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Purpose of the school

The connection between random matrix theory and the zeros of the Riemann zeta function was first
suggested by Montgomery and Dyson in 1973, and later used in the 1980s to elucidate periodic orbit
calculations in the field of quantum chaos. Just in the past few years it has also been employed to suggest
brand new ways for predicting the behaviour of the Riemann zeta function and other L-functions.
Notwithstanding these successes there has always been the problem that very few researchers are well-
versed both in number theory and methods in mathematical physics. The aim of this school is to provide a
grounding in both the relevant aspects of number theory, and the techniques of random matrix theory, as well
as to inform the students of what progress has been made when these two apparently disparate subjects
meet.

Lecturers

Estelle Basor, Michael Berry, Eugene Bogomolny, Oriol Bohigas, Brian Conrey, Dan Goldston, David Farmer,
Peter Forrester, Yan Fyodorov, Roger Heath-Brown, Shinobu Hikami, Chris Hughes, Jonathan Keating,
Philippe Michel, Michael Rubinstein

Topics to be covered

ensembles of Hermitian matrices
random matrix eigenvalue statistics
orthogonal polynomials
Painlevé theory and random matrix averages
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The number of primes less than a given number of primes

X primes < X %

102 25 25%
103 168 16.8%
104 1,229 12.3%
105 9,592 9.6%
106 78,498 7.8%
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A good guess (Gauss)

Π(X ) := (# primes < X ) ∼
∫ X

0

dt

log t
=: Li(x) ∼ X

log X
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Gauss's function compared to the true number

of primes

piano if they were denied the pleasure of hearing Rachmaninov.

Riemann's Symphony

One of the great symphonic works of mathematics is the Riemann Hypothesis -
humankind's attempt to understand the mysteries of the primes. Each
generation has brought its own cultural influences to bear on its understanding
of the primes. The themes twist and modulate as we try to master these wild
numbers. But this is an unfinished symphony. We still await the mathematician
who can add the final chords to this grand opus.
But it isn't just aesthetic similarities that are shared by mathematics and music.
Riemann discovered that the physics of music was the key to unlocking the
secrets of the primes. He discovered a mysterious harmonic structure that would
explain how Gauss's prime number dice actually landed when Nature chose the
primes.

Riemann was very shy as a schoolchild and
preferred to hide in his headmaster's library
reading maths books rather than playing
outside with his classmates. It was while
reading one of these books that Riemann
first learnt about Gauss's guess for the
number of primes one should encounter as
one counts higher and higher. Based on the
idea of the prime number dice, Gauss had
produced a function, called the logarithmic
integral, which seemed to give a very good
estimate for the number of primes. The
graph to the left shows Gauss's function

compared to the true number of primes amongst the first 100 numbers.

Gauss's guess was based on throwing a dice with one side marked "prime" and
the others all blank. The number of sides on the dice increases as we test larger
numbers and Gauss discovered that the logarithm function could tell him the
number of sides needed. For example, to test primes around 1,000 requires a
six-sided dice. To make his guess at the number of primes, Gauss assumed that
a six-sided dice would land exactly one in six times on the prime side. But of
course it is very unlikely that a dice thrown 6,000 times will land exactly 1,000
times on the prime side. A fair dice is allowed to over- or under-estimate this
score. But was there any way to understand how to get from Gauss's theoretical
guess to the way the prime number dice had really landed? Aged 33, Riemann,
now working in Göttingen, discovered that music could explain how to change
Gauss's graph into the staircase graph that really counted the primes.

Shapes and sounds

The key to understanding Riemann's ideas is to explore why a tuning fork, a
violin and a clarinet sound very different, even when they are all playing an A,
say. The graph of the sound wave of the tuning fork looks like a perfect sine
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Aside: Sign changes of Li(X )− Π(X )

I Graphically Li(X )− Π(X ) > 0

I In 1914 Littlewood proved Li(X )− Π(X ) changes sign
infinitely often.

I Skewes in 1933 proved that this must happen for

X < 1010101034

, which is known as Skewes’ number

I Present day results gives X < 1.39× 10316.

I Proved by Sarnak and Rubinstein that proportion of integers
for which Li(X )− Π(X ) < 0 is ≈ 2.6× 10−7.
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The (Riemann) zeta function

Euler (1707–1783) defined the zeta function

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

and showed that

ζ(s) =
∏

primes p

1

(1− p−s)
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I Riemann (1826–1866) used ζ(s) for complex s to study Π(X ).

I In 1859 he published the paper ‘On the number of prime
numbers less than a given quantity’.

Main points from Riemann’s paper (after Edwards)

I ζ(s) was analytically continued from Re(s) > 1 to all s 6= 1,
and a functional equation relating ζ(s) to ζ(1− s) obtained.
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I Shows ζ(s) has ‘trivial’ zeros of ζ(s) for s = −2,−4,−6, . . . ,
other zeros (Riemann zeros) confined to 0 ≤ Re(s) ≤ 1.

I The entire function ξ(t) = Γ(s) 1
2s(s − 1)π−s/2ζ(s), s = 1

2 − it
was introduced. Functional equation for ζ(s) equivalent to
ξ(t) = ξ(−t) and ξ(t) real for t real.

I ξ(t) vanishes at Riemann zeros of ζ( 1
2 − it) only.
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I Motivated by the fact that

log ζ(s) =
∑

primes p

∞∑
n=1

1

n

1

pns

the functional equation

J(x) = # primes < x

+
1

2
# primes squared < x

+
1

3
# primes cubed < x + · · ·

was considered, and the formula

J(x) = Li(x)−
∑

α:ξ(α)=0
Re(α)>0

(
Li(x1/2+iα) + Li(x1/2−iα)

)

+

∫ ∞
x

dt

t(t2 − 1) log t
+ log ξ(0)

obtained.
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I Möbius inversion of this formula is used to show

Π(x) =
N∑

n=1

µ(n)

n
Li(x1/n) +

N∑
n=1

∑
α:ξ(α)=0

Li(x (1/2+iα)/n)

Here N is such that x1/(N+1) < 2. The Möbius function µ(n),
(= 0,±1), appears in

1

ζ(s)
=
∑
n

µ(n)

ns
.

I Riemann remarks that the number of roots of ξ(t) = 0 whose
real parts lie between 0 and T is approximately
(T/2π)(log(T/2π)− 1) and says it is very probable that all
the roots are real. This is the Riemann hypothesis.
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Implication of the Riemann hypothesis

I The statement

(#primes < x) ∼ Li(x) (∼ x

log x
)

which is referred to as the Prime number theorem is equivalent
to the statement that no zeros of ζ(s) lie on the boundary
Re(s) = 0, Re(s) = 1 of the critical strip 0 ≤ Re(s) ≤ 1.
Proved by Hadamard and de la Vallee Poussin in 1896.

I van Koch (1901) showed that the Riemann hypothesis is
equivalent to

(#primes < x) = Li(x) + O(x1/2 log x).
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Dual problem: Counting the Riemann zeros

I Riemann gave the formula

N(E ) = 1− 1

2π
E log π − 1

π
Im log Γ

(1

4
− iE

2

)
︸ ︷︷ ︸

N̄(E)

− 1

π
Im log ζ(

1

2
− iE )︸ ︷︷ ︸

Nosc(E)

I Substituting for log(1/2− iE ) using the Euler product (illegal)
gives

Nosc(E ) = − 1

π

∑
primes p

∞∑
m=1

exp(−(m/2) log p)

m
sin(Em log p)

I Compare with Gutzwiller trace formula for oscillating part of a
quantum spectrum from classical data:

Nosc(E ) ∼
~→0

1

π

∑
p̃

∞∑
m=1

exp(−(m/2)λp̃Tp̃)

k
sin(

m

~
Sp̃(E )−πm

2
µp̃)
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Here t = E . The fact that the prefactor is 1/π not 2/π indicates
that the primitive orbits are unique and in particular there is no
time reversal symmetry. The instability exponent λp̃ = 1 indicates
a uniformly chaotic system. Note an overall minus sign discrepancy.
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Predictive powers

I For E →∞ the spectrum of a chaotic quantum system with
no time reversal symmetry has the same statistical properties
as the eigenvalues of a large complex Hermitian or complex
unitary matrix.

I Define Λ(z) =
∏N

l=1(e iθl − z) — characteristic polynomial for
matrices in U(N)

I Keating and Snaith hypothesized

value distribution
log ζ(1/2 + it)

∼
log(t/2π)=N

value distribution
log Λ(z)

Both sides can be computed.
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I LHS A result of Selberg gives

lim
T→∞

1

T

∣∣∣{t : T ≤ t ≤ 2T ,
log ζ(1/2 + it)√

(1/2) log log T
∈ B

}∣∣∣
=

1

2

∫∫
B

e−(x2+y2)/2dxdy

I RHS

P(s, t) =
〈
δ
(
s−Re log Λ(−1)︸ ︷︷ ︸PN

j=1 log |1+e
iθj |

)
δ
(
t−Im log Λ(−1)︸ ︷︷ ︸

(1/2)
PN

j=1 θj

)〉
U(N)

⇒

P̂(k , l) =

∫ ∞
−∞

ds e iks

∫ ∞
−∞

dt e iltP(s, t)

=
〈 N∏

j=1

e ilθj/2|1 + 2 cos θj |ik/2
〉

U(N)
∼ e− log N(k2+l2)/4
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I Keating and Snaith also hypothesized:

value distribution
|ζ(1/2 + it)|

∼
log(t/2π)=N

value distribution
|Λ(z)|

×num.theoretic
factor

I Implies

1

(log T )a2

1

T

∫ T

0
|ζ(1/2 + it)|2a dt ∼ f (a)× num.theoretic

factor

with

f (a) =
G 2(a + 1)

G (2a + 1)
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Queues and random matrices

I Matrix of service times [xjk ] j=1,...,p
k=1,...,n

for p jobs and n queues in

series

I Tjk — time it takes job j to exit queue k . Have

Ti ,j = max (Ti ,j−1,Ti−1,j) + xj ,k

I Suppose each xjk is i.i.d. Suppose the number of queues goes
to infinity. Define scaled exit time of job j

Dj = lim
n→∞

Tjn − n〈x11〉√
(〈x2

11〉 − 〈x11〉2)n
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I Glynn-Whitt With X = {0 = t0 < t1 < · · · < tk−1 < tk = 1},
{Bi} independent Brownian motions

Dj = sup
X

j−1∑
i=0

(Bi (ti+1)− Bi (ti )).

I Baryshnikov Let Y = [yl ,l ′ ] be a Gaussian Hermitian complex
matrix, Y = (Z + Z †)/2, Z i.i.d. complex standard Gaussians.
Law of {Dj} is the same as the law of the distribution of the
largest eigenvalue in Y1,Y2, . . . , where Yj is the j × j leading
minor of Y .
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