2021 UQ/QAMT Problem Solving Competition - Year 11 \& 12 Paper

Two hours allowed. Rulers and non-CAS calculators may be used.
All questions have equal value with marks for working as well as correct answers.

Question 1

Is it possible to colour all positive integers with red or blue so that any two numbers differing by 5 are different colours, and doubling any number gives a number of a different colour? If not, what is the smallest n where it is not possible to colour the first n positive integers in this way?

Question 2

Suppose the square $A B C D$ is inscribed in a circle. Four semicircles are then drawn with each of the square's sides as a diameter, as shown in the following diagram. If the perimeter of the square is 48 cm , what is the area of the shaded region?

Question 3

Let N be the largest number with 2021 digits such that $7 N$ also has 2021 digits. What are the last five digits of N ?

Question 4

Anna writes the sum

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{1000}
$$

as a simplified fraction $\frac{a}{b}$ (so that a and b have no common divisor). How many zeros are at the end of b ?

Question 5

A positive integer is called "charming" if the sum of its digits is divisible by 31. What is the maximum possible difference between two consecutive charming numbers?

