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Introduction
Consider two parental populations: P1 and
P2. Within each there are population allele
frequencies given by:

Pk = (fk1, fk2, ..., fkd) (k = 1, 2)

Alleles from each population leave that
population to form a third population,PH.

PH = (fH1, fH2, ..., fHd)

Each allele in PH came either from P1 with
probability p1 or from P2 with probability p2

(i.e. fHi = p1f1i + p2f2i).

From samples of Nk alleles in population
Pk (k = 1, 2, H), we assume that we can
observe allele frequencies of
nk = (nk1, nk2, ..., nkd)

(1). Now, given
pk (k = 1, 2) and Nk (k = 1, 2, H) we want to
determine the probability of observing a
particular configuration
(nk1, nk2, ..., nkd) (k = 1, 2, H).

Analytical Method
The probability of coming to the observed
configuration can be evaluated analytically
by considering all possible ways that alleles
in PH could have come from P1 and P2. Let
n(H,k)i be the number of alleles of type i in
the Hybrid that have come from Pk, and mki

be be the number of alleles of type i in Pk

once the Hybrid alleles have been
distributed to the Parental Populations (i.e.
mki simulate initial parental configurations
before hybridisation occurred):

mki = nki + n(H,k)i.

The probability that the parental
configuration (m11, . . . ,m1d), (m21, . . . ,m2d)
leads to the observed configuration
(n11, . . . , n1d), (n21, . . . , n2d), (nH1, . . . , nHd) is (2)

C(m11, n(H,1)1) . . . C(m1d, n(H,1)d) ×
C(m21, n(H,2)1) . . . C(m2d, n(H,2)d) ×
(p1)

n(H,1)1+···+n(H,1)d(p2)
n(H,2)1+···+n(H,2)d

We can then calculate the probability of the
parental configurations under the
multinomial-Dirichlet, before summing over
all possible n(H,k)i to reach the desired
probability.

Computational Methods
The problem with the analytical method is
that the sum has many
((nH1 + 1) · · · (nHd + 1)) terms. This means
that the algorithm for the analytical method
is order (NH/d)d. It is preferable to generate
a few parental configurations at random and
average over the probabilities determined
from these in a consistent way. This is done
by assigning each allele i in the Hybrid to a
parental population k.

The intuitive way of doing this involves
iterating through the alleles in PH and
assigning them to Pk based upon pk

(3). This
can give terrible estimates, so other methods
should be considered.

Three Candidate Methods
Three methods have been proposed to more
efficiently assign the alleles in the Hybrid
population to the parental populations.

Method 1
Send any allele i to population j with
probability proportional to

pk(nki + 1) d∑
i=1

nki

 + 1

,

provided there is an allele of type i in the
Hybrid population. This method effectively
picks both the population and the allele to
be assigned both at the same time. This
process continues (with new probabilities
calculated each time) until there are no more
alleles remaining in nH.

Method 2
Pick a population with probability ∝ pk, then
an allele ∝ nki + 1 for this fixed k.
This method selects first which population
the allele will be assigned to, then which
allele will be assigned. The allele is only
assigned if there is an allele present in that
position in nH. This process continues (with
new probabilities calculated each time) until
there are no more alleles remaining in nH.

Method 3
Pick an allele i from among those present in
the Hybrid with probability ∝ nki, then a
population proportional to

pk(nki + 1) d∑
i=1

nki

 + 1

(for this fixed i). This method selects first the
allele which is to be allocated, and then the
population which it is to be allocated to.
This process continues (with new
probabilities calculated each time) until
there are no more alleles remaining in nH.

Simulation
These methods (Method 0 along with
Methods 1, 2 and 3) were simulated using
C++ over a number of different inputs
(nk (k = 1, 2, H)). From each method for each
iteration a log-probability was returned
based upon the multinomial-Dirichlet
distribution and the appropriate
importance-sampling weights. The system
was simulated with
• the set of data given in the example used

in slides by Jean-Marie Cornuet.
•five sets of data generated from the

negative-binomial distribution.
• systematically chosen sets of data where n1

and n2 have fixed numbers of empty
lineages (i.e. nki = 0 (k = 1, 2)).
An example of this type of data:

n1 = (0, 0, 0, 12, 12)

n2 = (0, 0, 12, 12, 12)

nH = (10, 10, 10, 10, 10)

This situation has two common 0s
between n1 and n2.

The results of these simulations give the
possibility of observing:
• the variability of the generated

log-probabilities for given input data, and
• the difference between the mean

log-probabilities for each method and the
analytical solution for given input data.

These describe, respectively, the efficiency
and accuracy of the four methods.

Results
When considering the variation of the
generated probabilities, the most useful
results are in the form of figures showing the
log-probabilities for all 4 methods over a
number of iterations (Variance can be
calculated as part of the simulation, but is
easier to see/analyse via this sort of figure;
narrower bands indicate higher efficiency).

log-probabilities for the 4 methods for 1000 iterations of all data (each band is a different set of data)

example data a = { 8 10 2 0 0 }, b = { 0 0 3 9 6 }, c = { 1 6 2 1 2 }
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log-probabilities for the 4 methods for 1000 iterations of the example data

It should be noted that these
log-probabilities are weighted, and hence
their average is calculated via the sum of
their Importance Sampling weights, so all
averages end up very close to each
other/the analytical solution.
The difference between the analytical
probability and the simulated mean
probability for each method can also be
considered.

|mean log-prob. - analytical prob.| for 0 common zeros
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|mean log-prob. - analytical prob.| for 1 common zero
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|mean log-prob. - analytical prob.| for 2 common zeros
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|mean log-prob. - analytical prob.| for 3 common zeros
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Differences between mean log-prob. and analytical probability for systematic data (4)

Analysis
It is clear from both observing the figures
showing variance in log-probability, and the
differences between the analytical solution
and the mean solutions, that in the vast
majority of cases Methods 0 and 3 are clearly
superior to Methods 1 and 2. The fact that
Method 0 is so good is somewhat surprising
considering that it is the simplest method.

Since Methods 0 and 3 are superior, it is
possible that the lower variance of these
methods can be attributed to the process of
first selecting the allele i from nH to be
allocated, as Methods 0 and 3 both define
which allele will be allocated before
choosing which population to allocate to.

In general, the fewer zeroes n1 and n2 have,
the closer the mean log-probabilities of
Methods 0 and 3 are to the analytical
solution. Method 3 with the very nearly full
n1 and n2 is particularly close.

In terms of variance, Method 3 is generally
slightly better than Method 0. The variance
in the negative binomial datasets is very
similar, but the difference is somewhat
noticeable in the Cornuet’s example data
and in the mostly-full input data, except
when n1 and n2 are completely different in
the non-common-zero lineages (these bands
are obvious on the overall summary figure).

Notes
1. nk,i is the number of type i alleles observed in a sample of nk

individuals from population k (k = 1, 2, H).

2. C(α, β) is the binomial coefficient, the number of distinct
ways of choosing β items from among α items.

3. This method is referred to henceforth as Method 0.

4. each of these plots represents a number of sets of data. e.g.
the top left plot has no lineages i where both n1i and n2i are 0.
The x axis shows the number of lineages i where n1i and n2i

are both non-zero (in this simulation, the value 12 was used).
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