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Quasi-birth-and-death processes

• A QBD process is a two-dimensional continuous-time
Markov Chain {(Yt, Jt), t ≥ 0} on the state space
{0, 1, . . .} × {0, 1, . . . ,m}.

• The variable Yt is called the level of the process at time t

and the variable Jt is called the phase of the process at
time t.

• The parameter m may be either finite or infinite.
• State transitions are restricted to states in the same level

or in the two adjacent levels (hence the name QBD).
• Transition intensities are assumed to be

level-independent away from the boundary.
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Our class of interest
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Quasi-birth-and-death processes

A general QBD process has a block partitioned generator Q

with tri-diagonal structure

Q =



















Q̃1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

. . . . . . . . .



















.

Q0, Q1, Q2 and Q̃1 are (m + 1) × (m + 1) matrices.
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In our class of interest, the blocks in the generator are
themselves tridiagonal and homogeneous away from the
boundary. Thus, we can write

Q0 =













c̃1 c0

c2 c1 c0

c2 c1 c0

. . . . . . . . .













,

Q1 =













b̃1 b0

b2 b1 b0

b2 b1 b0

. . . . . . . . .













,
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Q2 =













ã1 a0

a2 a1 a0

a2 a1 a0

. . . . . . . . .













,

and

Q̃1 =













b̄1 b0

b2 b̂1 b0

b2 b̂1 b0

. . . . . . . . .













.
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The Two-node Jackson Network

• Let Jt denote the number of customers in the first queue
at time t (the phase), and

• Yt denote the number of customers in the second queue
at time t (the level).
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Our Tools: 1

The Matrix-Geometric Property.

Assume that the QBD is positive recurrent and denote the
limiting probabilities

πkj := lim
t→∞

P(Yt = k, Jt = j).

With
πk = (πk0, πk1, . . . , πkm),

then
πk = π0 Rk, k ≥ 0

for both finite and infinite m.
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The (m + 1) × (m + 1) matrix R is the minimal non-negative
solution to the equation

Q0 + R Q1 + R2 Q2 = 0.

The stationary distribution π0 at level zero must satisfy

π0 (Q̃1 + R Q2) = 0.
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Definition

If there exists a positive scalar z and a positive row vector
w ∈ ℓ1 such that

lim
k→∞

πk

zk
= w

elementwise, then we say that the stationary distribution
decays at rate z.
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For m < ∞, it follows immediately from the matrix-geometric
property that

lim
k→∞

∑

i πki

(sp(R))k
= κ,

where κ is a constant. That is, the level process has tail
decay rate sp(R) < 1.

For the class of processes considered here, m = ∞ so this
result is not applicable.
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Our Tools: 2

Theorem (Kroese, Scheinhardt, Taylor, 2004)

Consider an irreducible QBD process. If there exists a
nonnegative vector w ∈ ℓ1 and a nonnegative number z < 1
such that

w R = zw,

and
w(Q̃1 + R Q2) = 0,

then the QBD process is positive recurrent with π0 = w, and
for all k,

πk

zk
= w.
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Our Tools: 3

Theorem (Ramaswami and Taylor, 1996)

Let qn = −Q1(n, n). If the complex variable z and the vector
w = {wn} are such that |z| < 1 and

∑

n |wn|qn < ∞, then

w (Q0 + zQ1 + z2Q2) = 0

implies that
w R = zw.
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Due to our assumptions about the structure of the generator
Q, the condition

∑

n |wn|qn < ∞ is equivalent to w ∈ ℓ1 and the
equation

w (Q0 + zQ1 + z2Q2) = 0

can be written as a homogeneous second order recurrence
relation in the wn with coefficients that depend on z.
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Thus
w0γ̃1(z) + w1γ2(z) = 0

and, for n ≥ 0,

wnγ0(z) + wn+1γ1(z) + wn+2γ2(z) = 0,

where
γ̃1(z) = c̃1 + b̃1z + ã1z

2

and, for i = 0, 1, 2,

γi(z) = ci + biz + aiz
2.
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Our Tools: 4

It is elementary to find conditions on z such that w ∈ ℓ1.
It is harder to find conditions on z such that w is nonnegative.
We use the theory of orthogonal polynomials for this purpose.
Introducing a new variable x, we can generalise our equations
for wn to

P0(x; z) = 1,

γ2(z)P1(x; z) = x − γ̃1(z),

γ2(z)Pn(x; z) = (x − γ1(z))Pn−1(x; z) − γ0(z)Pn−2(x; z), n ≥ 2.

When x = 0, the equations are the same as those for wn,
scaled so that w0 = 1, and so wn = Pn(0; z).
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The Pn(0; z) are positive for all n if and only if the zeros of all
the Pn(x; z), considered as polynomials in x, are less than
zero.
Let

Tn(x) =

(
√

γ2(z)

γ0(z)

)n

Pn

(

2x
√

γ0(z)γ2(z) + γ1(z); z
)

.

The Tn(x)s satisfy the recursion which defines perturbed
Chebyshev polynomials. The behaviour of their zeros has
been well-studied, and we can translate this into information
about the behaviour of the zeros of the Pn(x)s.



AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics
and Statistics of Complex Systems

Let

τ(z) = γ1(z) + 2
√

γ0(z)γ2(z),

χ(z) = γ̃1(z) +
γ0(z)γ2(z)

γ̃1(z) − γ1(z)
,

χ1(z) =

{

τ(z) if (γ̃1(z) − γ1(z))2 ≤ γ0(z)γ2(z),

χ(z) otherwise.

For z > 0, Pn(x; z) is positive for all n if and only if χ1(z) ≤ x.
Thus, the vector w = (Pn(0; z)) is positive if and only if
χ1(z) ≤ 0.

The condition χ1(z) ≤ 0 turns out to be expressible in terms of
inequalities involving polynomials in z of degree, at most, four.
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Summary

• We use elementary techniques and the theory of
orthogonal polynomials to derive the set of values of
z ∈ [0, 1] for which

w (Q0 + zQ1 + z2Q2) = 0

has a solution w ∈ ℓ1.
• This gives us the set of w ∈ ℓ1 and z ∈ [0, 1] for which

w R = zw.

• Provided that w(Q̃1 + zQ2) = 0, then π0 = w, and for all
k,

πk

zk
= w.

Thus the decay rate is z.
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Summary

We have a lot of flexibility in modifying Q̃1 and so, for a large
range of w and z, it is reasonable to think that we can do so in
order that

w(Q̃1 + zQ2) = 0

is satisfied.
Indeed, for a number of examples we have shown how to
modify Q̃1 so that this equation is satisfied for all w and z

compatible with
w R = zw.

Thus we have shown that, by altering the transition rates at
level zero, we can obtain any decay rate in the calculated
range.
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The two-node Jackson network

The stationary distribution has the product form

π(n1, n2) = (1 − ρ1)(1 − ρ2)ρ
n1

1
ρn2

2
, n1, n2 ≥ 0,

where ρ1 and ρ2 are solutions to the well-known traffic
equations. The stability condition is ρ1 < 1, ρ2 < 1.

The decay rate at queue 2 is always ρ2. However, the ranges
of possible decay rates, obtainable by varying the transition
rates when queue 2 is empty can be non-trivial for different
parameter values.
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The two-node Jackson network
λ1 λ2 µ1 µ2 p q ρ1 ρ2 Possible

decay rates

1 0 1.5 2 1 0 0.667 0.500 [0.477, 0.750)
1 0 2 1.5 1 0 0.500 0.667 [0.667, 1)
0 1 1.5 2 0 1 0.667 0.500 {0.500}
0 1 2 1.5 0 1 0.500 0.667 {0.667}
1 1 2 2 0.1 0.8 0.978 0.598 [0.597, 0.600)
1 1 2 2 0.8 0.1 0.598 0.978 [0.978, 1)
1 1 2 2 0.4 0.4 0.833 0.833 [0.833, 0.900)
1 1 10 10 0.5 0.5 0.200 0.200 [0.200, 0.600)
1 5 10 15 0.4 0.9 0.859 0.563 [0.558, 0.600)
5 1 15 10 0.9 0.4 0.563 0.859 [0.859, 1)
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Finite Truncations

We can extend our orthogonal polynomial analysis to show
that the limiting value of the decay rate at queue 2 when
queue 1 is truncated to size m and then m is allowed to
approach infinity is always the infimum of the interval of
possible decay rates.

We see from our table that this is not always ρ2. In these
cases, there is a ‘discontinuity at infinity’ with respect to the
parameter m.
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