint mates of P and @ respectively. Let

PQ" = {((pi» @), (pj»4); 0k i) | i pj30%) € P'A (65, 45595,) € Q'}.

Is is easy to check that P@Q’ has the same shape and size as P(Q, that it is disjoint
from PQ and that PQ’ and P(Q are mutually balanced. Therefore the result follows.

|

We close this section with two constructions which increase the size of the latin
interchange by 2 and by 3. These two constructions are illustrated with the following
examples. The first example shows how a latin interchange of size 4 (given on the left)
can be extended to a latin interchange of size 6 (given on the right). The next example
illustrates how this same latin interchange can be extended to a latin interchange of
size 7 (once again given on the right).

1 2 1 2 3
2 1 2 3
[ J [ J [ J
1 2 1 2 3
2 1 2 1
3 1

These two methods of construction are formalised in the following lemma.

LEMMA 3.8 Let P = {(pi,pj;px) | Pi»pj,px € N} be a latin interchange of order
p. Let P have type

cp1+cp2+cp3+...+cpc
Tp1+7'p2+7“p3+...+’l“pr )

Assume that for some p, € N

{(pi,pj;p2) | (pi,pj;p2) € P} =2,

and that element p, occurs in cells (ps,pu) and (py, py) of P. For ease of exposition
assume that the number of non-empty cells in columns p, and p, 1S cp, and cy,
respectively, and that the number of non—empty cells in rows ps and py s rps and rp;
respectively. Then



1. there exists a latin interchange Py of order p+ 1 and type

2+cp1+cp2+cp3—|—...+cpc
Tpr +Tpa+ oo Tpsm1 4+ (Tps + 1) + rpsi1 + oo+ 11 + (rpe + 1) ,
+rptr1 T+ Tpr

2. there exists a latin interchange Py of order p+ 1 and type

24ttt o1+ (G + 1) F Cpuir + -+ Cpe
24 rpHrpe st Frpsm1F (rps + 1) Frpsp o F T )

Proof.

1. Take a p+ 1 x p+ 1 array and place the following entries in this array.

o (pi,p;j;pk) where (p;, pj;pi) € P\ {(Ds, Pu; 02)}
o (D5, Pu; ), (D5, 0+ 1;p,), (D1, p + 15 00)

To show that this partial latin square is a latin interchange we need to find its
disjoint mate. Take Pj to be a p+ 1 x p+ 1 array which contains the following
entries:

e (pi,pj; p,) where (p;, pj;pk) € P'\{(pe, pu; 2) }
o (P, pu;00), (s, p + 1;00), (pt, p + 1;p2),

where P’ is the disjoint mate of P. It is easy to see that Py has the same shape
and size as P,. It will certainly be disjoint and mutually balanced in all rows
other than p,; and p; and all columns other than p,, p, and p+1. In P, we have
added an oo to rows p; and p;, but otherwise kept them the same as P. Since
0o occurs in rows ps and p; of Py, P, and P, are mutually balanced in these
rows. Since p, only occurred in cells (ps, p,) and (pg, py) of P, p, must occur in
cells (ps, py) and (pg, p,) of P'. We have taken p, out of column p, of P, and
replaced it by co. However we have done the same thing to column p, in P,
and so they are mutually balanced in column p,. We have not changed column
Py in either partial latin square so they are mutually balanced in this column.
Finally we have added p, and oo to column p+ 1 in both P, and Pj so they are
mutually balanced in this column and therefore mutually balanced over all.

The result now follows.

2. Take P5 to be the p+ 1 X p+ 1 array containing the following entries

o (pi,p;;px) where (p;, pj;p) € P and
o (ps,p+1;00),(p+1,py;00),(p+1,p+1;p,).

To show that Pj is a latin interchange we need to find its disjoint mate. Take
P to be ap+1x p+ 1 array which contains the following entries:

10



o (pi,p;; Pi) where (p;, pj;pi) € P\ {(ps, po; p2) }
o (ps,Py;00), (s, 0+ 1;02), (P + 1,p0;02), (P + 1,p+ 1; 00)

where P’ is the disjoint mate of P. It is easy to see that P is the same shape
and size as P;. It will certainly be disjoint and mutually balanced in all rows
other than p, and p+1 and all columns other than p, and p+1. We have added
an oo to row p, and oo and p, to row p + 1 of P and P’ to obtain P; and P
resectively. Therefore P; and P; are mutually balanced in these rows. A similar
argument verifies that they are mutually balanced in all columns and so they
are mutually balanced.

The result now follows.

|

This method may be used to construct the latin interchanges of size 6, type 2, size
7, type 1, size 8, type 4b, 5, size 9, type 2 and size 10, types 4, 6, 7a, 7b, 8b, 9, 10a,
10b, 11b and 12 given by Keedwell [17].

4 Graph representation

A latin square L of order n corresponds to a decomposition of the complete tripartite
graph K, ,, into triangles. Such a representation may be achieved as follows. For
each 4,7,k € {1,...,n} assign row ¢ the vertex v;, column j the vertex v,;; and
element k the vertex vg, . For each triple (i, j; k) of the latin square L take an edge
from vertex v; to v,4;, another from vertex v; to von4r and finally one from vertex
Un+j 0 Uonyg. For each cell (7, ) of L there is precisely one element k € N such that
k occurs in cell (7,7) of L. Hence for each pair of vertices v;, v+, 1 <,j < n there
is one edge from v; to v,4;. Since L is a latin square each element of N occurs once
in each row. Therefore, for each pair of vertices v;, vop1x, 1 < 4,k < n there is one
edge from v; to vy, k. The same holds for each column of L, and so for each pair of
vertices U, Vontk, 1 < 1,k < n there is one edge from vy, ; to von k. Now the edges
(Viy Un+j), (Vi,Vantk) and (Vpyj, Vonyk) form a triangle. Using a similar argument one
can show that any decomposition of the complete tripartite graph K, , ,, into triangles
can be represented as a latin square of order n.

Consequently a partial latin square of order n may be represented as a subgraph
of the complete tripartite graph K, , . Further, this subgraph can be decomposed
into triangles. However not all partial latin squares are latin interchanges so we need
to extend these ideas to distinguish latin interchanges from partial latin squares.

In what follows, the terminology K, \ {e} is used to represent K4 with one edge
removed.

Construction 1:

Let P be a partial latin square of order n, and G' a multigraph constructed as
follows. Let the vertex set of G be {vy,...,v,} U{vpi1,---, 020} U{v2ns1,- .-, U3}

11



For each i,j,k € {1,2,...,n} assign row ¢ of P the vertex v;, column j the vertex
Un+; and element k the vertex vo,ix. For each triple (7, j; k) of P take one edge from
vertex v; to vn4j, two edges from vertex v; to v, 44 and two edges from vertex vy, ;

to Von+k-

The following lemma verifies that if P is a latin interchange, then the graph con-
structed in this manner can be decomposed into copies of K, \ {e}.

LEMMA 4.9 Let P be a partial latin square of order n and G a multigraph con-
structed as stated above. If P is a latin interchange, then the multigraph G can be
decomposed into copies of Ky \ {e}.

Proof. Assume that P is a latin interchange, and so P is partial latin square of order
n, as is its disjoint mate P'.
Construct a multigraph G' with vertices vy, ..., vs, and edges as follows.

1. Draw an edge between the vertices v, and vp4y, v, and vo,4, and v,4, and
Voniz, for x,y,z € {1,...,n}, if and only if element z occurs in cell (z,y) of P.

2. Draw an edge between the vertices v, and vg,,, and between v,, and va,,
for z,y,z € {1,...,n}, if and only if element z occurs in cell (z,y) of P'.

Since P’ is the disjoint mate of P, it has the same size and shape as P, and the
two partial latin squares are mutually balanced. Therefore, if in Step 2 an edge is
drawn from vertex v, to vy, ,, for some x and z, there must have been an edge drawn
from v, to vony, in Step 1. Likewise, for any edge from vy, to vop4,. By the same
reasoning any edge drawn from v, to vopy, OT Upty t0O Vopy, in Step 1 must have a
corresponding edge drawn in Step 2. Hence the graphs G and G’ are identical.

Since P is a partial latin square the edges obtained from Step 1 can be decomposed
into triangles, where the triangles correspond to a triple (x,y;z) of P. Each such
triangle contains an edge from vertex v, to vertex v,.,, for some z,y € {1,...,n}.
This edge corresponds to the cell (z,y) of P and the third vertex of this triangle
corresponds to an element z which occurs in this cell of P. Select one triple, say
(i,7; k) of P. The disjoint mate P’ of P has element &', k' # k, in the cell (7,j). So
using Step 2, G must also contain edges from the vertices v; to von4 4 and from v, ;
t0 Vontkr. These two edges combined with the edges from v; to vn4j, v; t0 Vopyx and
Un+j t0 Vonyy form a Ky \ {e}. As the triple (4, j; k) runs over all the triples of P we
obtain a set of copies of K, \ {e}. Since P’ is a partial latin square and has the same
shape and size as P, these copies of K4 \ {e} form a decomposition of G.

|

The next theorem demonstrates that this process can be reversed and used to check
whether or not a partial latin square is a latin interchange.
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THEOREM 4.10 Let P be a partial latin square of order n and G a multigraph
constructed as in Construction 1. Suppose that the multigraph G can be decomposed
into copies of K4\ {e} in such a way that for each Ky \ {e} on the vertices v;, vy},
Vonik and Vopgr, 1,< 1,7,k < mn, there exists a unique element (i, j; k) in P. Then P
1$ a latin interchange.

Proof. Assume that P is a partial latin square with multigraph G which can be
decomposed into copies of K, \ {e} satisfying the condition as stated. (This condition
ensures that the copies of K;\{e} cover the triangles which correspond to the elements
of P. For more details see below.) We begin by showing that each K, \ {e} has one
vertex from the set V; = {vy,...,v,}, one vertex from the set V; = {vpy1,..., v}
and two vertices from the set Vi = {von11,. .-, V3, }-

A counting argument verifies that G must contain |P| copies of K, \ {e}.

Since G is a tripartite graph and since a K, \ {e} has four vertices and five edges,
two of these vertices must be from the same set V;, V; or V;, and four edges must
have an endpoint in this set. Take one K, \ {e} and label it K. Assume that K
has two vertices from the set {v1,...,v,}. Label these vertices v, and v,. Label the
remaining vertices of K, v,4, and vo,4,. It follows that K must contain the edges
(Vg, Unty) and (vyr, Ungy). Since G contains |P| edges from the vertices vy, ..., vy, to
Unt1,---,V2n, there remains |P| — 2 such edges to be used in the remaining copies
of K4\ {e}. There are a further |P| — 1 copies of K4\ {e} in the decomposition,
and so there exists at least one K, \ {e} which does not have an edge from the
set of vertices {vy,...,v,} to the set of vertices {v,y1,...,v9,}. This leads to a
contradiction. Similarly it can be shown that K cannot contain two vertices from
the set {vp41,...,v2,}. Hence each K4\ {e} must be on vertices of the form v, v,,4,
Vont, and vonyy, where z,y,2,2" € {1,2,...,n} and edges of the form (vg, vn4iy),
(Uza U2n+z)u (Uza U2n+z’)a (Un—l—y; U2n—|—z) and (Un—l—ya U2n+z’)-

Each (i, 7; k) of P corresponds to a different K, \ {e} in the decomposition of G.
Fix (i,7;k) of P and let K be the corresponding K, \ {e}. Let the vertices of K be
Vi, Untj, Voptk and Vo, for some vo, 1 € Vi Now place (4,7; k') in P'. Repeat
this process for each (i,j; k) € P.

If it can be shown that P’ is a disjoint mate of P then it follows that P is a latin
interchange.

It is obvious that P’ has the same shape and size as P. Since vy, and vo, s are
distinct vertices of G, it follows that P and P’ are disjoint. The edges (v;, von k) and
(Un+j, Vantw) of K indicate that the element &’ occurred in row ¢ and column j of P
and so it follows that P and P’ are mutually balanced.

Hence P is a latin interchange.

|

It should be noted that the multigraph G' constructed using Construction 1 is
the same for both of the partial latin squares given below. However the first is not
a latin interchange. These two examples show that extra condition placed on the
decomposition of GG is necessary.
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1 2 ° 1 2 °
1 3 2 3 1
3 1 ° 1 3

This last result has been used to develop algorithms to search for all possible latin
interchanges of size 11 and less. The results of this search are given in Section 5.

5 Latin interchanges of size 11 or less

In this section we outline the algorithm used to search for non—isomorphic latin in-
terchanges of size up to and including 11. The main steps of the algorithm are as
follows.

First of all determine the types of latin interchanges that are to be searched for.
Each type is represented by a tripartite graph and, if possible, this is decomposed
into triangles. The decomposition is performed by the program autogen, a graph
decomposition program developed by Peter Adams (see [1]).

If a decomposition is possible then the original tripartite graph represents a partial
latin square. In this case the original tripartite graph is modified as in Construction
1 and returned to autogen which attempts to decompose it into copies of K, \ {e}. If
this is possible then a latin interchange has been found. A more detailed discussion
of the algorithm is given below.

5.1 Finding latin interchanges of size m using autogen

In the following, r denotes the number of rows in a type, ¢ denotes the number of
columns and e denotes the number of elements.

1. For a given value m, find all the types

Ci+cCc+cy3+...+c,
rm+ret+rs+...+71,

where Z}‘:l c; = >i—17mi = m and such that the values of ¢; and r; satisfy
the requirements of Lemmas 3.1, and Corollaries 3.2 and 3.3. These are then
labelled as Types 1,2,3....

Observe that
ci+co+c3+...+c, an mM+reo+r3+...+71,
m+ro+rys+...+7r, ci+co+cs+...+c¢,
are transposes of each other.

If max{c;} > max{r;}, then for 1 <4 <rand 1 < j <, relabel the 7;’s as ¢;’s.
That is, consider the transpose.

Split each type into subtypes according to the number of distinct elements e
that may be used where max{r; : 1 < i < r} < e < [%]. One subtype is
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created for each value of e in this range. These are then labelled as Subtypes
la,1b,1c. ..

2. For each subtype we have a value for r, ¢ and e. Convert each subtype into a
tripartite graph with r vertices in the first partition, ¢ in the second and e in
the third. Let vertex vy denote row r,, for this row has the maximum number
of elements occurring in it, and hence vg is a vertex of maximum degree in the
graph. Let the remaining » — 1 rows be denoted by vertices vy, v9,..., v, 1,
noting that the degree of vertex v, is the value r, of the row that it denotes.
Similarly, let vertex v,y; for 0 < j < ¢ — 1 denote columns ¢y, cy,...,c. and
let vertex v, ycix for 0 < k£ < e — 1 denote the elements ey, es, ..., e.. Without
loss of generality, r, triangles of the tripartite graph can be fixed. These are
(vo, Vi, Vige) for r <i<r+4+e—1.

3. Use the parameters determined in Step 2 as input to autogen, and attempt to
decompose the correponding graph of each subtype into triangles.

4. Classify any solutions that are found into isomorphism classes. This can be
done, for example, by using the program nauty see B McKay [18].

5. Take a representative set of m triangles from each isomorphism class and modify
the underlying graph as follows. For each triangle (v;, v;; v;) take one edge from
vertex v; to v, , two edges from vertex v; to v, .4 and two edges from vertex

UT—|—j to Ur+tetk-

6. Return the tripartite graph of Step 5 to autogen and decompose it into copies
of K4\ {e} satisfying the following condition. Recall that one vertex of each
K,\{e} represents a row, another represents a column and the last two represent
two distinct elements. We require that each copy of a K, \ {e} corresponds to
a unique triangle from the first decomposition.

If a solution is found in Step 6 then a latin interchange of this subtype exists.

The following table lists the number of non-isomorphic latin interchanges that
exist for all sizes less than 12.

m 4 5 6 7 8 9 10 | 11
Number of latin | 1 0 2 1 9 7 40 | 62

interchanges
MO MO @)]22)] -

The number of latin interchanges of sizes less than 12.

Figures in brackets represent the numbers previously
found by Keedwell.

Table 1 lists all the latin interchanges of size 10 that were not found by Keedwell,
and Table 2 lists the latin interchanges of size 11.
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Type

242424242
2+2+3+3

Possible non—-isomorphic shapes

® 0o+
[ I JOVE V]
o0 —Ww
N—e @

12300 | 12306

o 0o
00—
orNNe W
wenrne

[ I V)
[ I IV
o0
N
= e
[ I V)
[ I IOV
[ N e
Ut~ @
=Cte

—NNe e

NDWwe e

Type

2+2+2+4
2+2+3+3

Possible non—isomorphic shapes

ISR N

® 0 Lok
o 0 —wW
w0 0

125e 123 e
4

°
3

IENULE V]
® 0 Ut
o 0o+
Wi~ e
AN V]
o 0
ISNGL] oy
o0
orve L
— o +~ 0

o—e

Type

2+2+3+3
2+2+3+3

Possible non—-isomorphic shapes

1 3

W e
wWe o
[ INSLE V]

— o @ W
oo~ 0

werv— e e ro—

o WH—N|e @ LoD

— 0 & WN—e W
o—Wwe

— 0 @ W iAo W
O WO (W0
o N O —WhD

Ne e w|—e e

We N (We o+

O WO @ Lo
OO0 |00

we e oo

Type

2+2+3+3
3+3+4

Possible non—isomorphic shapes

1234 1234
3148 341 e
2403 41 @ 2

Type

24+2+3+3
24+4+4

Possible non—-isomorphic shapes

1234
4312
3400

Table 1: New latin interchanges of size 10
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Type

Possible non—-isomorphic shapes

® 0 0N
o 0eN O
M e e e
N— @& 0 0
— AN e e

LN Nopk]
® 00 —"
MmeNo e
N— @& 0 ®
— oM 0 e

® 0 0O
® 0 0O
MN—NN o @
NeMNee
— N e e e

® 00N
o — N oM
N e e—e
NeMme e
—Neo e e

® 0 0N
® 0 0 H
Nne— e e
AN—MN e e
—Ne e e

o 0 0N
® 00—
MmeNo e
N— ® 0 0
— oM 0 e

® 00
L BN Nanhsy
Nne—e e
ANr—MN e e
— N e e e

® 0 0NN
[ B Ne [ap)
MNneNe e
N— @ 0 ®
— oM 0 e

® 0 0
® 00—
MNne— e e
AN—MN e e
—N e e e

o0 0N~

— M
N e e—e
NM e e e
— oM 0 e

oo OM
o— 0N @
[ae2l B BN NaN|
Ne e— o
— AN e e

Possible non—isomorphic shapes

0 e e <f
< ® 0.0
N e e
N— e o
— M e

Possible non—-isomorphic shapes

o 0N @ N
<o O e em
MNOeTFe| Me e
N— @ &6 AN @ @
— AN @ —ANT @
® O<H M e
< eNeOl e ewm
MNoeeF N e e
AN— @ | N DA
—ANM e —WN e e
oO— @D NN O
oM el e ewm
N o e— MNe et
ANAMNTFOeo| NOe— @
—N @ @ —ANM O
oO— O 0.O— @
< eNOl e e
N e e— Mmne et
AN ® 0| N 0 O
—AN< @ —WANLO @
OMN— @ @ @ MO
<t ® M| < L.OM
N OO NOe e
N— @® & N @ ©
— AN 0| —N e e
O— M| & 6N O&r— O
o O O O FOM O
NeFO N— O 06 M Oe— @
AN @ 0| NN O 0| AN @ '+
—N e @ AN O —NO e

Table 2: Latin interchanges of size 11
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Possible non—-isomorphic shapes

® O<Hen
® o
N e 0N
N— @ o
— oM e

® O — <
o<t &M
™M e e
NN e e
— AN o

® O<Hen
o—M @
™ @<
AN e e
—N e e

o 0N
o<t &M
N e— @
AN e e
— AN @

® O™
o—MN @
™ @r— AN
AN e e
—N e e

® N
® 00—
[l BN NaN|
N— @ @
— o™ e

Type
242424243
24445

Possible non—isomorphic shapes

10 0N
< 0.0
o e <f
N— @
— AN

1O 0N
™M e
N @
AN— @
— A0

0O @M
A RION ]
N <F L0
N— @
— N e

1O @0
t— @
N @
A e
— L0

Type

Possible non—isomorphic shapes

1O @ QN
< 0.0
MN— @
AN e
— N <

Type

Possible non—isomorphic shapes

[ RISy
<t e
MO
AN— @
—N e

@ 1O<f
<t @ —
Nt o
AN e
— AN LO

® — <
<t e
Nt @
AN
— N @

® D
< &N
N o
AN— @
— o
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Possible non—isomorphic shapes

< o oM

LD — <A
N— @ @0
—ANLO @

® O <ri
Nee— @

— o
— AN <
< @ AN —
M — <f
N— @ @
—M e e
<t o O I @ —O
N<Fr— @ N—1O<H
N— @ 0| ANCD @ @
—ANMN<t —WAN 0 @
o oM < @MNLO
MNr— @ 0 N 66— @
ANAM<T 0 AN—1LO<H
—ANMN<F| —AN 0 @
o O - @ N
MNr— @ 0 N 66— O
AN 0| ANLOMN <

— AN <H

—NLO @

Possible non—-isomorphic shapes

O | <" .0
MNMANr— @ O @ —1O
AN— @<f| AN < @
—MN e 0 —N 0 e
o O 06— @
NN 0| N @ <
AN~ @ < ANLO [y
— AN @ — A LO
<t Oe—MN| I LOMN
N O MNe e —
NN 0| NLOT @
AN O —A 01O
<t @e—N| < @
NTF O 0| M Oe— @
AN @ AN @<
—AN< @ —ANM @

Type

Possible non—isomorphic shapes

oM @<
® 06— A
<t @
— N @M

® 0N —
MNr— O
ANMN— @
— M e

Possible non—isomorphic shapes

<O
oM <o
AN e
— AN

< LO AN
(AR Te)
N— @
— ™M

< e
o — <
AN O
— AN
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