

2013 UQ/QAMT Problem Solving Competition - Year 9 & 10 Paper

All questions have equal value. Non-CAS calculators may be used.

Question 1

My internet connection is slow. The more files I download at once the slower it gets. At 1:00 pm I started downloading the three files simultaneously. At that point the time remaining to complete the downloads were given as 10, 8 and 4 minutes. At what time will the downloads all be finished?

Solution: $22/3 = 7\frac{1}{3}$ minutes Let the total bandwidth be 1 unit (units of bytes/sec). Assume the bandwidth is divided equally among the 3 files. File 1 uses 1/3 of the bandwidth for 10 minutes, so its total size is 10/3. Similarly for files 2, 3 so the total amount to be downloaded is 10/3 + 8/3 + 4/3 = 22/3. In effect, it takes just as long to completely download file 1, then 2, then 3, using all available bandwidth. The answer is just the mean of the 3 download times.

Question 2

If the number $x = 111 \cdots 1$ consists of 2013 digits which are all equal to 1, what are the 3 middle digits of x^2 ?

 $\begin{array}{c|c} \textbf{Solution:} & 565 \\ 2 \cdot 10^{n-1} \text{ so } R_n^2 \text{ has } 2n-1 \text{ decimal digits.} \end{array} \\ \textbf{Let } R_n = \overbrace{11 \cdots 1}^{n-1} \textbf{be the number with } n \text{ decimal digits, all equal to } 1. \text{ Thus } 10^{n-1} < R_n < 2 \cdot 10^{n-1} \text{ so } R_n^2 \text{ has } 2n-1 \text{ decimal digits.} \end{array}$

We have $R_{n+1} = 10R_n + 1$, so $R_{n+1}^2 - 100R_n^2 = 20R_n + 1 = 22 \cdots 2$ 1. Since R_{n+1}^2 has 2n + 1 decimal digits, the first n of them agree with the first n digits of R_n^2 . The last n + 1 digits of R_{n+1}^2 are shifted two places left and increased by 2.

If 2098 is incremented by 2222 it becomes 4320. Let β be a sequence of repeating blocks of the form 098765432 possibly with a partial block initially followed by a terminal 1; say $\beta = \cdots 09876543(2098)76543(2098)765432$ 1. Then $100\beta + 222\cdots 221$ has digit sequence $\alpha\beta\beta$ for some α and β .

This proves the following: Let $n \ge 10$. Write n = 9m + r with $1 \le r \le 9$. Then R_n^2 has 2n - 1 decimal digits as follows:

 $R_n^2 = \overbrace{123456790}^2 \overbrace{123456790}^2 \cdots \overbrace{123456790}^2 C_r \overbrace{098765432}^2 \overbrace{098765432}^2 \cdots \overbrace{098765432}^2 1.$

Then there are m leading blocks 123456790 (note: no 8), a middle block C_r as in the table below, then m trailing blocks 098765432 (with no 1) and then a very last digit 1.

r	Cr
1	empty
2	12
3	12 32
4	123 432
5	1234 5432
6	12345 65432
7	123456 765432
8	1234567 8765432
9	12345678 98765432

(Total number of digits is $9m + 9m + 1 + |C_r| = 18m + 1 + 2(r - 1) = 2n - 1$.)

Hence for n = 2013, m = 223, r = 6, $C_r = 1234\overline{565}432$. The middle digit is the 2013th digit, which is the 6th digit of C_r , namely 6. So the middle 3 digits are 565.

There are other ways to see this. One can write $R_n = (10^n - 1)/9$. Then $R_n^2 = \frac{1}{81}(10^{2n} - 2 \cdot 10^n + 1)$. The decimal expansion of $\frac{1}{81}$ is 0.012345679. Now consider shifting this sequence by 2n and n places respectively.

Question 3

A cone has radius 1, height 6. A cube just fits inside the cone, with the bottom of the cube level with the bottom of the cone. What is the volume of the cube?

Solution: 27/8 Draw vertical cross section through the cone, with the diameter along the x axis centered at the origin. The equation of the sloping side is y = -6x + 6 and one corner of the cube is at (x/2, x) and also on this line. Solving, x = 12/8 = 3/2 so the volume is 27/8.

Question 4

The factorial, n!, of a non-negative integer n is defined by

 $\mathfrak{n}! = \mathfrak{n} \times (\mathfrak{n} - 1) \times (\mathfrak{n} - 2) \times \cdots \times 1,$

with 0! = 1. How many triples a, b, c of non-negative integers are there such that

$$(a!)(b!) = a! + b! + c!$$
?

Solution: a = b = 3, c = 4 is the only solution. Note that m! | n! iff $m \le n$. If a = 0 or 1 then b! = 1 + b! + c! > 1 + b! contradiction. If a = 2 then $2 \cdot b! = 2 + b! + c!$ so b! - c! = 2, which is impossible, so $a \ge 3$. Wlog we may take $a \le b$. Then a! divides all terms except possibly c! so a! | c! and $a \le c$ also. If $c \le b$ then $(a!)(b!) \le 3 \cdot b!$ so $a! \le 3$, contradiction. Thus $3 \le a \le b < c$. Hence b! divides all terms except possibly a!, so b! | a! so a = b.

Thus c! = a!(a!-2). Since 3 | a!, the exact power of 3 dividing the LHS and RHS is the same, so there is no multiple of 3 in the range a + 1, ..., c, so c = a + 1 or a + 2 only.

If c = a + 1, a + 1 = a! - 2 so a! - a = 3 so $a \mid 3$ so a = b = 3, c = 4 and this works.

If c = a + 2, $a^2 + 3a + 2 = (a + 2)(a + 1) = a! - 2$, so $a! - a^2 - 3a = 4$ so $a \mid 4$ with $a \ge 3$, so a = b = 4, c = 5, but this does not work.

So the only solution is a = b = 3, c = 4.

Question 5

Suppose we have six equally spaced points on a circle of radius 1 unit. We connect one point to each of the other five with straight lines, as in the diagram. What is the product of the lengths of all these lines?

Solution: [6] There's a very easy solution using complex numbers. Let $\zeta = e^{2\pi i/n}$ for n points. We want $|1-\zeta|\cdot|1-\zeta^2|\cdots|1-\zeta^{n-1}|$. This is just the absolute value of the cyclotomic polynomial $(z^n-1)/(z-1) = 1+z+\cdots+z^{n-1}$ evaluated at 1, which is obviously n.

So for 6 points, the product of lengths is 6. This could be found be fairly easy geometry. Changing n changes the geometrical difficulty.

MAKERS OF **MATHEMATICA** AND **WOLFRAM** ALPHA