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| Background and Summary

e Metapopulations are ‘populations of
populations’, existing in a system of habitat
patches:

e Example 1: ... on ‘islands’.
o Example 2: ... In successional habitat.

e Environmental events may reduce available
habitat, which then gradually recovers.

e We will discuss a 2-D Markov chain model for
a metapopulation, incorporating stochastic

habitat dynamics driven by catastrophes. I



| Demographic Events

Paired metapopulation-habitat states make the
following ‘demographic’ transitions:

(x,y) — (x+1,y) atrate 1r(N —ux),

X Y
| y+1) atrat ( )
(x,y) — (z,y+1) atrate cy ~ TN

(z,y) = (x,y —1) atrate ey,

onS={(z,y) | z,y e N0 <y <z <N}
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| Catastrophic Events

Catastrophic jumps occur at a constant rate, -,
affecting each habitat patch independently:

(2,y) = (x = (i +J),y —j) atrate
)

e p IS the probability that each patch Is
rendered unsuitable by a catastrophe.
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| Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

e Extinction (first passage) times are almost
surely finite!

e Quasi-stationary distributions exist!

If these are easy to calculate (or approximate,
e.g. matrix-analytic methods), we can use them
to assess the characteristics of the system.
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Quasi-stationary distributions
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| A Deterministic Limit

e Assume for the moment that there are no
catastrophes.

e Itis possible to show that X(s,t)/N — U(s,t),
which satisfies a system of ODEs:

_(9u/8t_ r(1 — u)
_(%/815_ cv(u —v) — ev

with initial conditions
U(s,0) = limy_ X(s,0)/N. (Kurtz, 1970)
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| Catastrophesin the Limit

e Treat catastrophes as a separate component.

e The arrival rate of catastrophes is unaffected
by scaling.

o As N — oo, If T} Is a catastrophe time,

X(S,Tl) P\
N >

(1 —=p)U(s, T1—).
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| A Stochastic I ntegral Equation

The limiting, scaled process:

dU(s,t) = a(U(S,t))dH—/M c(U(s,t), m)Pldm, dt; |

¢ c(U, dm) describes effect of catastrophes

e Poisson random measure P describes arrival
of catastrophes and their magnitudes, m.

e Generalised It0 fomula gives first passage

times. (Gihman & Skorohod, 1972)



| First.Passage Times

First passage times, 7¢(Uy), into a closed set

S\G (i.e. out of (), starting from U, are a twice
continuously differentiable solution, ¢(U), to

(L)(U) = —1,U € G
g(U) =0,U §é G,

¢ In the present case, (Lh)(U) is given by
(Lh)(U) = Vh(U)-a(U)—~h(U)+~h((1—p)U).
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| Solving Fir st Passage Times

Slightly different conditions:

¢ ¢(U) should be continuous along all
trajectories U (s, t), and piecewise smooth
along other smooth paths.

e ¢(U) should be bounded for all U.

Solve In ‘steps’. G, Is the region from which at
least n catastrophes are needed to leave G.
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| Solving Fir st Passage Times

The solution has the form

e_wg(U(s,t)) — _/0 ve_wg((l —p)U(S,T))dT

— 1= + Ci(s),

but we want a bounded solution, so set

Ci(s) = /OOO ve_wg((l — p)U(s,r))dr +~ 1
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| Solving Fir st Passage Times

Hence (along trajectories that remain within &)

L { /t " e g ((1 - mug,@)m} o

g(U(s,t)) = -

Clearly, Ci(s) = g(s,0). We can also confirm:

o if G =Gy, g(U) =~ for all U on trajectories
remaining in G,
o f U, = hmHOO U(s

s, t) IS nG then
g(s,00—=) =71+ g((1 -

Ux).

B



Solutions. A Special Case

If the fixed point is on the first ‘step’,
° g(U(s,t)) = ~~1, for all trajectories not
leaving (1 In finite time,

e solutions for trajectories heading out of G
using the deterministic hitting time and a
truncated exponential law, and

e the system of DEs |0u/0t,0v/0t, 0g/0t] gives
first passage times for trajectories starting on

higher steps.
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| Solutions.. General Case

The general case is a little more difficult.
e Define a mapping K : H — H,

K(f(5.0) ==+ [ 9e 1 (1= p)Uls.r) dr,

with H being the set of bounded functions
f : G — R_ under the condition

F(U(s 1) > = + ¢ / e (L= p)U(s, 1) dr-
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| Solutions.. General Case

o > KI(f), f€ H,sowe might hope that the
iterative application of K would lead to a fixed
point, but. ..

e H # () is equivalent to the existence of a
solution, A, to

(Lh)(U) < -1, U € G
h(U) > 0,U ¢ G,

— to a condition from Gihman & Skorohod for

the existence of a solution 7 < h. I



| Solutions.. General Case

e |s H empty? No! Hanson & Tuckwell (1981)
analyse a similar 1D model for u(s, t).

e In our 2D model, « does not depend on v, SO:

(i) take G’ D G so that the first passage out of
G’ only depends on u;

(i) find h(u) = 7 (u);
(i) then h(u) satisfies the inequality condition

for all v such that (u,v) € S.
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