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Recall . . .

A time-homogeneous CTMC (X(t), t ≥ 0) taking values
in a countable set S (Z+) is completely described by its
transition function P (t) = (pij(t), i, j ∈ S, t ≥ 0).

In practice we usually know only the transition rates:
(qij = p′ij(0

+), i, j ∈ S) is the q-matrix.

qij , i 6= j, is the transition rate from state i to state j,
−qii = qi =

∑

j 6=i qij is the total rate out of state i.

If we know P , we can in principle answer any question
about the behaviour of the chain. The challenge is to try
and answer these questions in terms of Q.
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Recall . . .

A Birth-Death Process is a CTMC with state space
S = {0, 1, 2, . . .} such that if the chain is in state i, transitions
can only be made to state i − 1 or i + 1.

Its’ q-matrix has non-zero entries

qi,i+1 = λi,

qi,i−1 = µi,

qii = −(λi + µi),

(put µ0 = 0) where λi, µi > 0 ∀i ∈ C, and λ0 ≥ 0.
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The Chemical Reaction

A + X
k1� � � � � �� � � � � �

k
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X
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The Chemical Reaction

A + X
k1� � � � � �� � � � � �

k
−1

2X

X
k2

� � � � � � B

Model the number of molecules of X with a CTMC — a
birth-death process on S = {0} ∪ C, where zero is
absorbing and C is an irreducible transient class.

The system can be either closed or open with respect
to A & B. C = {1, 2, . . . , N} or {1, 2, . . .}, respectively.
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The Chemical Reaction

A + X
k1� � � � � �� � � � � �

k
−1

2X

X
k2

� � � � � � B

The birth and death rates are, respectively,

λi = αk1i,

and

µi = k2i + k−1
i(i − 1)

2
.
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A Sample Path
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A Stationary Distribution?

Q: Is this behaviour limiting?

The state space is reducible — S = {0} ∪ C.

The class C is transient.

The limiting distribution is π = (1, 0, 0, . . .).
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A Stationary Distribution?

Q: Is this behaviour limiting?

The state space is reducible — S = {0} ∪ C.

The class C is transient.

The limiting distribution is π = (1, 0, 0, . . .).

A: No — looking at the limiting behaviour sees all of the
probability going to the absorbing state.
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A Stationary Distribution?

Q: Is this behaviour limiting?

The state space is reducible — S = {0} ∪ C.

The class C is transient.

The limiting distribution is π = (1, 0, 0, . . .).

A: No — looking at the limiting behaviour sees all of the
probability going to the absorbing state.

So how can we explain this behaviour?
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Instead

We need to condition on the process having not been
absorbed at time t.
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Instead

We need to condition on the process having not been
absorbed at time t.

Rather than the transition probabilities

pij(t) = P(X(t) = j |X(0) = i),

we consider the conditional transition probabilities

mij(t)
def
=

pij(t)

1 − pi0(t)

= P(X(t) = j |X(t) ∈ C , X(0) = i).
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Definitions

A distribution a = (ai, i ∈ C) is a QSD over C if when
the initial distribution is a, the state probabilities
paj(t) =

∑

i∈C aipij(t) conditioned on non-absorption are
time-invariant (and given by a):

paj(t)

1 − pa0(t)
= aj , j ∈ C.

A distribution b = (bi, i ∈ C) is a a-LCD over C if when a

is the initial distribution, bj gives the limiting probability
of the process being in state j, conditional on
non-absorption:

lim
t→∞

paj(t)

1 − pa0(t)
= bj , j ∈ C.
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Definitions

A ν-invariant measure (over C) for P is a collection of
numbers m = (mi, i ∈ C) which, for some ν > 0, satisfy

∑

i∈C

mipij(t) = e−νtmj , j ∈ C, t ≥ 0.
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Definitions

A ν-invariant measure (over C) for P is a collection of
numbers m = (mi, i ∈ C) which, for some ν > 0, satisfy

∑

i∈C

mipij(t) = e−νtmj , j ∈ C, t ≥ 0.

A ν-invariant measure (over C) for Q is a collection of
numbers m = (mi, i ∈ C) which, for some ν > 0, satisfy

∑

i∈C

miqij = −νmj , j ∈ C.
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Finite State Space

Easy because of spectral decomposition (of P ) and
Perron-Frobenius theory.

The δi-LCD and unique QSD is given by the probability
measure m such that

mPC(t) = e−ν1tm.

This is equivalent to

mQC = −ν1m,

where −ν1 is the eigenvalue with maximal real part (it is
real and negative).
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A Simple Example

Lets look at the CTMC with the following q-matrix:

Q =







0 0 0

1 −100 99

0 10 −10







We know that the transition function is P (t) = exp(tQ).

We can get Maple to calculate P (t), and indeed the
state probabilities

pj(t) =
∑

i∈S

aipij(t), j ∈ S,

where a is an initial distribution, say
(

0 4
5

1
5

)

.
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example II

Lets look at the CTMC with the following q-matrix:

Q =







0 0 0

13 −55 42

0 42 −42







Again we can get Maple to evaluate P and p, and then use

Matlab to plot them:
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A Simple Example II
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A Simple Example II

P (t) =







1 0 0

1 0 0

1 0 0






+ e−6t







0 0 0
−78
85

36
85

42
85

−91
85

42
85

49
85






+ e−91t







0 0 0
−7
85

49
85

−42
85

6
85

−42
85

36
85






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A Simple Example II

P (t) =







1 0 0

1 0 0

1 0 0






+ e−6t







0 0 0
−78
85

36
85

42
85

−91
85

42
85

49
85






+ e−91t







0 0 0
−7
85

49
85

−42
85

6
85

−42
85

36
85







Now, solving mQ = −νm gives

ν1 = 6, ν2 = 91

and
m1 =

(

6
13

7
13

)

.
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Definitions

A distribution a = (ai, i ∈ C) is a QSD over C if when
the initial distribution is a, the state probabilities
paj(t) =

∑

i∈C aipij(t) conditioned on non-absorption are
time-invariant (and given by a):

paj(t)

1 − pa0(t)
= aj , j ∈ C.

A distribution b = (bi, i ∈ C) is a a-LCD over C if when a

is the initial distribution, bj gives the limiting probability
of the process being in state j, conditional on
non-absorption:

lim
t→∞

paj(t)

1 − pa0(t)
= bj , j ∈ C.
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Definitions

A ν-invariant measure (over C) for P is a collection of
numbers m = (mi, i ∈ C) which, for some ν > 0, satisfy

∑

i∈C

mipij(t) = e−νtmj , j ∈ C, t ≥ 0.

A ν-invariant measure (over C) for Q is a collection of
numbers m = (mi, i ∈ C) which, for some ν > 0, satisfy

∑

i∈C

miqij = −νmj , j ∈ C.
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The Decay Parameter

The quantity

λC := lim
t→∞

− log(pij(t))

t

exists and is independent of i, j ∈ C.

Called the decay parameter because

pij(t) ≤ Mije
−λCt, 0 < Mij < ∞.

Can show that for a ν-invariant measure for P over C to
exist, it is necessary that (0 <)ν ≤ λC .
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Infinite State Space

P is now an infinite matrix, so Perron-Frobenius theory
no longer applies.
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Infinite State Space

P is now an infinite matrix, so Perron-Frobenius theory
no longer applies.

QSDs (if they exist) are given by probability measures
m such that

mPC(t) = e−νtm.
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Infinite State Space

P is now an infinite matrix, so Perron-Frobenius theory
no longer applies.

QSDs (if they exist) are given by probability measures
m such that

mPC(t) = e−νtm.

The δi-LCD (if it exists) is given by m such that

mPC(t) = e−λCtm.
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Infinite State Space

P is now an infinite matrix, so Perron-Frobenius theory
no longer applies.

QSDs (if they exist) are given by probability measures
m such that

mPC(t) = e−νtm.

The δi-LCD (if it exists) is given by m such that

mPC(t) = e−λCtm.

These expressions involve P and λC , which are not
known and impossible (or at best very difficult) to find
analytically — we need conditions in terms of the
q-matrix.
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Infinite State Space

Theorem: If m is a ν-invariant probability measure for Q,
then

ν =
∑

i∈C

miqi0

is neccesary and sufficient for m to be a QSD.
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Infinite State Space

Theorem: If m is a ν-invariant probability measure for Q,
then

ν =
∑

i∈C

miqi0

is neccesary and sufficient for m to be a QSD.

This allows us to find all ν-invariant probability
measures for Q which are QSDs.

Another result tells us that a QSD must be ν-invariant
for Q.
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Infinite State Space

In order to find these ν-invariant measures for Q we must
solve the system

∑

i∈C

miqij = −νmj , j ∈ C.
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Infinite State Space

In order to find these ν-invariant measures for Q we must
solve the system

∑

i∈C

miqij = −

(

∑

i∈C

miqi0

)

mj , j ∈ C.

We can eliminate ν explicitly from the system we need to
solve, however this renders the system non-linear in m.
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Infinite State Space

In order to find these ν-invariant measures for Q we must
solve the system

∑

i∈C

miqij = −

(

∑

i∈C

miqi0

)

mj , j ∈ C.

We can eliminate ν explicitly from the system we need to
solve, however this renders the system non-linear in m.

Finding explicit expressions for QSDs is rarely possible.
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Infinite State Space

Theorem: If the equations
∑

i∈C

yiqij = κyj , yi ≥ 0, j ∈ C,
∑

i∈C

yi < ∞

have only the trivial solution for some (all) κ > 0, then all
ν-invariant probability measures for Q are also ν-invariant
for P and are therefore QSDs.
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Infinite State Space

Theorem: If the equations
∑

i∈C

yiqij = κyj , yi ≥ 0, j ∈ C,
∑

i∈C

yi < ∞

have only the trivial solution for some (all) κ > 0, then all
ν-invariant probability measures for Q are also ν-invariant
for P and are therefore QSDs.

Call this condition the “Reuter FE Condition”
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Infinite State Space

Theorem: If the equations
∑

i∈C

yiqij = κyj , yi ≥ 0, j ∈ C,
∑

i∈C

yi < ∞

have only the trivial solution for some (all) κ > 0, then all
ν-invariant probability measures for Q are also ν-invariant
for P and are therefore QSDs.

Call this condition the “Reuter FE Condition”

If this condition holds, all we have to do is find a
ν-invariant measure for Q and this is a QSD.
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A Minor Problem

Recall that for a ν-invariant measure for Q to exist, it is
necessary that ν ∈ (0, λC ]. However, depending on the
process, there are two situations that arise:

There are finite ν-invariant measures for all ν ∈ (0, λC ].

There is only one finite ν-invariant measure; for ν = λC .

This gives rise to some important questions:
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Some Interesting Questions

When there is more than one QSD,

For a given initial distribution a, which QSD is the
a-LCD?

For each QSD m, which initial distributions a have m as
the a-LCD?

When there is only one QSD,

Is it the a-LCD for all initial distributions a?

or are there initial distributions for which there is no
LCD?
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Birth-Death Processes

Theorem: Suppose a birth-death process is absorbed with
probability one. Then

If D < ∞ then there is a unique finite ν-invariant
measure (QSD), corresponding to ν = λC .

If D = ∞ then either
λC = 0 and there are no QSDs, or
λC > 0 and there is a one-parameter family of finite
ν-invariant measures (QSDs), for 0 < ν ≤ λC .

Here

D =

∞
∑

n=1

1

µnπn

∞
∑

m=n

πm, πn =
λ1 · · · λn−1

µ2 · · ·µn
.
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The Chemical Reaction

A + X
k1� � � � � �� � � � � �

k
−1

2X

X
k2

� � � � � � B

The birth and death rates are, respectively,

λi = αk1i,

and

µi = k2i + k−1
i(i − 1)

2
.
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The Chemical Reaction

One can show that this process is absorbed with
probability one (and is therefore regular).
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The Chemical Reaction

One can show that this process is absorbed with
probability one (and is therefore regular).

We can also show that

D =
∞
∑

n=1

nΓ(n + r)

[nk2 + n(n − 1)k
−1

2 ](αs)n−1

∞
∑

m=n

(αs)m−1

mΓ(m + r)
,
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One can show that this process is absorbed with
probability one (and is therefore regular).

We can also show that

D =
∞
∑

n=1

nΓ(n + r)

[nk2 + n(n − 1)k
−1

2 ](αs)n−1

∞
∑

m=n

(αs)m−1

mΓ(m + r)
,

and that this is finite.
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The Chemical Reaction

One can show that this process is absorbed with
probability one (and is therefore regular).

We can also show that

D =
∞
∑

n=1

nΓ(n + r)

[nk2 + n(n − 1)k
−1

2 ](αs)n−1

∞
∑

m=n

(αs)m−1

mΓ(m + r)
,

and that this is finite.

So there is a unique quasistationary distribution, which
is limiting conditional (at least whenever the initial
distribution has finite support).
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A Connection

For a Birth-Death process, the Reuter FE conditions
hold iff D = ∞.
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A Connection

For a Birth-Death process, the Reuter FE conditions
hold iff D = ∞.

So, let’s replace

D diverges (converges)

in van Doorns’ result with

the Reuter FE condition holds (fails).
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Infinite State Space

Conjecture: Suppose a process is absorbed with
probability one. Then

If the Reuter FE conditions fail then there is only one
QSD.

If the Reuter FE conditions hold, either
λC = 0 and there are no QSDs, or
λC > 0 and there is a one-parameter family of finite
ν-invariant measures (QSDs), 0 < ν ≤ λC .
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Another Chemical Reaction

A + X
k1

� � � � � � � 2X

2X
k2

� � � � � � � B

This is not a Birth-Death process: it has jumps up of
size 1, but jumps down of size 2:

qi,i+1 = αik1,

qi,i−2 = k2
i(i − 1)

2
.

Hopefully my conjecture can deal with this!!
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Further work

Domain of attraction problem for LCDs.

Conjecture — is it true? if not, what can we learn from a
counterexample?

Approximation methods: does m(n) → m in some sense
if we solve

n
∑

i=1

m
(n)
i qij = −ν

(n)
1 m

(n)
j , j = 1, . . . , n

with ν
(n)
1 the P-F maximal eigenvalue of

Q(n) = (qij , i, j = 1, . . . , n), for succesively larger n?

The ‘renewal dynamical’ approach.
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The Quasi-Stationary Distribution
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