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Background and Summary

• Metapopulations are ‘populations of
populations’, existing in a system of habitat
patches:
• Example 1: ... on ‘islands’.
• Example 2: ... in successional habitat.

• Environmental events may reduce available
habitat, which then gradually recovers.

• We will discuss a 2-D Markov chain model for
a metapopulation, incorporating stochastic
habitat dynamics driven by catastrophes.
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Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

(x, y) → (x + 1, y) at rate r (N − x) ,

(x, y) → (x, y + 1) at rate cy
( x

N
−

y

N

)

,

(x, y) → (x, y − 1) at rate ey,

on S = {(x, y) | x, y ∈ N, 0 ≤ y ≤ x ≤ N}.
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Catastrophic Events

Catastrophic jumps occur at a constant rate, γ,
affecting each habitat patch independently:

(x, y) → (x − (i + j), y − j) at rate

γ

(

x − y

i

)(

y

j

)

pi+j(1 − p)x−i−j.

• p is the probability that each patch is
rendered unsuitable by a catastrophe.
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Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

• Extinction (first passage) times are almost
surely finite!

• Quasi-stationary distributions exist!

If these are easy to calculate (or approximate,
e.g. matrix-analytic methods), we can use them
to assess the characteristics of the system.
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Extinction Times
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Quasi-stationary distributions
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A Deterministic Limit

• Assume for the moment that there are no
catastrophes.

• It is possible to show that X(s, t)/N → U(s, t),
which satisfies a system of ODEs:

a(U) =

[

∂u/∂t

∂v/∂t

]

=

[

r(1 − u)

cv(u − v) − ev

]

,

with initial conditions
U(s, 0) = limN→∞ X(s, 0)/N . (Kurtz, 1970)
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Catastrophes in the Limit

• Treat catastrophes as a separate component.

• The arrival rate of catastrophes is unaffected
by scaling.

• As N → ∞, if T1 is a catastrophe time,

X(s, T1)

N

P
−→ (1 − p)U(s, T1−).
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A Stochastic Integral Equation

The limiting, scaled process:

dU(s, t) = a(U(s, t))dt+

∫

M

c(U(s, t),m)P[dm, dt; γ]

• c(U, dm) describes effect of catastrophes

• Poisson random measure P describes arrival
of catastrophes and their magnitudes, m.

• Generalised Itô fomula gives first passage
times. (Gihman & Skorohod, 1972)
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First Passage Times

First passage times, τG

(

U0

)

, into a closed set
S\G (i.e. out of G), starting from U0, are a twice
continuously differentiable solution, g(U), to

(Lg)(U) = −1,U ∈ G

g(U) = 0,U /∈ G,

• In the present case, (Lh)(U) is given by

(Lh)(U) = ∇h(U)·a(U)−γh(U)+γh
(

(1−p)U
)

.
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Solving First Passage Times

Slightly different conditions:

• g(U) should be continuous along all
trajectories U(s, t), and piecewise smooth
along other smooth paths.

• g(U) should be bounded for all U.

Solve in ‘steps’: Gn is the region from which at
least n catastrophes are needed to leave G.
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Solving First Passage Times

The solution has the form

e−γtg
(

U(s, t)
)

= −

∫ t

0

γe−γrg
(

(1 − p)U(s, r)
)

dr

− γ−1
[

1 − e−γt
]

+ C1(s),

but we want a bounded solution, so set

C1(s) =

∫ ∞

0

γe−γrg
(

(1 − p)U(s, r)
)

dr + γ−1.
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Solving First Passage Times

Hence (along trajectories that remain within G)

g
(

U(s, t)
)

=
1

γ
+

[
∫ ∞

t

γe−γrg
(

(1 − p)U(s, r)
)

dr

]

eγt.

Clearly, C1(s) = g(s, 0). We can also confirm:

• if G = G1, g(U) = γ−1 for all U on trajectories
remaining in G;

• if U∞ = limt→∞ U(s, t) is in G, then
g(s,∞−) = γ−1 + g

(

(1 − p)U∞

)

.
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Solutions: A Special Case

If the fixed point is on the first ‘step’,

• g
(

U(s, t)
)

= γ−1, for all trajectories not
leaving G1 in finite time,

• solutions for trajectories heading out of G
using the deterministic hitting time and a
truncated exponential law, and

• the system of DEs [∂u/∂t, ∂v/∂t, ∂g/∂t] gives
first passage times for trajectories starting on
higher steps.
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Solutions: A Special Case
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Solutions: General Case

The general case is a little more difficult.

• Define a mapping K : H → H,

K
(

f(s, t)
)

:=
1

γ
+ eγt

∫

∞

t

γe−γrf ((1 − p)U(s, r)) dr,

with H being the set of bounded functions
f : G → R+ under the condition

f
(

U(s, t)
)

≥
1

γ
+ eγt

∫

∞

t

γe−γrf ((1 − p)U(s, r)) dr.
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Solutions: General Case

• f ≥ K(f), f ∈ H, so we might hope that the
iterative application of K would lead to a fixed
point, but. . .

• H 6= ∅ is equivalent to the existence of a
solution, h, to

(Lh)(U) ≤ −1,U ∈ G

h(U) ≥ 0,U /∈ G,

≡ to a condition from Gihman & Skorohod for
the existence of a solution τG ≤ h.
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Solutions: General Case

• Is H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).

• In our 2D model, u does not depend on v, so:

(i) take G′ ⊃ G so that the first passage out of
G′ only depends on u;

(ii) find h(u) = τG′(u);
(iii) then h(u) satisfies the inequality condition

for all v such that (u, v) ∈ S.
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