Vacation Scholarship Report
Thomas Taimre

21 January, 2004



1 Outline of Work Undertaken

I began the scholarship by acquainting myself with the theory of the Cross-
Entropy method, and writing MATLAB programs which applied this method
to simple problems.

After this introductory period, I began work on the 8 Queens problem. The
challenge was to use the Cross-Entropy (CE) method to find ways to place 8
queens on an 8x8 chessboard in such a way that none of the queens threaten
any other queen. The algorithms implementing CE for this evolved over the
course of the scholarship, eventually making use of FACE (the Fully Adaptive
CE algorithm).

After T had progressed somewhat with the Queens problem, I began to look at
the Travelling Salesman Problem (TSP), and related problems. I reviewed the
algorithms, and implemented them in MATLAB. Once I had done this I looked
for some test cases for these on the Internet. The Permutation Flow-Shop Prob-
lem is very similar to the TSP, and so I looked at this as a minor modification,
again creating some MATLAB code.

Towards the middle of the scholarship, I looked at a few more example problems
described in [2], and generated more MATLAB code for the Bayesian image re-
construction case.

After this was finished, I began to look at the problem of Clustering, with the
aid of the CE algorithm. Two ways of attacking clustering problems with CE
are described in [2]; a discrete and a continuous method. I implemented them
both, and then ran several extensive experiments on well known test data sets.
After spending much time modifying the clustering programs, and testing them
on test data, I spent the last few days looking at ways to visualise the CE al-
gorithm, and implementing some interesting modifications to the standard CE
method. As a result, I created a few small example programs in MATLAB,
as well as modifying existing programs in order to see how the modifications
behaved.

1.1 Summary

Throughout the scholarship, I have sought to improve my understanding of
the Cross-Entropy method and its various applications, both by reading and
implementation. I have also improved my programming skills by application of
the theory to numerous optimisation problems.



2 Programs

In this section, I list many of the MATLAB programs I have written during
the course of this scholarship, along with descriptions of their function, and
instructions on their use.

2.1 Illustrative Example Problems

Problem Description

This problem is described in Example 5.1 in [2].
Program Descriptions

toyexample.m
This program runs an interactive demonstration of the convergence of the
CE method using Normal updating in 1 dimension. Click the mouse or
press a key to advance the display by one iteration.

Usage:
Call the program from MATLAB, with the following syntax:

toyexample

toyexample2.m
This program runs an alternate interactive demonstration of the conver-
gence of the CE method using Normal updating in 1 dimension. Click the
mouse or press a key to advance the display by one iteration.

Usage:
Call the program from MATLAB, with the following syntax:

toyexample2

ssmall.m
This program illustrates the evolution of the CE method on a very simple
problem, showing that it is quite possible to have the standard deviation
parameter reduced below an extremely small number.

Usage:
Call the program from MATLAB, with the following syntax:

o=ssmall(N, o)



Example: sig=ssmall(200,0.1)

Inputs:
N - number of samples each iteration
o - fraction of best performing samples to take
Outputs:
o - A vector of all of the std. deviations

2.2 Bayesian Image Reconstruction

Problem Description

This problem is described in Exercise 8.4.5 in [2]
Program Descriptions

bayes.m
This program reconstructs the image in the first problem via the CE
method.

Usage:
Call the program from MATLAB, with the following syntax:

[z,yl=bayes(N,p,a,0,y)

Example: [reimage,oldimage]=bayes(500,0.04,0.7,0.1,image)

In this example, image is a matrix, consisting of two unique gray levels
(eg. 0’s and 1’s), and the noise to be added is distributed Normally, with
a standard deviation of 0.1.

Inputs:
N - number of samples each iteration
o - fraction of best performing samples to take
a - smoothing paramter
o - std. deviation for image noise (optional)
y - image data (optional)
Outputs:
x - reconstructed image
y - original image
bayes2.m
This program reconstructs the image in the second problem via the CE
method.



Usage:
Call the program from MATLAB, with the following syntax:

[z,y,v]=bayes2(N,p,a,0,y)

Example: [reimage,oldimage,probs]=bayes2(500,0.04,0.7)
In this example, a default image is used.

Inputs:
N - number of samples each iteration
o - fraction of best performing samples to take
a - smoothing paramter
o - std. deviation for image noise
y - image data
Outputs:
x - reconstructed image
y - original image

v - probabilities at the end

scoreb.m This program is used internally by both of the above programs to
evaluate the performance of the algorithm.

2.3 The Permutation Flow-Shop Problem
Problem Description

This problem is described in Exercise 7.6.4 in [2].

Program Descriptions

pfsp.m
This MATLAB program gives the best found permutation via the CE
method.

Usage:
Call the program from MATLAB, with the following syntax:

[7,t]1=pfsp(N,0,a,traj,n,m,t,z)

Example: [perm,cost]=pfsp(100,0.1,0.8,2,10,2,t,10)
where t is a 10 x 2 matrix of costs.



Inputs:

N - Number of samples to generate each round
o - fraction of best samples to take
a - smoothing parameter
traj - 0, node transitions, x(1)=1

1, node transitions, x(1) random
2, node placement (default)

n - number of jobs
m - number of machines
t - t(i,7) is the cost of job i on machine j
z - number of succesive rho-th quantiles the same before stop
Outputs:
m - the output permutation
t - the cost (in time) matrix used

gpfsp.m This program is used internally to generate tours via node transitions.

gpfsp2.m This program is used internally to generate tours via node placement,
using the first row of the P matrix to generate the first position.

gpfsp3.m This program is used internally to generate tours via node placement,
using a random row of the P matrix to generate the first position.

fpfsp.m
This MATLAB program gives the best found permutation via the CE
method, using “fast” trajectory generation, as mentioned in Remark 4.12,
and described in Algorithms 4.11.3 and 4.11.4, as well as Section 4.11.2 in

[2].

Usage:
Call the program from MATLAB, with the following syntax:

[7,t]1=fpfsp(N,p,a,traj,n,m,t,z)

Example: [perm,cost]=fpfsp(200,0.05,0.75,3,12,1,£,10)
where t is a 12 x 3 matrix of costs.



Inputs:

N - Number of samples to generate each round
o - fraction of best samples to take
a - smoothing parameter

traj - 0, alias technique (default) uses x% = 70%
1, composition method

n - number of jobs
m - number of machines
t - t(4,7) is the cost of job i on machine j
z - number of succesive rho-th quantiles the same before stop
Outputs:
m - the output permutation
t - the cost (in time) matrix used

fgpfsp.m This program is used internally to generate tours via the alias speed-
up.

fgpfsp2.m This program is used internally to generate tours via the composi-
tion speed-up.

spfsp.m This program is used internally to evaluate the performance of these
algorithms.

2.4 Travelling Salesman Problem
Problem Description

This problem is described in Section 4.7 of [2].
Program Descriptions

tsp.m
This MATLAB program gives the best found tour via the CE method.

Usage:
Call the program from MATLAB, with the following syntax:

m=tsp(N,p,a,A,traj)

Example: tour=tsp(1000,0.05,0.8,4,0)
where A is a matrix of lengths between nodes.



N - Number of samples to generate each round
o - fraction of best samples to take
a - smoothing parameter
A - A(i,j) is the distance between node i and node j
traj - 0, node placements

1, node transitions

Outputs:
7 - the best tour found

gtsp0.m This program is used internally to generate tours via node placements.
gtspl.m This program is used internally to generate tours via node transitions.

stsp.m This program is used internally to evaluate the performance of a par-
ticular tour.

minitsp.m This is a program which generates a smaller TSP problem (with a
specified number of nodes) from a larger one. This idea is mentioned in
Remark 4.13 in [2].

2.5 The n Queen Problem

Problem Description

This problem is described in Excercise 2.6.6 in [2].

Program Descriptions

q.m
This MATLAB program gives the best found placement for n queens on
an n x n chessboard using the FACE algorithm.

Usage:
Call the program from MATLAB, with the following syntax:

B=q(Ne :Nmin,Nmaz,a,d,csn)

Example: board=q(15,300,2000,0.7,10,5,8)



Inputs:

N, - Number of elite samples to use
Nmin - Minimum number of samples to use (must be > Ne)
Npae - Maximum number of samples to use (must be > Ne)
a - Smoothing Parameter
d - number of S} the same in a row with no 4; improvement
¢ - mnumber of Ny = N, in a row
n - n queens on an nxn board
Outputs:
B - An n x n matrix with queens denoted by 1s, and blank

squares denoted by 0s
geng.m This program is used internally to generate chessboard outcomes.

scoreq.m This program is used internally to evaluate the performance of a
particular board.

wq.m
This program takes in a set of exact solutions to the 8x8 queen problem,
and then tells you which of the 12 unique (disregarding reflections and
rotations) solutions you have found. The exact solutions were found in

[1].
Usage:
Call the program from MATLAB, with the following syntax:
v=uq(U)
Inputs:
U - An 8x 8 x k matrix of exact solutions
Outputs:

v - A vector of length k, labelling the solutions found

2.6 Clustering

Problem Description
Clustering problems are described in Section 8.3 of [2].
Program Descriptions

NCE.m

This program finds a set of cluster means via the CE method with (inde-
pendent) Normal updating.



Usage:
Call the program from MATLAB, with the following syntax:

Lw,count,scorel=NCE(N ,g,a,k,data,modif ,drplot,c,oq)

Example: [mu,count,score]=NCE(1000,10,0.7,5,DATA,0,1)

Inputs:
N - Number of samples to generate each iteration
g - Number of these samples to use to update parameters
a - Smoothing parameter
k - Number of cluster means to find

data - The data we are trying to fit means to (Should be n x d,
where there are n points, and d dimensions)
modif - If 1, use modified smoothing,
otherwise use standard smoothing

drplot - 1If 1, draws the cluster means
and the data (for 2-dimensions)
¢ - Optional starting centroids
oo - Optional starting standard deviation
Outputs:

p - The centroids found via the CE method, using Normal updating
with the parameter set
count - The number of iterations taken
score - The final score of these centroids

genNCE.m This program is used internally to generate the cluster means.

scoreNCE.m This program is used internally to evaluate the performance of a
particular set of means against the data.

MCE.m
This program finds a set of cluster means via the CE, looking at clustering
as a “mincut” type problem.

Usage:
Call the program from MATLAB, with the following syntax:

=MCE(N,p,a,k,data)

Example: x=MCE(2000,0.01,0.6,3,DATA)



data -

Outputs:
:L' -

Number of samples to generate each iteration

The fraction of samples used to update the probabilities
Smoothing parameter

Number of clusters to assign points to

The data we are trying to assign to clusters (Should be n x d,
where there are n points, and d dimensions)

The best found assignment of the data points

genMCE.m This program is used internally to assign data points to clusters.

MCEJ.m

This is slight modification of the above program, using the “injection”
idea (due to Zdravko Botev). It generally produces superior results to the
unmodified MCE method.

Usage:

Call the program from MATLAB, with the following syntax:

x=MCEJ(N,0,a,k,data)

Example: x=MCEJ(1400,0.03,0.75,4,DATA)

Inputs:
N -
o -
a -
k-
data -

Outputs:
a;' -

Number of samples to generate each iteration

The fraction of samples used to update the probabilities
Smoothing parameter

Number of clusters to assign points to

The data we are trying to assign to clusters (Should be n x d,
where there are n points, and d dimensions)

The best found assignment of the data points

scoreMCE.m This program is used internally to evaluate the performance of a
particular assignment against the data.

c1NCE.m This is a small program which labels the points in a dataset according
to a set of cluster means.

Usage:

Call the program from MATLAB, with the following syntax:

2=c1NCE(c,data, k)

10



Example: x=cINCE(mu,DATA,5)

Inputs:
¢ - A set of cluster means
data - The data we are trying to assign to clusters (Should be n x d,
where there are n points, and d dimensions)
k - Number of clusters to assign points to
Outputs:
z - The assignment of the data points to clusters

cMCE.m This is a small program which calculates cluster means from a given
cluster labelling.

Usage:
Call the program from MATLAB, with the following syntax:

¢=cMCE(z,y,k)
Example: mu=cMCE(x,data,6)

Inputs:
x - A labelling of data points

data - The data we are trying to fit means to (Should be n x d,
where there are n points, and d dimensions)
k- Number of cluster means
Outputs:
x - The cluster means calculated for this labelling of data points

2.7 The Maze Problem

Problem Description

This problem is looked at in Section 8.2.2 of [2]. Section 8.2 discusses using
CE more generally in this way.

Program Descriptions

maze.m
This program tries to find the shortest path through a maze, by gener-
ating a set of choices at junctions. For example, an output may indicate
something along the lines of “At Junction 1, go East, at the next Junction,
go South ...”. The set of choices is updated via the CE method.

11



Usage:
Call the program from MATLAB, with the following syntax:

m=maze(N ,p,a, M ,start, finish)

Example: pi=maze(1000,0.02,0.7,MAZE,[1,1],[12,12])

Where, in this example, M is a 12x12 maze of 0s and 1s, with 1s represent-
ing walls, and Os representing the paths. The start of the maze is at [1,1]
and the end is at [12,12]. Note that this method seems to perform quite
well on very small mazes, or on mazes with few junctions, but performs
less well on larger problems.

Inputs:
N - Number of samples to generate each iteration
o - Fraction of samples to use to update the choices
a - Smoothing parameter
M - A matrix of 1s and 0Os, representing a maze
start - Starting position

finish - Ending position

Outputs:
7 - QOutput choice set

gmaze .m This program is used internally to generate a set of direction choices.

smaze .m This program is used internally to evaluate the performance of a given
set of direction choices.

2.8 Rosenbrock Visualisation

Problem Description
This tricky function is described in Section 5.1 of [2].
Program Descriptions

demoros.m
This program contains a set of default parameters, visually illustrating
the convergence of the CE method using Normal updating with “modified
smoothing” (Remark 5.2 in [2]) for the 2-dimensional Rosenbrock function.
The base programs were written by Sho Nariai, and subsequently modified.

Usage:
Call the program from MATLAB, with the following syntax:

demoros

ceros.m This program uses the CE method to update the parameters.

12



rosenbrock.m This program is used internally to evaluate the value of the
Rosenbrock function at a particular point.

tinormrand.m This program is used internally to generate sample points for
evaluation.

plotce.m This program is used internally to plot the progress of the mean and
covariance in 2-dimensions.

13



References

[1] V. Chvatal. All solutions to the problem of eight queens.
http:/ /www.cs.rutgers.edu/ "~ chvatal /8queens.html.

[2] D. P. Kroese and R. Y. Rubinstein. The Cross-Entropy Method: A Uni-

fied Approach to Combinatorial Optimization, Monte-Carlo Simulation and
Machine Learning. Springer, 2004.

14



