
RESULTS

•This table shows a comparison of the General Approach
to the Approximation Approach for the stochastic SIS lo-
gistic model withN = 50 (number of individuals),λ =

0.8 (per-interaction rate of infection) andµ = 0.4 (per-
individual rate of recovery) and using one set ofn = 40

observations:

n = 40 λ̂ µ̂

General Approach 1.14739 0.566294

Approximation Approach1.10432 0.552027

•Note that the maximum population size is small in the
above comparison. WhenN is increased to2000, where
the General Approach is infeasible, the estimates produced
by the Approximation Approach improve:

n = 40 λ̂ µ̂

Approximation Approach0.905564 0.447709

•Our new method provides reasonably accurate estimates
of parameters. In particular when the maximum popula-
tion size is large. This is precisely the situation in which
the General Approach becomes infeasible, and thus the
methods presented complement each other.
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GENERAL APPROACH

•One approach is to calculate the exact likelihood of ob-
serving the given data, and then use a numerical search al-
gorithm to compute the maximum likelihood estimators.

•However, the exact likelihood cannot usually be evaluated
explicitly, so it must be computed numerically.

•This combination provides a useful tool for fitting continuous-
time Markov chains to real systems, but is computationally
infeasible if the parameter space or the maximum popula-
tion size is large, due to the computational intensity (and
storage) required to evaluate the exact likelihood.

APPROXIMATION APPROACH

•One way to achieve an approximate likelihood is to use dif-
fusion approximations. If our model isdensity-dependent,
that is the transition rates take the form

qN(m, m + l) = Nf
(

m

N
, l

)
, l 6= 0,

for a suitable functionf , whereXN(t) = mN(t)/N , t ≥ 0,
then we may derive a deterministic approximation, and a
Gaussian diffusion approximation.

•When the deterministic approximation has an asymptoti-
cally stable fixed point, we can accurately model the fluc-
tuations about this fixed point by an Ornstein-Uhlenbeck
(OU) process. The likelihood of an OU process is simply
a Gaussian distribution. Thus, we may approximate the
exact likelihood by a Gaussian distribution, resulting in a
substantial decrease in computational complexity.

THE PROBLEM

•Often the most appropriate model for a stochastic system is
that of a discrete-state Markov process. However, generally
we can only observe the state of the process at successive,
and not necessarily equally-spaced, time points. How can
we estimate the parameters of our model from such obser-
vational data?

EXAMPLE

•An example of where this problem arises is in epidemio-
logical modelling. A model appropriate for the spread of
infections that do not confer any long lasting immunity, and
where individuals become susceptible again after infection,
is the stochastic SIS (susceptible-infective-susceptible) lo-
gistic model.

• It is a continuous-time Markov chain(m(t), t ≥ 0) taking
values inS = {0, 1, . . . , N} with non-zero transition rates

q(m,m + 1) = λ
m

N
(N − m) (m = 1, 2, . . . , N − 1)

q(m,m − 1) = µm (m = 1, 2, . . . , N),

whereλ, the per-interaction rate of infection, andµ, the
per-individual rate of recovery, are both positive.

•Commonly we only know the number of people who are
infected at successive, and not necessarily equally-spaced,
time points.

•How do we estimateλ andµ, and the basic reproduction
ratioR0 = λ/µ from such observational data?
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