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Expokit: A Software Package for Computing
Matrix Exponentials

Roger B. Sidje

University of Queensland

Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it
computes either a small matrix exponential in full, the action of a large sparse matrix exponential
on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity.
The backbone of the sparse routines consists of Krylov subspace projection methods (Arnoldi
and Lanczos processes) and that is why the toolkit is capable of coping with sparse matrices of
large dimension. The software handles real and complex matrices and provides specific routines
for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical
issue of critical importance in the area of Markov chains and furthermore, the computed solution
is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a
distinct attention is assigned to the computation of transient states of Markov chains.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Alge-
bra; G.1.7 [Numerical Analysis]: Ordinary Differential Equations—initial value problems; G.4
[Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Matrix exponential, Krylov methods, Markov chains

1. INTRODUCTION

Evaluating the action of the matrix exponential operator on an arbitrary vector
is an important problem that arises in mathematics, physics and engineering. For
example, in control theory, a central problem consists in solving the system of ODEs





dw(t)
dt

= Aw(t) + Bu(t), t ≥ 0

w(0) = v, initial condition
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where w(t) is the state vector, A ∈ IRn×n is the state companion matrix, u(t) ∈ IRm

is the control and B ∈ IRn×m. The state vector w(t) is given explicitly by

w(t) = etAv +
∫ t

0

e(t−s)ABu(s)ds.

As another example, a successful and widely used way of modeling the behavior
of many physical systems consists in enumerating the (mutually exclusive) states
in which the system may be at a given time and then, describing the interac-
tion between these states. The analysis of performance of these systems requires
quantifying several attributes, including reliability, availability, and performability.
Frequently, finite state Markov chains constitute powerful mathematical tools that
are used to achieve these purposes [Berman and Plemmons 1979; Ciardo et al. 1990;
Neuts 1981; Seneta 1981; Stewart 1994]. Under suitable hypotheses, the evolution
of several physical systems may be governed by the Chapman-Kolmogorov system
of differential equations:





dw(t)
dt

= Aw(t), t ∈ [0, T ]

w(0) = v, initial probability distribution
.

Its analytic solution is w(t) = etAv and represents the transient probability distri-
bution of the Markov chain. The coefficient matrix A is an infinitesimal generator
of order n, where n is the number of states in the Markov chain. Thus A ∈ IRn×n,
with elements aij ≥ 0 when i 6= j, and ajj = −∑n

i=1
i6=j

aij . Useful performance
parameters can be derived after computing transient solutions. In particular, the
ith component of w(t) is the probability that the physical system will be in the
state numbered i at time t. An in-depth analysis of the behavior of a given system
is usually done by investigating the influence of model parameters (e.g., the initial
condition v) on the solution vector w(t). As the number of trials grows, the amount
of computation explodes. Moreover, in real-time simulations, calculations must be
done within a very short delay and, as the size of the problem grows, only efficient
computers, running efficient software, are able to perform at the desired speed.

The computation of the matrix exponential is often not an end in itself. It can
also be used in a preconditioner-like manner to find the rightmost eigenvalues, e.g.,
Saad [1992b, p.277], Meerbergen and Sadkane [1996], and it can be the elemental
building-block in some solution techniques of ODEs and DAEs, e.g., Lawson [1967],
Hochbruck and Lubich [1996], Hochbruck et al. [1996].

A direct way to define the matrix exponential exp(A) is undoubtedly through
the exponential power series expansion exp(A) =

∑∞
k=0 Ak/k! whose convergence

is guaranteed for any square matrix A. Other definitions exist; each alternative
being of theoretical and/or practical interest depending on the desired end and
also on the class of matrices under consideration. Although papers and textbooks
dealing with matrix exponentials are abundant in the literature, Moler and Van
Loan [1978] cautioned that practical implementations are ‘dubious’ in the sense
that a sole implementation might not be entirely reliable for all classes of problems.
The explicit computation of the matrix exponential function is difficult when the
argument matrix is of large norm or of wide departure from normality. Besides, the
difficulty grows worse when the order of the matrix is large.
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The case where the matrix is of moderate dimension has benefited from extensive
studies such as Ward [1977], Parlett and Ng [1985], Fassino [1993], just to name a
few, which resulted into implementations that appear satisfactory in several uncon-
trived practical instances. Traditional approaches are either based on Taylor series,
rational Padé approximations or the Schur decomposition – the later being used in
conjunction with a recurrence relationship amongst the elements of the exponen-
tial of the triangular factor [Parlett 1976; Parlett and Ng 1985]. Apart from the
Taylor series approach, these techniques require the full matrix and thus they are
applicable only when the order of the matrix does not exceed a few hundreds.

Expokit deals with small matrices as well as large sparse matrices. The soft-
ware package handles real and complex matrices and supplies specific routines for
symmetric and Hermitian matrices. A distinct attention is given to matrices arising
from Markov chains. The backbone of the sparse routines consists of Krylov sub-
space projection techniques (the well-known Arnoldi and Lanczos processes) and
that is why the toolkit is capable of coping with sparse matrices of large dimen-
sion. It seems these techniques were long established amongst Chemical Physicists
without much justification other than their satisfactory behavior. But since the the-
oretical characterization of Gallopoulous and Saad [1992] and Saad [1992a], they
are gaining wide acceptance and their use here and elsewhere shows remarkable
success, see e.g., Gallopoulous and Saad [1992], Saad [1992a], Leyk and Roberts
[1995], Sidje and Stewart [1996], and related references. Recently, Hochbruck and
Lubich [1996] made a major contribution by improving the a priori error bounds
considerably, thus yielding a better understanding as to why the techniques are
working so well. Within the field of Markov chains, relevant studies appear in Sidje
[1994] and Philippe and Sidje [1995].

The knowledge gathered in recent research warrants now the production of intel-
ligible software that will assist scientists in tackling some of the significantly large
problems arising in modeling and engineering. An attempt in this direction briefly
appears in Saad [1994] but Expokit is the first comprehensive package aiming
specifically at this purpose right from the outset. A number of scientists have al-
ready shown interest in using the software and their positive feedback somewhat
reflects the appropriateness and usefulness of the approach. Investigations towards
parallel algorithms that will enable for addressing much larger problems have al-
ready been initiated in Sidje [1994, 1996] but we shall concentrate here on the serial
framework. We start by presenting the foundation of the algorithms (Sections 2
through 5). We subsequently illustrate their utilization (Section 6) and indicate
where the portable routines implementing them can be retrieved (Section 7).

2. THE FULL CASE

Expokit provides routines for computing small matrix exponentials. They are
based on rational Chebyshev or Padé approximations. The rational Chebyshev
approximation comes from extending the minimax Chebyshev theory to rational
fractions. Cody, Meinardus and Varga [1969] have stated and solved the problem:
find Cpp(x) ≡ Npp(x)/Dpp(x) such that

‖Cpp(x)− e−x‖L∞[0,+∞) = min
rpp∈Rpp

max
x∈[0,+∞)

|rpp(x)− e−x| (1)
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where Rpq denotes the class of (p, q)-degree rational functions. For p = 1, 2, ..., 14,
the coefficients of the best approximants Npp(x) and Dpp(x) were computed and
listed. Subsequently, Carpenter, Ruttan and Varga [1984] extended the list up to
p = 30. The positive point here is that it is possible to compute (and keep) the poles
{θi} and to consider the partial fraction expansion Cpp(x) = α0 +

∑p
i=1 αi/(x− θi)

to obtain directly

exp(τH)y ≈ Cpp(−τH)y = α0y −
p∑

i=1

(τH + θiI)−1αiy.

The poles {θi} and the coefficients {αi} were computed and listed in Gallopoulos
and Saad [1992] for p = 10 and p = 14. Expokit only implements the case p = 14.
When τH is real, an LU decomposition is saved for complex conjugate pair of
poles. Thus the whole cost can be reduced by half. When ‖τH‖2 becomes large,
we have found this approach less stable than the diagonal Padé approximations
which are theoretically A-acceptable, see e.g., Iserles and Nørsett [1991]. Given the
domain of applicability specified in (1), the approximations above are more suited
for symmetric negative definite matrices, in which case

‖ exp(τH)− Cpp(−τH)‖2 ≤ λpp

where λpp is an explicitly known constant referred to as the uniform rational Cheby-
shev constant [Varga 1990]. It is now known that λpp ≈ 10−p which means that
a type (p, p)-approximation yields p-digit accuracy. However, this bound does not
hold for a general matrix H having a complex spectrum and/or a poorly condi-
tioned system of eigenvectors. As shown in Fig. 1, if employed where not intended,
these Chebyshev approximants become invalid and large errors occur. Arguably,
one can always apply a shift to the exponential as ez = ese(z−s) ≈ esCpp(−(z− s)),
but es quickly becomes large and magnifies the error.

Fig. 1. Contour plot of |ez − C14,14(−z)| for z in the left-plane.
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The type (p, q) Padé approximation for ex is the (p, q)-degree rational function
Ppq(x) ≡ Npq(x)/Dpq(x) obtained by solving the algebraic equation

∑∞
k=0 xk/k!−

Npq(x)/Dpq(x) = O(xp+q+1), i.e., Ppq(x) must match the Taylor series expansion
up to order p + q. For stability and economy of computation, it is advantageous to
set p = q. Indeed, for the exponential function, we fortuitously have

Ppp(x) =
Npp(x)

Npp(−x)
(2)

where Npp(x) =
∑p

k=0 ckxk with c0 = 1, ck = ck−1
p+1−k

(2p+1−k)k · As noted in Sidje
[1994], it is more economical to use the following irreducible form rather than (2):

Ppp(x) =





1 + 2
x
∑p/2−1

k=0
c2k+1x2k

∑p/2

k=0
c2kx2k−x

∑p/2−1

k=0
c2k+1x2k

if p is even

−1− 2
∑(p−1)/2

k=0
c2kx2k

x
∑(p−1)/2

k=0
c2k+1x2k−

∑(p−1)/2

k=0
c2kx2k

if p is odd

. (3)

The Horner evaluations of the numerator and the denominator in (3) need half the
operations of (2) and a careful implementation uses only four extra matrices with
no shuffling of data (see the routine PADM in this toolkit). However beyond
these considerations, there is a major drawback of the Padé approximations: they
are only accurate near the origin so that the approximation of exp(τH) is not valid
when ‖τH‖2 is too large. Moreover when τH has widely spread eigenvalues, the
computation of Ppp(τH) involves an ill-conditioned linear system. Fortunately these
problems disappear and an acceptable accuracy can be obtained even for a small
degree p if we make use of the exponential property exp(τH) = (exp(2−sτH))2

s

which is referred to as ‘scaling and squaring’. We then use the approximation
exp(τH) ≈ (Ppp(2−sτH))2

s

evaluated by repeated squaring. The principal draw-
back of the resulting algorithm may come from the fact that if s À 1 then, the
computed squares can be contaminated by rounding errors and the cost becomes
large. An inverse error analysis made in Moler and Van Loan [1978] has shown that
if ‖2−sτH‖∞ ≤ 1/2 then

(
Ppp

(
2−sτH

))2s

= exp(τH + E) (4)

where

‖E‖∞
‖τH‖∞ ≤ (p!)2

(2p)!(2p + 1)!

(
1
2

)2p−3

≈




0.34× 10−15 (p = 6)
0.11× 10−18 (p = 7)
0.27× 10−22 (p = 8)

.

Thus a value of p = 6 is generally satisfactory. Other roundoff error considerations
are studied in detail in Ward [1977].

As we shall see below, large sparse techniques rely upon small dense methods.
Of the two small dense methods just described, Expokit uses by default the Padé
method at the core of its large sparse techniques – users can decide otherwise. The
preference went to the Padé method because it resolves the definite and indefinite
cases equally while the Chebyshev method is apt to compute the direct action of the
matrix exponential, exp(τH)y, when it is known in advance that H is symmetric
negative definite.
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3. THE SPARSE CASE

Algorithm 3.1. Compute w(t) = exp(tA)v

w := v; tk := 0;
Hm+2 := zeros[m + 2,m + 2];
while tk < t do

v := w; β := ‖v‖2;
v1 := v/β;
for j := 1 : m do {Arnoldi process}

p := Avj;
for i := 1 : j do

hij := v∗i p;
p := p− hijvi;

end
hj+1,j := ‖p‖2;
if hj+1,j ≤ tol‖A‖ happy-breakdown
vj+1 := p/hj+1,j;

end
H(m + 2,m + 1) := 1;
repeat

τ := step-size;
Fm+2 := exp(τHm+2);
w := βVm+1F (1:m + 1, 1);
err loc := local error estimate;

until err loc ≤ δtol;
tk := tk + τ ;

end

Consider a large sparse n-by-n matrix A (real or complex), a n-vector v and a
scalar t ∈ IR (presumably the ‘time’). For ease of presentation, consider t > 0 since
exp(−tA) = exp(t(−A)). Alg. 3.1 computes an approximation of w(t) = exp(tA)v.
The algorithm purposely sets out to compute the matrix exponential times a vector
rather than the matrix exponential in isolation. The underlying principle is to
approximate

w(t) = etAv = v +
(tA)
1!

v +
(tA)2

2!
v + · · · (5)

by an element of the Krylov subspace Km(tA, v) = Span{v, (tA)v, ..., (tA)m−1v},
where m, the dimension of the Krylov subspace, is small compared to n, the order
of the principal matrix (usually m ≤ 50 while n can exceed many thousands). The
approximation being used is

w̃(t) = βVm+1 exp(tHm+1)e1 (6)

where e1 is the first unit basis vector, β = ‖v‖2; Vm+1 = [v1, ..., vm+1] and Hm+1 =
[hij ] are, respectively, the orthonormal basis and the upper Hessenberg matrix
resulting from the well-known Arnoldi process, see e.g., Saad [1992b], Golub and
Van Loan [1996]. When the matrix is symmetric or Hermitian, the Arnoldi process
is replaced by the Lanczos process and computational savings occur. If the minimal
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degree of v is some integer ν (ν ≤ m ≤ n) then, an invariant subspace is found and
the approximation βVν exp(tHν)e1 is exact. This situation is usually referred to as
a ‘happy breakdown’ and, in exact arithmetic, happens at least when m = n.

The mathematical basis of the selected approximation has been documented [Gal-
lopoulos and Saad 1992; Saad 1992a; Sidje 1994; Hochbruck and Lubich 1996]. In
particular, it has been established that this approximation is better than the m-fold
Taylor expansion – which highlights that for the same amount of matrix-vector
products, the Krylov approximation is better than the Taylor approximation (even
though the Krylov approach involves more local calculation, notably the Gram-
Schmidt sweeps). In fact, Hochbruck and Lubich [1996] have shown that the error
in the Krylov method behaves like O(em−t‖A‖2(t‖A‖2/m)m) when m ≥ 2t‖A‖2.
They gave sharper bounds depending on the class of the matrix and/or the lo-
cation and shape of its spectrum which illustrated that the technique can work
quite well even for moderate m. Using Chebyshev series expansion, Druskin and
Knizhnerman [1995] and Stewart and Leyk [1996] have also provided other relevant
insights on the error bound for the symmetric case.

The distinctive feature to underscore in the Krylov approximation is that the
original large problem (5) has been converted to the small problem (6) which is more
desirable. The explicit computation of exp(tHm+1) is performed using known dense
algorithms. In the present toolkit, this nucleus is handled either with the irreducible
rational Padé method combined with scaling-and-squaring, or the uniform rational
Chebyshev approximation as shown earlier.

The description of the algorithm would be incomplete if we omit to mention that,
in reality, due to stability and accuracy requirements, w(t) is not computed in one
stretch. On the contrary, a time-stepping strategy along with error estimations is
embedded within the process. Typically, the algorithm evolves with the integration
scheme {

w(0) = v
w(tk+1) = e(tk+τk)Av = eτkAw(tk), k = 0, 1, ..., s

(7)

where
τk = tk+1 − tk, 0 = t0 < t1 < · · · < ts < ts+1 = t.

Consequently, in the course of the integration, one can output discrete observa-
tions (if they are needed) at no extra cost. Nevertheless, it is clear from (7) that the
crux of the problem remains an operation of the form eτAv, with different v’s. The
selection of a specific step-size τ is made so that eτAv is now effectively approxi-
mated by βVm+1 exp(τHm+1)e1. Following the procedures of ODEs solvers, an a
posteriori error control is carried out to ensure that the intermediate approximation
is acceptable with respect to expectations on the global error. The starting point of
all these critical issues is the following expansion series established in Saad [1992a]:

exp(τA)v = βVm exp(τHm)e1 + βτhm+1,m

∞∑

j=1

e∗mϕj(τHm)e1(τA)j−1vm+1 (8)

= βVm+1 exp(τHm+1)e1 + β

∞∑

j=2

hm+1,mτ je∗mϕj(τHm)e1A
j−1vm+1 (9)

where ϕ0(z) ≡ ez, ϕj(z) ≡ (ϕj−1(z) − ϕj−1(0))/z =
∑∞

i=0 zi/(i + j)!, j ≥ 1. The
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functions ϕj are positive, increasing, and ϕj+1 ≤ ϕj/j in [0, +∞). Moreover they
become smoother as j increases. A way to control the error and the step-size has
been described in Sidje [1994] as we shall now summarize. For a small step-size
the next term in (8) is an appropriate estimate of the local truncation error. But
this estimate is insufficiently accurate for a large step-size. This is due to the fact
that in that case, in magnitude, the terms of the expansion series grow before they
decay.

Algorithm 3.2. Local truncation error estimation

err1 := β|hm+1,mτe∗mϕ1(τHm)e1|;
err2 := β|hm+1,mτ2e∗mϕ2(τHm)e1| ‖Avm+1‖2;
if err1 À err2 then {small step-size: quick convergence}

err := err2 ;
else if err1 > err2 then {slow convergence}

err := err2 ∗ 1
1− err2

err1

;
else {err1 < err2 : asymptotic convergence}

err := err1 ;
endif
err loc := max(err , roundoff );

A study of the asymptotic behavior of the error term in (8) suggested using the
estimator above. It is an emulation of the problem of approximating an infinite
series by its pth partial sum:

(1) if the terms of the series decrease rapidly (in magnitude) then the next (p+1)-st
term is an appropriate estimate of the error

(2) if the terms decrease slowly then, the geometric limit is considered

(3) if the terms start decreasing at order P where P À p, then the (p + 1)-st term
has no meaning. We take the pth term as an estimate of the error. This choice
is enlightened in Hochbruck et al. [1996, §6.3].

Now an effective way to cheaply compute the coefficients hm+1,mτ je∗mϕj(τHm)e1

is shown in the following assertions homologous to Sidje [1994, p.99].

Theorem 1. Let c ∈ lCm and

H̃m+p =




Hm c 0 · · · 0

0 1
. . .

...

0
. . . 0
. . . 1

0 0



∈ lC(m+p)×(m+p)

then
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exp(τH̃m+p) =




exp(τHm) τϕ1(τHm)c τ2ϕ2(τHm)c · · · τpϕp(τHm)c

1 τ
1! · · · τp−1

(p−1)!

1
. . .

...

. . . τ
1!

0 1




.

Proof. Consider the block upper triangular decomposition

H̃m+p =
(

Hm ce∗1
0 J

)
, J =




0 1 0

0
. . .
. . . 1

0 0


 =




e∗2
...
e∗p
0


 .

Then

eτH̃m+p =
(

eτHm F
0 eτJ

)
, eτJ =




1 τ
1! · · · τp−1

(p−1)!

1
. . .

...
. . . τ

1!
0 1




, F = [f1, ..., fp].

From H̃m+pe
τH̃m+p = eτH̃m+pH̃m+p we have HmF − FJ = eτHmce∗1 − ce∗1e

τJ .
Multiplying on the right by ej to extract the j-th column, we obtain the recurrence
relations {

f1 = τϕ1(τHm)c,
Hmfj = fj−1 − τj−1

(j−1)!c, 1 < j ≤ p

and by induction fj = τ j−1
(
ϕj−1(τHm)− ϕj−1(0)I

)
H−1

m c = τ jϕj(τHm)c.

Corollary 1. Let c ∈ lCm and

Hm+p =




Hm 0
c∗ 0
0 1 0
...

. . . . . . . . .
0 . . . 0 1 0



∈ lC(m+p)×(m+p)

then

exp(τHm+p) =




exp(τHm) 0

τc∗ϕ1(τHm) 1

τ2c∗ϕ2(τHm) τ
1! 1

...
...

. . . . . .

τpc∗ϕp(τHm) τp−1

(p−1)! . . . τ
1! 1




.
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Proof. Applying Theorem 1 with Hm replaced by H∗
m and taking the conjugate

transpose of the result yields the assertion.

Notice that these results remain valid without assumptions on Hm (it needs not
be Hessenberg and/or invertible). When setting c∗ = hm+1,me∗m in particular, the
desired coefficients of the expansion series (8) and (9) can be recovered in the first
column just below the m-th row of exp(τHm+p). The monitoring of the step-size τ
and the size of the Krylov basis m then follows heuristics of ODE solvers, see e.g.,
Gustafsson [1991]. We base the step-size selection on the measure

εk = ‖ε̃k‖/τk−1, error per unit step (EPUS)

where ‖ε̃k‖ is the local truncation error approximated by err. Unless otherwise
specified, ‖ ·‖ denotes the euclidian norm. If tol denotes the prescribed tolerance to
be achieved, the first step-size is chosen to satisfy a known theoretical bound and
within the integration process, the step-size is selected by means of the formula

τk = γ (tol/εk)1/r
τk−1 (10)

rounded to 2 significant digits to prevent numerical noise. The value of r is m−1 or
m depending on whether the error estimate err comes from err1 or err2 respectively
(see Alg. 3.2). A step is rejected if εk+1 > δ tol . (The scalars γ and δ are safety
factors intended to reduce the risk of rejection of the step. They have been assigned
the classical values 0.9 and 1.2 respectively – they can be modified by the user.)
With this step-size mechanism, the ‘accumulated global error’ is upper bounded for
a fixed integration domain regardless of the number of steps used:

∑
k ‖ε̃k‖ ≤ δ· t· tol . (11)

Notice that since ‖ε̃k‖ is estimated by err which itself is subject to (4), the error
measurement should be understood in a weighted sense. Furthermore, since for
j = 1, ..., k, ε̃j are local truncation error vectors, i.e., ε̃j = eτj−1Aw̃(tj−1) − w̃(tj),
we obtain w(tk)−w̃(tk) =

∑k
j=1 e(tk−tj)Aε̃j and therefore the error actually satisfies

(letting t ≡ tk)

‖w(t)− w̃(t)‖ ≤ max
j
‖e(t−tj)A‖ ·

k∑

j=1

‖ε̃j‖ ≤ max
τ∈[0,t]

‖eτA‖ ·
k∑

j=1

‖ε̃j‖. (12)

It is well-known that limτ→+∞ eτA = 0 iff α(A) < 0, where α(A) = max{Re(λ), λ ∈
λ(A)}. An upper bound on (12) can be obtained by using maxτ∈[0,t] ‖eτA‖ ≤
maxτ∈[0,t] e

‖τA‖ ≤ e‖tA‖ but this straight bound is very pessimistic and besides, it
does not decay with α(A). A review of various bounds for ‖eτA‖ is provided in
Van Loan [1977] where it is shown that an effective bound is eα(A)τ ≤ ‖eτA‖ ≤
eα(A)τ

∑n−1
k=0 ‖τN‖k/k! with N being the strict upper part of the triangular factor

of the Schur decomposition of A. The lower bound ‖eτA‖ = eα(A)τ is attained if A
is normal. In general, even if α(A) < 0, ‖eτA‖ can still grow before it decays (the
so-called ‘hump’ effect) and whether this situation occurs or not depends on the
sign of µ(A), i.e, supτ≥0 ‖eτA‖ = 1 iff µ(A) ≤ 0, where µ(A) = λmax((A + A∗)/2)
is the logarithmic norm of A and we recall that α(A) ≤ µ(A). Fig. 2 is a detailed
characterization of the behavior of ‖eτA‖.
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µ(A) ≤ 0 µ(A) > 0

(a) (b) (c) (d) (e)
||e   ||τΑ

1

τ

||e   ||τΑ

1

τ

||e   ||τΑ

1

τ

||e   ||τΑ

1

τ

||e   ||τΑ

1

τ

α(A) < 0 α(A) = 0 α(A) ≥ 0 α(A) = 0† α(A) < 0

Fig. 2. Behavior of ‖eτA‖ in relation to µ(A) and α(A). The dagger (†) means eigenvalues have
nonpositive real part and those which are purely imaginary or zero are nondefective.

The routines in Expokit attempt to achieve (11) and thus the user may bear
in mind the aforementioned issues, especially the potential discrepancies that may
result from (4) or (12). These issues are related to the conditioning of the matrix
exponential in itself [Van Loan 1977]. Our control (11) is conservative and together
with Alg. 3.2, they prove nicely effective if the problem is not exaggeratedly ill-
conditioned. It is also meaningful to observe that the relative error satisfies (recall
that β = ‖v‖ and v1 = v/β)

‖w(t)− w̃(t)‖
‖w(t)‖ ≤ maxτ∈[0,t] ‖eτA‖

‖w(t)‖
k∑

j=1

‖ε̃j‖ =
1
β

‖et̂Av̂‖
‖etAv1‖

k∑

j=1

‖ε̃j‖ (13)

for some t̂ ∈ [0, t] and v̂ such that ‖v̂‖ = 1. Therefore if ‖et̂Av̂‖/‖etAv1‖ ≈ 1,
we can relate (11) to a bound on the relative error. Otherwise if ‖et̂Av̂‖ À 1 or
‖etAv1‖ ¿ 1, the upper bound in (13) becomes too large and has little practical
value. Upon exit ‖etAv1‖ is readily approximated by ‖w̃(t)‖/β and as a by-product
of the computations, Expokit also returns the following approximation:

hump ≡ ‖et̂Av̂‖ = max
τ∈[0,t]

‖eτA‖ = max
τ∈[0,t], x 6=0

‖eτAx‖
‖x‖ ≈ max

tj∈[0,t]

‖w̃(tj)‖
β

·

When a step-size is rejected it is reduced by using formula (10) once more but
there is also the opportunity (not implemented in this release) of adjusting (increase
or decrease) the dimension of the Krylov subspace by the way of the relation

mk = mk−1 +
⌈

log(tol/εk)
log τk−1

⌉
·

As an epilogue to the description of the algorithm, it is worth reminding that the
primary matrix interacts only through matrix-vector products. Hence the method
is a matrix-free method and conveys all the associated advantages.

4. THE MARKOVIAN CASE

The Markovian context brings other probabilistic considerations. The approxima-
tion of w(t) = exp(tA)v is subject to the constraint that the resulting vector must
be a probability vector, thus with components in the range [0, 1] and with sum equal
to 1. Since the analytic solution of the Chapman-Kolmogorov system of differen-
tial equations is w(t), its computation can be addressed totally in the perspective
of ODEs. But general-purpose ODEs solvers do not bring any guarantee either.
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Practice shows that they can even produce negative components – which have no
meaning in terms of probabilities.

A number of results of interest were provided in Sidje [1994] and Philippe and
Sidje [1995] by exploiting the fact that the matrix A is an infinitesimal generator of
a Markov chain and satisfies some inherent properties. With the Krylov approach,
the sum condition is fulfilled, i.e., 11T w̃(tk) = 1 where 11 = (1, ..., 1)T . If during the
integration process (7) some components of an intermediate approximation happen
to be negative, the components under concern are less than the error tolerance (in
magnitude), otherwise this intermediate solution would be rejected by the error
control. Therefore a handy way to overcome any difficulty is to set the negative
components to zero and perform a normalization afterwards. Another way to pro-
ceed is to reduce the step-size. It is mathematically guaranteed that the Krylov
approximation is a probability vector for small enough step-sizes. Markov chains
conform to Fig. 2-(d) and it is shown that the global error in the approximation
grows at most linearly, i.e., (12) becomes ‖w(tk) − w̃(tk)‖1 ≤

∑k
j=1 ‖ε̃j‖1. Addi-

tionally, it is possible to detect and cope with excessive roundoff errors as follows.
Letting w̄(tk) be the computed value of w̃(tk) and using the fact that 11T w̃(tk) = 1
and the Hölder inequality ‖11‖1‖w̃(tk)− w̄(tk)‖∞ ≥ |11T (w̃(tk)− w̄(tk))|, we have

‖w̃(tk)− w̄(tk)‖∞ ≥ |1− 11T w̄(tk)|
n

≡ roundoff . (14)

Hence if the quantity roundoff is far from the machine precision then, the computed
approximation w̄(tk) is too contaminated and the process should be stopped. This
is a sufficient condition to indicate a high level of roundoff errors. The indicator is
deficient when the vector w̃(tk)− w̄(tk) is orthogonal to 11. This may happen but it
is expected to be rare. Another interesting feature which is also worth mentioning
is the capacity to detect the stationary probability distribution w∞ = limt→∞ etAv
(i.e., the ith component of w∞ is the probability that the Markov chain will be in
the state numbered i at statistical equilibrium). The detection of the steady-state
is made possible by the ‘happy breakdown’.

The ensuing customization of the generic algorithm incorporating all these as-
pects proves to be a fairly reliable and versatile algorithm for the computation of
transient states of Markov chains. Extensive experiments conducted in Sidje and
Stewart [1996] have shown the benefit of the method.

5. THE NONHOMOGENEOUS CASE

Quite often the linear system of ODEs from which the matrix exponential arises is
nonhomogeneous and has a constant forcing term:





dw(t)
dt

= Aw(t) + u

w(0) = v, initial condition.
(15)

If the matrix A is nonsingular the solution can be written as w(t) = etA(v+A−1u)−
A−1u and so with one extra linear system solve, it can be recovered as described
earlier. However, a much cheaper and unrestricted approach which does not depend
on the invertibility of A is also possible through techniques similar to that of the



Expokit: Software Package for Computing Matrix Exponentials · 13

homogeneous case. The explicit solution of (15) is

w(t) = etAv +
∫ t

0

e(t−s)Auds = etAv + tϕ(tA)u (16)

where ϕ(z) ≡ ϕ1(z) = (ez − 1)/z =
∑∞

i=0 zi/(i + 1)!. Therefore an integration
scheme can be obtained as{

w(0) = v
w(tk+1) = w(tk + τk) = τkϕ(τkA)(Aw(tk) + u) + w(tk) . (17)

Indeed (16) yields w(t + τ) = eτAw(t) +
∫ τ

0
e(τ−s)Auds = eτAw(t) + τϕ(τA)u =

(τAϕ(τA) + I)w(t) + τϕ(τA)u = τϕ(τA)(Aw(t) + u) + w(t). Hence the crux of
the integration scheme (17) is now an operation of the form ϕ(τA)v which can be
approximated in a way similar to exp(τA)v. In a more precise sense we have the
following generalizations.

Theorem 2. For every p ≥ 0,

τpϕp(τA)v = τpβVmϕp(τHm)e1 + β

∞∑

j=p+1

hm+1,mτ je∗mϕj(τHm)e1A
j−p−1vm+1

= τpβVm+1ϕp(τHm+1)e1 + β

∞∑

j=p+2

hm+1,mτ je∗mϕj(τHm)e1A
j−p−1vm+1.

Proof. For p = 0, we recover directly (8) and (9). Then from (8) we can write

(τAϕ1(τA)+I)v = βVm(τHmϕ1(τHm)+I)e1+β

∞∑

j=1

hm+1,mτ je∗mϕj(τHm)e1A
j−1vm+1.

Therefore using the fundamental relation VmHm = AVm−hm+1,mvm+1e
∗
m, we have

A
(
τϕ1(τA)v − τβVmϕ1(τHm)e1 − β

∞∑

j=2

hm+1,mτ je∗mϕj(τHm)e1A
j−2vm+1

)
= 0

and since this holds for any v, we necessarily have

τϕ1(τA)v = τβVmϕ1(τHm)e1 + β

∞∑

j=2

hm+1,mτ je∗mϕj(τHm)e1A
j−2vm+1 (18)

= τβVm+1ϕ1(τHm+1)e1 + β

∞∑

j=3

hm+1,mτ je∗mϕj(τHm)e1A
j−2vm+1(19)

with the ‘corrected’ equality (19) following from the fact that

ϕ1(τHm+1) =
(

ϕ1(τHm) 0
hm+1,mτe∗mϕ2(τHm) 1

)

which can be proved thanks to the relation ϕ1(τHm+1)Hm+1 = Hm+1ϕ1(τHm+1).
The proof for higher p proceeds by induction in a similar way.

It is then justified from (19) that one can consider the approximation

τϕ1(τA)v ≈ τβVm+1ϕ1(τHm+1)e1 (20)
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so that in essence, the original large problem (16) reduces to the computation of
the small-sized problem ϕ1(τHm+1)e1 and techniques discussed in Section 2 can be
applied. For instance, ϕ1(z) can be recovered from the Chebyshev partial fraction
expansion of ez as ϕ1(z) = (ez − 1)/z ≈ (Cpp(−z) − 1)/z =

∑p
i=1(αi/θi)/(z + θi)

which allows for obtaining ϕ1(τHm+1)e1 directly. However, the Chebyshev approx-
imations are not always valid and so it is desirable to use the robust alternative
proposed in Theorem 1 which provides the information needed for the approxima-
tion as well as the extra coefficients of the expansion series useful for the estimation
of the error. Interestingly also, no special coding is needed. The computation of
all these is done at once with a direct call to one of the small matrix exponential
routine within the package. Finally, if for j = 1, ..., k, we consider local truncation
error vectors ε̃j = τj−1ϕ(τj−1A)(Aw̃(tj−1)+u)+ w̃(tj−1)− w̃(tj) then, we can infer
w(tk)− w̃(tk) =

∑k
j=1 e(tk−tj)Aε̃j and a similar analysis to that done earlier holds.

6. EXAMPLES

This section shows experiments with some routines of Expokit. All the examples
are executed on a standard SUN4 workstation. The size of the Krylov basis is
m = 30 everywhere. Drivers reproducing each example are available in the package:
sample m.f, sample z.f, sample g.f, sample b.f, sample p.f for the first through to the
fifth example respectively. Another driver (not shown here), sample d.f, is available
and it depicts the utilization of routines targeted to small dense problems.

6.1 A binary Markov example

A Markov system is being modeled in this first example. The system consists of a
collection of components that are binary, i.e., they have only two states, ‘good’ and
‘bad’. If c is the number of components in the system, the number of states in which
the system can be is n = 2c. Rules for constructing automatically the infinitesimal
generator are given in Clarotti [1984]. The matrix chosen for the example is of
order n = 1, 024 with nz = 11, 264 (i.e., the number of components is c = 10). We
set t = 10, v = (1, 0, ..., 0)T and tol = 10−10.

Output with DMEXPV

w(1:5) =
0.13051504168006
1.2181403890139D-02
1.3517629316864D-02
1.2616454029073D-03
1.7712755656580D-02

CPU Time = 81 sec

Output with DGEXPV

w(1:5) =
0.13051504168006
1.2181403890139D-02
1.3517629316864D-02
1.2616454029073D-03
1.7712755656580D-02

CPU Time = 76 sec

This example aims at illustrating that DGEXPV (the version for General ma-
trices) is often slightly faster than DMEXPV (the version for Markov matrices).
There is an overhead when enforcing the probability constraint in DMEXPV. Both
versions are provided in Expokit and so in the end, the choice of which one to
use is left to the satisfaction of the Markovian analyst – depending on whether the
impending priority is guaranteed reliability or speed at some risk.
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6.2 A Hermitian example

Output with ZGEXPV

w(1:5) =
( 305250.75378623, -113.89587171937)
( 6.7491920417580D-08, 6.8657867370494D-08)
(-3.0966858825505, 4.6959293376943)
(-1.6776892228097D-06, -7.8892940444656D-06)
( 9.1675656352188D-06, -2.6860802938635D-06)

CPU Time = 49 sec

Output with ZHEXPV

w(1:5) =
( 305250.75378623, -113.89587171924)
( 6.7491920417570D-08, 6.8657867370493D-08)
(-3.0966858825505, 4.6959293376943)
(-1.6776892228097D-06, -7.8892940444658D-06)
( 9.1675656352187D-06, -2.6860802938635D-06)

CPU Time = 13 sec

The matrix of this example comes from a symmetric pattern of order n = 5, 300
of the Harwell-Boeing collection. We take the pattern BCSPWR10 and fill-in a
Hermitian matrix. Both real and imaginary parts are filled using uniform random
numbers within the range [−5, +5]. The Coordinates (COO) storage is used to hold
the matrix and this yields nz = 21, 842 as the effective number of non-zero elements
(the conjugate transpose is included explicitly). We set t = 1, v = (1, 0, ..., 0, 1)T

and tol = 10−5. The example illustrates the gain of the routine tailored for Hermi-
tian matrices over the general routine.

6.3 A nonsymmetric example

DGEXPV with COO

w(1:5) =
6464.4009480840
4828.8899856184
5450.5845968253
5592.7251537899
4575.6820139573

CPU Time = 17 sec

DGEXPV with CCS

w(1:5) =
6464.4009480840
4828.8899856184
5450.5845968253
5592.7251537899
4575.6820139573

CPU Time = 14 sec

DGEXPV with CRS

w(1:5) =
6464.4009480840
4828.8899856184
5450.5845968253
5592.7251537899
4575.6820139573

CPU Time = 15 sec

The matrix of this example is the unsymmetric matrix ORANI678 of the Harwell-
Boeing collection [Duff et al. 1989]. The order is n = 2, 529 and the number of non-
zero elements is nz = 90, 158. This example illustrates the impact of the sparse data
storage. DGEXPV is executed with t = 10, v = (1, ..., 1)T , tol = 0, using three
different data structures (see [Barret et al. 1994; Saad 1994]): Coordinates (COO),
Compressed Row Storage (CRS), Compressed Column Storage (CCS). By inputing
tol as zero, the code automatically set tol to the square-root of the machine epsilon
which is about 1.5 10−8 actually. It appears that the CCS format fits better the
sparsity pattern of ORANI678. It is often hard to predict which structure fits better
an arbitrary sparse matrix. Our observation on various computer architectures
suggests that the CRS format is usually a compromise with unknown erratic sparsity
patterns.

6.4 A forward-backward example

Forward with DSEXPV

w+(1:5) =
3456.5698306801
7.3427169843682
4094.7323184931
1275.0417533589
2939.0163458165

CPU Time = 11 sec

Backward with DSEXPV

w−(1:5) =
1.0000000000001
1.0000000000003
1.0000000000003
1.0000000000003
1.0000000000003

CPU Time = 10 sec
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The matrix of this example is the symmetric matrix GR3030 of the Harwell-
Boeing collection. The order is n = 900 and the number of non-zero elements is
nz = 4, 322. We set t = 1, v = (1, ..., 1)T and tol = 10−10. This example shows
the computation of e−tAetAv. Two runs are performed in tandem. The first run
computes w+ = etAv (forward) and the output of this computation is passed as
the input operand of the next run which computes w− = e−tAw+ (backward). In
exact arithmetic, the final result should be v. The output obtained is very close.
We see also that the runs took comparable time.

6.5 A nonhomogeneous example

DGPHIV with u = 0, v = 11

w(1:5) =
6464.4009480834
4828.8899856180
5450.5845968249
5592.7251537895
4575.6820139570

CPU Time = 13 sec

DGPHIV with u = 11, v = 0

w(1:5) =
4962.2511930989
3658.2951908942
4152.9628069217
4279.0497069393
3442.7780495196

CPU Time = 13 sec

DGPHIV with u = 11, v = 11

w(1:5) =
11426.652141182
8487.1851765123
9603.5474037466
9871.7748607288
8018.4600634766

CPU Time = 14 sec

This is an illustration of an integration with respect to the phi function, i.e., it
computes w = exp(tA)v + tϕ(tA)u, where ϕ(z) = (exp(z) − 1)/z. The matrix of
this example is the unsymmetric matrix ORANI678 (CCS format) that was used in
§6.3. We also set t = 10, tol = 0 and thus the square-root of the machine unit is the
accuracy tolerance that will be effectively used. We have set the input parameters
so as to make a certain number of comparisons. By setting u = 0 in the first run,
the expected answer is w[1] = exp(tA)v. This is confirmed by a look at §6.3. With
the second run, the answer should be w[2] = tϕ(tA)u. To check this we compute the
difference ∆ = ‖(u+Aw[2])−w[1]‖/‖w[1]‖ ≈ 10−14 which correlates quite well with
the tolerance used. The third run is a general run where neither u nor v are null.
We observe that the runs took comparable times. It has been our observation that
computing exp(tA)v via the PHI routine may sometimes be faster than via the EXP
routine. This may be related to the fact that the right-hand side function in (17),
i.e., the phi function, is smoother than the right-hand side function in (7), i.e., the
exponential function – thus allowing for bigger step-sizes. However, they produce
slightly different numerical results and the EXP routine should be preferred.

7. THE SOFTWARE

A World Wide Web site, http://www.maths.uq.edu.au/expokit, has been set up and
it allows for accessing the package (or parts of it). A mailing list has also been
set up, expokit@maths.uq.edu.au, and it provides a medium through which users
of the package are kept informed of upgrades in the software. Users can sub-
scribe/unsubscribe in this open forum, exchange ideas and contribute in the exten-
sion of the package.

Coding was done in Fortran 77 while using building blocks from the two well-
known scientific libraries BLAS and LAPACK. As a precaution, necessary steps
have been taken to ensure an unconstrained portability of the software. We include
an essential minimal substitute to BLAS and LAPACK. In this way the software
is self-contained and can still operate even if these libraries are not yet installed in
the environment of the user. The naming scheme used in LAPACK has inspired
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Table 1. Nomenclature.
T indicates the data type

D double precision
Z complex*16

Z indicates the task scope

M Matrix output
V Vector output

X indicates the matrix

G General
H Hermitian
S Symmetric
M Markov chain matrix
N Hessenberg

YYY indicates the task

PAD Padé
CHB Chebyshev
EXP Exponential evaluation
PHI ϕ evaluation (nonhomogeneous poblem)

the naming convention used for the routines in the package. However, because the
chart of matrices involved in Expokit is not as exhaustive as that of LAPACK (e.g.,
all sparse routines in Expokit are matrix-free), we introduced slight differences.
Unless otherwise stated, the names of the Fortran 77 routines in Expokit match
the pattern TXYYYZ in accordance with the description on Table 1.

Not all combinations are possible. The choice of the pattern above complies with
the 6-length Fortran 77 recommendation and achieves the dual purpose of avoiding
conflicts with LAPACK’s names (a cross-check has been done to ascertain this)
and facilitating/harmonizing forthcoming extensions of the package. The header
in Table 2 below is prototype to the routines in the package. Whenever possible
readability and user-friendliness are in the first place – provided efficiency is not
impeded (e.g., the ordinary user is relieved from handling bulky parameters while
the advanced user can fetch them if needed).

To sustain flexibility, the MATLAB counterparts of the algorithms have been
coded and are also included in the distribution. Thus research codes written in
MATLAB can perform better by taking advantage of the new techniques. More to
the point, we supply MATLAB scripts allowing experimental matrices composed
within the user-friendly environment of MATLAB to be stored into files suitably
formatted for loading directly into the Fortran versions. It is not our intention to
elaborate on operating directives. A README file is included in the distribution
for this purpose. We shall instead outline some top-level routines of relevance that
will give a sense of concreteness to the reader.

EXPV computes w = exp(tA)v, t can be positive or negative. The action of the matrix

exponential operator on the operand vector is evaluated directly, i.e., exp(tA) is

not computed in isolation before being applied to v. The variants dealing with

symmetric/Hermitian matrices use the cheaper Lanczos process instead of the

Arnoldi process. Of particular interest is DMEXPV, the customised version

for Markov Chains. This means that a check is done within this program to

ensure that the resulting vector w is a probability vector.

IMPORTANT: The well-known transition rate matrix Q of a Markov chain

satisfies Q11 = 0 where 11 = (1, ..., 1)T ; DMEXPV uses the matrix-vector

product y = Ax = QT x, i.e., the transpose of Q times a vector. Failure to

remember this leads to wrong results.

PHIV computes w = exp(tA)v+tϕ(tA)u which is the solution of the nonhomogeneous

linear ODE problem w′ = Aw + u, w0 = v. The input parameter t can be
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positive or negative. If u = 0 this procedure is mathematically equivalent

to EXPV and if v = 0 it computes tϕ(tA)u. The variants dealing with

symmetric/Hermitian matrices use the cheaper Lanczos process instead of the

Arnoldi process.

PADM computes the matrix exponential exp(tH) in full where H is a relatively small

matrix. The underlying method is the irreducible rational Padé approximation

to the exponential function combined with scaling-and-squaring. This proce-

dure can be used in its own right to compute the exponential of a small matrix

in full. Computational savings are made in the symmetric/Hermitian variants.

CHBV computes exp(tH)y where H is a relatively small matrix using the partial frac-

tion expansion of the uniform rational Chebyshev approximation of type (14, 14)

to the exponential function over the negative real axis. The calculation of each

fraction is done using Gaussian elimination with pivoting. The Chebyshev

method is intended to compute the direct action of the matrix exponential on

a vector when H is negative definite.

blas.f/lapack.f minimal substitute to BLAS and LAPACK. In this way Expokit can be

used even if these library packages are not yet installed in the environment of

the user. Guidelines for their use (or non-use) are provided in the Makefile.

expv.m/mexpv.m MATLAB counterparts of EXPV and DMEXPV.

mat2coo.m utility program aimed at storing a MATLAB matrix into a text file that

can be exploited directly. The matrix is stored under the Coordinates storage

format (COO).

mat2crs.m/mat2ccs.m utility programs aimed at storing a MATLAB matrix into a

text file under the Compressed Row Storage (CRS) format and the Compressed

Column Storage (CCS) format.

NOTE: Fortran subroutines for matrix-vector multiplication when the matrix is

stored using either of the above formats are included in this distribution. They

are referred to as coov, crsv, and ccsv. For optimum performances, how-

ever, if users have an a priori knowledge of the structure of their matrices, it is

recommended to store them using the most advantageous format and to devise

the most advantageous matrix-vector multiplication routine. A Fortran con-

verter subroutine, cnvr, that transforms any of the above formats to another

one is supplied in this distribution.

loadcoo.m/loadcrs.m/loadccs.m utility Matlab scripts for loading matrices stored us-

ing either mat2coo.m, mat2crs.m, or mat2ccs.m.

8. CONCLUSION

This paper has detailed the main current ingredients of the Expokit package. The
work has benefited from latest results in Krylov approximation methods to the
matrix exponential and new results and extensions were established that enabled
effective local and global error estimation, step-size control, efficient implementation
and tailorization (e.g., Markov chains). The software is self-contained and accepts
real and complex data. It deals with small matrices as well as large sparse matrices
and it makes computational advantage of symmetric/Hermitian matrices. Since the
computation of the matrix exponential is difficult, the paper has also outlined the
issues that can contribute in the understanding of the limitations of the methods if
they fail to produce accurate enough results.
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It is hoped that numerical methods that need the small matrix exponential in full
or that make use of the action of the large sparse matrix exponential and/or the phi
function in their own right or as a building-block will find in the software robust
and ready-to-use routines that will be helpful. Examples of such methods include
Lawson [1967], Leyk and Roberts [1995], Hochbruck et al. [1996], Meerbegen and
Sadkane [1996]. Feedback from current users of the package certainly shows that the
package is quite propitious. In addition to the inevitable conventional maintenance,
efforts will be undertaken to include refinements and extensions that will keep the
software up-to-date with new discoveries. In particular, studies in Sidje [1994, 1996]
have already illustrated how an efficient parallelization can be achieved.
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Table 2. Header of DGEXPV.
subroutine DGEXPV( n, m, t, v, w, tol, anorm, wsp,lwsp, iwsp,liwsp, matvec, itrace,iflag )

implicit none
integer n, m, lwsp, liwsp, itrace, iflag, iwsp(liwsp)
double precision t, tol, anorm, v(n), w(n), wsp(lwsp)
external matvec

Purpose DGEXPV computes w = exp(t·A)·v - for a General matrix A

Arguments
n (input) order of the principal matrix A.
m (input) maximum size for the Krylov basis.
t (input) time at which the solution is needed (can be < 0).
v(n) (input) given operand vector.
w(n) (output) computed approximation of exp(t·A)·v.
tol (input/output) the requested accuracy tolerance on w. If on input tol = 0.0d0

or tol is too small (tol ≤ eps) the internal value sqrt(eps) is used, and tol is set
to sqrt(eps) on output (‘eps’ denotes the machine epsilon). (‘Happy breakdown’
is assumed if hj+1,j ≤ anorm·tol)

anorm (input) an approximation of some norm of A.
wsp(lwsp) (workspace) lwsp ≥ n·(m+1)+n+(m+2)2+4·(m+2)2+ideg+1 (actually, ideg = 6)
iwsp(liwsp) (workspace) liwsp ≥ m+2
matvec external subroutine for matrix-vector multiplication.

synopsis: matvec( x, y )
double precision x(*), y(*)

computes: y(1:n) ← A·x(1:n)
where A is the principal matrix.

itrace (input) running mode. 0=silent, 1=print step-by-step info
iflag (output) exit flag.

< 0 - bad input arguments
= 0 - no problem
= 1 - maximum number of steps reached without convergence
= 2 - requested tolerance was too high

Accounts
Upon exit, an interested user may retrieve accounts on the computations.
They are located in wsp and iwsp as indicated below:

location mnemonic description
iwsp(1) nmult number of matrix-vector multiplications used
iwsp(2) nexph number of Hessenberg matrix exponential evaluated
iwsp(3) nscale number of repeated squaring involved in Pade
iwsp(4) nstep number of integration steps used up to completion
iwsp(5) nreject number of rejected step-sizes
iwsp(6) ibrkflag set to 1 if ‘happy breakdown’ and 0 otherwise
iwsp(7) mbrkdwn if ‘happy breakdown’, basis-size when it occurred
wsp(1) step min minimum step-size used during integration
wsp(2) step max maximum step-size used during integration
wsp(3) dummy
wsp(4) dummy
wsp(5) x error maximum among all local truncation errors
wsp(6) s error global sum of local truncation errors
wsp(7) tbrkdwn if ‘happy breakdown’, time when it occurred
wsp(8) t now integration domain successfully covered
wsp(9) hump approximation of the ‘hump’, i.e., maxτ∈[0,t] ‖eτA‖
wsp(10) ‖w‖/‖v‖ scaled euclidian norm of the solution w.
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