(q, t)-Laguerre polynomials

Ole Warnaar School of Mathematics and Physics

The Laguerre polynomials

For $\alpha>-1$ and \emph{m} a nonnegative integer, Laguerre's equation is the linear second order ODE

$$xy''(x) + (\alpha + 1 - x)y'(x) + my(x) = 0$$

Its polynomial solutions, denoted by $L_m^{(\alpha)}(x)$, are known as the (generalised/associated) Laguerre polynomials.

The first few Laguerre polynomials are given by

$$L_0^{(\alpha)}(x)=1$$

$$L_1^{(\alpha)}(x) = -x + \alpha + 1$$

$$L_2^{(\alpha)}(x) = \frac{1}{2}x^2 - (\alpha + 2)x + \frac{1}{2}(\alpha + 1)(\alpha + 2)$$

The first few Laguerre polynomials are given by

$$L_0^{(\alpha)}(x)=1$$

$$L_1^{(\alpha)}(x) = -x + \alpha + 1$$

$$L_2^{(\alpha)}(x) = \frac{1}{2}x^2 - (\alpha + 2)x + \frac{1}{2}(\alpha + 1)(\alpha + 2)$$

and more generally one has

$$L_m^{(\alpha)}(x) = \sum_{i=0}^m {m+\alpha \choose m-i} \frac{(-x)^i}{i!}$$

It is easily verified that the Laguerre polynomials satisfy a three-term recurrence relation:

$$(m+1)L_{m+1}^{(\alpha)}(x) = (2m+1+\alpha-x)L_m^{(\alpha)}(x) - (m+\alpha)L_{m-1}^{(\alpha)}(x)$$

According to Favard's theorem the Laguerre polynomials thus form a family of orthogonal poynomials.

It is easily verified that the Laguerre polynomials satisfy a three-term recurrence relation:

$$(m+1)L_{m+1}^{(\alpha)}(x) = (2m+1+\alpha-x)L_m^{(\alpha)}(x) - (m+\alpha)L_{m-1}^{(\alpha)}(x)$$

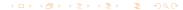
According to Favard's theorem the Laguerre polynomials thus form a family of orthogonal poynomials.

The orthogonalising measure μ for the Laguerre polynomials is given by

$$d\mu(x) = x^{\alpha} e^{-x} dx$$

supported on the positive half-line:

$$\int_0^\infty L_m^{(\alpha)}(x)L_n^{(\alpha)}(x)\,\mathrm{d}\mu(x) = \delta_{mn}\,\frac{\Gamma(m+\alpha+1)}{m!}$$



The orthogonality with respect to the Laguerre measure μ may be proved as follows:

• Laguerre's equation is equivalent to the statement that $L_m^{(\alpha)}(x)$ is the eigenfunction with eigenvalue m of the second order differential operator

$$\mathcal{L} = -x \frac{d^2}{dx^2} + (x - \alpha - 1) \frac{d}{dx}$$

The orthogonality with respect to the Laguerre measure μ may be proved as follows:

• Laguerre's equation is equivalent to the statement that $L_m^{(\alpha)}(x)$ is the eigenfunction with eigenvalue m of the second order differential operator

$$\mathcal{L} = -x \frac{d^2}{dx^2} + (x - \alpha - 1) \frac{d}{dx}$$

ullet The operator ${\cal L}$ is self-adjoint with respect to the inner product

$$\langle f, g \rangle = \int_0^\infty f(x)g(x)d\mu(x)$$

i.e.,

$$\langle \mathcal{L}f, g \rangle = \langle f, \mathcal{L}g \rangle$$

The q-Laguerre polynomials

The q-Laguerre polynomials are a discrete or "quantum" variant of the classical Laguerre polynomials. They were first studied by Hahn around the 1950s.

The *q*-Laguerre polynomials

The q-Laguerre polynomials are a discrete or "quantum" variant of the classical Laguerre polynomials. They were first studied by Hahn around the 1950s.

The *q*-Laguerre polynomials

The q-Laguerre polynomials are a discrete or "quantum" variant of the classical Laguerre polynomials. They were first studied by Hahn around the 1950s.

- Differential equation q-difference equation
- Integration Jackson-integration

Let \mathcal{D}_q be the q-derivative operator

$$(\mathcal{D}_q f)(x) = \frac{f(xq) - f(x)}{(q-1)x}$$

If f is differentiable at x then

$$\lim_{q\to 1}(\mathscr{D}_q f)(x)=f'(x)$$

For example,

$$\mathscr{D}_q x^m = [m] x^{m-1}$$

with [a] the q-number $[a] = (1 - q^a)/(1 - q)$.

The *q*-Laguerre polynomial $L_m^{(\alpha)}(x) = L_m^{(\alpha)}(x;q)$ is the eigenfunction, with eigenvalue [m], of the *q*-difference operator

$$\mathcal{L} = (x+1)\mathcal{D}_q - q^{-\alpha-1}\mathcal{D}_{q^{-1}}$$

The *q*-Laguerre polynomial $L_m^{(\alpha)}(x) = L_m^{(\alpha)}(x;q)$ is the eigenfunction, with eigenvalue [m], of the *q*-difference operator

$$\mathcal{L} = (x+1)\mathcal{D}_q - q^{-\alpha-1}\mathcal{D}_{q^{-1}}$$

The first few q-Laguerre polynomials are given by

$$L_0^{(\alpha)}(x)=1$$

$$L_1^{(\alpha)}(x) = -q^{\alpha+1} X + [\alpha+1]$$

$$L_2^{(\alpha)}(x) = \frac{1}{[2]} X^2 - q^{\alpha+1} [\alpha+2] X + \frac{1}{[2]} [\alpha+1] [\alpha+2]$$

where X = x/(1 - q).

Again there is a three-term recurrence:

$$[m+1]L_{m+1}^{(\alpha)}(x)$$

$$= ([m+1] + q[m+\alpha] - q^{2m+\alpha+1}(1-q)x)L_m^{(\alpha)}(x)$$

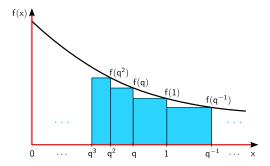
$$- q[m+\alpha]L_{m-1}^{(\alpha)}(x)$$

Hence there exists an orthogonalising measure μ such that the q-Laguerre polynomials form an orthogonal family.

To describe this measure we need the Jackson integral.

The Jackson integral over the positive reals is defined as

$$\int_0^\infty f(x)d_qx = (1-q)\sum_{n=-\infty}^\infty f(q^i)q^i$$



Because of its discreteness something is lost, and there is no q-analogue of

$$c\int_0^\infty f(cx)dx = \int_0^\infty f(x)dx \qquad c > 0$$

Hence we also define

$$\int_0^{c \cdot \infty} f(x) d_q x = (1 - q) \sum_{n = -\infty}^{\infty} f(cq^i) cq^i$$

The *q*-Laguerre polynomials satisfy the discrete orthogonality

$$\int_0^{c \cdot \infty} L_m^{(\alpha)}(x) L_n^{(\alpha)}(x) d\mu(x)$$

$$= \delta_{mn} [c(1-q)]^{\alpha+1} q^{-m} \frac{\Gamma_q(m+\alpha+1)}{\Gamma_q(m+1)} \frac{\theta(-acq)}{\theta(-c)}$$

where

$$\mathrm{d}\mu(x) = x^{\alpha} \mathrm{e}_q(-x) \mathrm{d}_q x$$

and

$$e_q(x) = \sum_{n=0}^{\infty} \frac{X^n}{[n]!} = \frac{1}{(1-x)(1-xq)(1-xq^2)\cdots}$$

is the q-exponential function.

The previous results can again be restated as follows:

• The *q*-Laguerre polynomial $L_m^{(\alpha)}(x)$ is the eigenfunction with eigenvalue [m] of

$$\mathcal{L} = (x+1)\mathcal{D}_q - q^{-\alpha-1}\mathcal{D}_{q^{-1}}$$

The previous results can again be restated as follows:

• The *q*-Laguerre polynomial $L_m^{(\alpha)}(x)$ is the eigenfunction with eigenvalue [m] of

$$\mathcal{L} = (x+1)\mathcal{D}_q - q^{-\alpha-1}\mathcal{D}_{q^{-1}}$$

ullet The operator ${\cal L}$ is self-adjoint with respect to the inner product

$$\langle f, g \rangle = \int_0^{c \cdot \infty} f(x)g(x) d\mu(x)$$

where

$$d\mu(x) = x^{\alpha} e_q(-x) d_q x$$

The (q, t)-Laguerre polynomials

Motivation. The evaluation of multidimensional integrals related to Lie algebras.

The (q, t)-Laguerre polynomials

Motivation. The evaluation of multidimensional integrals related to Lie algebras.

Trivial example. The classical Laguerre polynomials

$$\langle 1, 1 \rangle = \int_0^\infty d\mu(x) = \int_0^\infty x^\alpha e^{-x} dx = \Gamma(\alpha + 1)$$

The (q, t)-Laguerre polynomials

Motivation. The evaluation of multidimensional integrals related to Lie algebras.

Trivial example. The classical Laguerre polynomials

$$\langle 1, 1 \rangle = \int_0^\infty d\mu(x) = \int_0^\infty x^\alpha e^{-x} dx = \Gamma(\alpha + 1)$$

Non-trivial example. The Lie algebra pair (A_{n-1}, A_1)

$$\int_{[0,\infty)^n} \prod_{i=1}^n x_i^{\alpha} e^{-x_i} \prod_{1 \le i < j \le n} |x_i - x_j|^{2\gamma} dx_1 \cdots dx_n$$

$$= \prod_{i=0}^{n-1} \frac{\Gamma(\alpha + 1 + i\gamma)\Gamma(1 + (i+1)\gamma)}{\Gamma(1 + \gamma)}$$

For $x = (x_1, \dots, x_n)$ let $\partial_{q,i}$ be the partial difference operator

$$(\partial_{q,i}f)(x) = \frac{f(x_1,\ldots,x_{i-1},qx_i,x_{i+1},\ldots,x_n) - f(x)}{(q-1)x_i}$$

Define the operators $E_r(q,t)$ acting on $\Lambda_n=\mathbb{Q}(q,t)[x_1,\dots,x_n]^{\mathfrak{S}_n}$ by

$$E_r(q,t) = \sum_{i=1}^n x_i^r \left(\prod_{\substack{j=1\\j\neq i}}^n \frac{tx_i - x_j}{x_i - x_j} \right) \partial_{q,i}$$

For $x = (x_1, \dots, x_n)$ let $\partial_{q,i}$ be the partial difference operator

$$(\partial_{q,i}f)(x) = \frac{f(x_1,\ldots,x_{i-1},qx_i,x_{i+1},\ldots,x_n) - f(x)}{(q-1)x_i}$$

Define the operators $E_r(q,t)$ acting on $\Lambda_n=\mathbb{Q}(q,t)[x_1,\ldots,x_n]^{\mathfrak{S}_n}$ by

$$E_r(q,t) = \sum_{i=1}^n x_i^r \left(\prod_{\substack{j=1\\j\neq i}}^n \frac{tx_i - x_j}{x_i - x_j} \right) \partial_{q,i}$$

Note that for n = 1

$$E_0(q,t) = \mathscr{D}_q$$
 and $E_1(q,t) = x \mathscr{D}_q$

For $x = (x_1, \dots, x_n)$ let $\partial_{q,i}$ be the partial difference operator

$$(\partial_{q,i}f)(x) = \frac{f(x_1,\ldots,x_{i-1},qx_i,x_{i+1},\ldots,x_n) - f(x)}{(q-1)x_i}$$

Define the operators $E_r(q,t)$ acting on $\Lambda_n=\mathbb{Q}(q,t)[x_1,\ldots,x_n]^{\mathfrak{S}_n}$ by

$$E_r(q,t) = \sum_{i=1}^n x_i^r \left(\prod_{\substack{j=1\\j\neq i}}^n \frac{tx_i - x_j}{x_i - x_j} \right) \partial_{q,i}$$

Note that for n = 1

$$E_0(q,t) = \mathscr{D}_q$$
 and $E_1(q,t) = x \mathscr{D}_q$

Lemma. For $r \geq 0$, $E_r : \Lambda_n \to \Lambda_n$

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a partition (a weakly decreasing sequence of nonnegative integers) and $\mathcal{L} : \Lambda_n \to \Lambda_n$ the operator

$$\mathcal{L} = E_1(q,t) + E_0(q,t) - q^{-\alpha-1}E_0(q^{-1},t^{-1})$$

The eigenfunction of $\mathcal L$ with eigenvalue

$$t^{n-1}[\lambda_1] + \cdots + t[\lambda_{n-1}] + [\lambda_n]$$

defines the (q, t)-Laguerre polynomial $L_{\lambda}^{(\alpha)}(x) = L_{\lambda}^{(\alpha)}(x; q, t)$.

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a partition (a weakly decreasing sequence of nonnegative integers) and $\mathcal{L} : \Lambda_n \to \Lambda_n$ the operator

$$\mathcal{L} = E_1(q,t) + E_0(q,t) - q^{-\alpha-1}E_0(q^{-1},t^{-1})$$

The eigenfunction of $\mathcal L$ with eigenvalue

$$t^{n-1}[\lambda_1] + \cdots + t[\lambda_{n-1}] + [\lambda_n]$$

defines the (q,t)-Laguerre polynomial $L_{\lambda}^{(\alpha)}(x) = L_{\lambda}^{(\alpha)}(x;q,t)$.

Lemma. The $L_{\lambda}^{(\alpha)}(x)$ form a basis of Λ_n .

For $(q,t)=(q,q^{\gamma})$ with $q\to 1$ the (q,t)-Laguerre polynomials were studied by

Let $t = q^{\gamma}$ and define an inner product on Λ_n by

$$\langle f, g \rangle = \int_{x_1=0}^{c \cdot \infty} \int_{x_2=0}^{tx_1} \cdots \int_{x_n=0}^{tx_{n-1}} f(x)g(x)d\mu(x)$$

where

$$d\mu(x) = \prod_{1 \le i < j \le n} x_i^{2\gamma} (q^{1-\gamma} x_j / x_i)_{\gamma} (x_j / x_i)_{\gamma} \prod_{i=1}^n x_i^{\alpha} e_q(-x_i) d_q x_i$$

and

$$(a)_z = \frac{(1-a)(1-aq)(1-aq^2)\cdots}{(1-aq^z)(1-aq^z+1)(1-aq^z+2)\cdots}$$

Theorem. The operator \mathcal{L} is self-adjoint with respect to the inner product on Λ_n .

Theorem. The operator \mathcal{L} is self-adjoint with respect to the inner product on Λ_n .

"Corollary."
$$\left\langle L_{\lambda}^{(\alpha)},L_{\mu}^{(\alpha)}\right
angle =c_{\lambda}\delta_{\lambda,\mu}$$

Theorem. The operator \mathcal{L} is self-adjoint with respect to the inner product on Λ_n .

"Corollary."
$$\left\langle L_{\lambda}^{(\alpha)},L_{\mu}^{(\alpha)}\right
angle =c_{\lambda}\delta_{\lambda,\mu}$$

Theorem c_{λ} can explicitly be computed in terms of "nice" special functions, such as theta functions and q-Gamma functions.

Ingredients in proofs are:

- Macdonald polynomials
- Knop–Okounkov–Sahi interpolation polynomials
- The double affine Hecke algebra

Ingredients in proofs are:

- Macdonald polynomials
- Knop–Okounkov–Sahi interpolation polynomials
- The double affine Hecke algebra

The End