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orthogonal polynomials

definition: {Pn(x), n = 0,1,...} (monic, deg(P,) = n) is
orthogonal polynomial sequence (OPS) if there exists (Borel)
measure 1 (of total mass 1) such that

/ = P(2) P (2)0(dz) = Ekndnm

— 00

with ky, > 0 (¢ is not necessarily unique)

Favard’s theorem:
{Pn(z), n=20,1,...} is OPS <= there exist ¢, € R, A\, >0
such that

Pn(z) = (x —cn)Pp—1(x) — \nPp_2(x)
Po(z) =1, Pi(z) =z —c1



orthogonal polynomials

point of departure: {P,(x), n=0,1,...} satisfies
Pn(z) = (z — cn) Pp—1(z) — AnPp—2(x)
Po(z) =1, Pi(z) =x—-c

general problem: find information on orthogonalizing measure
from coefficients in recurrence relation (cf. Chihara’s book)

fact: support of orthogonalizing measure is related to zeros of
polynomials

approach: find information on zeros of P,(x) from coefficients
in recurrence relation



zeros of orthogonal polynomials

{Pn(x), n=0,1,...} satisfies

Pn(xz) = (x —cn)Pp—1(x) — \nPy_2(x)
Po(z) =1, Pi(z)=z—c1

it a; > 0O and
(¢1 Mafar O . o)
ap ¢ Az/a3
Cn_]_ )\n/a;n
\ 0 an cn /
then

det(zl, — Tn) = Pp(x)

observation: zeros of P,(x) are eigenvalues of T,
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zeros of orthogonal polynomials

{Py(2), n=0,1,...} is OPS with zeros z,;

zeros of Pp(x) real and distinct:

interlacing property:

Tn41i < Tng < Tp41i41
hence

= |lim x,;, and o := |lim §&;
gz N— 00 ni Z—>OO£Z

exist, and

—00<§ <41 <0<



zeros of orthogonal polynomials

{Po(z), n=0,1,...} is OPS with zeros z,;

let
§ = n”—>moo Tn; and o .= Zln(;logz

then

—00 <& <41 <0<
moreover

§i=6i+1 = §=o0

similarly

np = lim x, ;41 etc



zeros of orthogonal polynomials

{Pn(x), n=20,1,...} is OPS with zeros z,; and §; .= Aim_ap;
then
—00 < ¢ <§y1<o=lim g < oo
1— 00
and

§i=¢&i4+1 = &G =0
if &4 > —oo there are three possibilities:

1. €1<"'<§z‘<fz‘-|-1<---<0=oo
2. €1<"'<€i<§i+1<---<a<oo
3. 61 < <& =¢ for some i and all k>0



orthogonalizing measure

{Pn(z), n=20,1,...} is OPS satisfying

Pn(z) = (x —cn)Pp—1(x) — \nPy_2(x)
Po(z) =1, Pi(z)=z—c1

theorem: if &1 > —oo there exists an orthogonalizing measure
for {P,(x)}, that is,

/ * Po(2) Pal2)(dz) = kndmn

— 0

such that
o= = SUDD(“%D) — {517527' . }

o <oo = supp(y)N(—oo,0] ={&1,&2,...}

remark: ) not necessarily unique (Hamburger moment problem)



orthogonalizing measure

{Pn(z), n=20,1,...} is OPS satisfying
Po(z) = (z — cn) Pp—1(x) — AnPp—2(2)
Po(z) =1, Pi(z) =z—c1

general problem: find information on orthogonalizing measure
from coefficients in recurrence relation

specific problem: find information on &1 (and z,1, and &) in
terms of coefficients in recurrence relation

observe: {P,(z) := (-1)"Py(—=x), n = 0,1,...} is OPS with
en = —cp, and \n = A\n, hence

Inn — —Inpl



zeros of orthogonal polynomials

{Pn(z), n=20,1,...} is OPS satisfying

Pn(z) = (x —cn)Pp—1(x) — \nPp_2(x)
Po(z) =1, Pi(z) =z —c1

recall: zeros of P,(x) are eigenvalues of

(¢1 Mafan O .. coe )
ap ¢ Az/a3

Cn_l )\n/aﬂn,

\ 0 an Cn )

where a; > O
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zeros of orthogonal polynomials

theorem (Gilewicz & Leopold (1985), vD (1984,1987)):

. Ai
T,1 = Max _min {ci — a1 — —

a>0 1<:<n a;
%
= maxinf{c;, — a; — —
1 a>0 7;21{ L

where A\ =0, a = (al,aQ, .. )

proof:. Gersgorin discs
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zeros of orthogonal polynomials

theorem (vD (1987), Ismail & Li (1992):

= max _min =< c¢; 11— 11— C
Tl = T 1 ien 2 {CZ T Cit1 J(CZ“ "t a- hi)hit1

where h = (h1,...,hp), h1 =0, hy =1, O< h; <1 (1 <i<n)

1
§1 = mbaleg 5 {Cz + Ci+1 — \/(Cz—l—l Cz) + 4'>‘z—|—1/b }

where b = (b1, bo,...) is @ chain sequence

proof: ovals of Cassini
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zeros of orthogonal polynomials

theorem (vD (1987), Levenshtein (1995)):

Tpl = hm>'8 { f: (hzzcz — thlhi\/)‘i—l—l)}

1=1

where h = (hg,...,hn), hg =0, S hZ2 =1

mn
_ U 2. _op. 1 h
£ = }g) {nll_>moolnf {Z; (hi ci zhz_lh“//\zﬂ)}}
where h = (hg, h1,...), hg =0, X, h? =1

proof: Courant-Fischer theorem/Raleigh quotients/field of
values (symmetrize T,, by suitable similarity transformation)
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orthogonal polynomials on [0, c0)

theorem: the following are equivalent:

(i) & 20
(ii) there exist numbers an > 0 and 8,41 > 0 such that ¢; = a7,
and, forn > 1,

cn = an + Bn

An = ap_106n

(iii) there exist numbers ayn > 0, 8,41 > 0 and y, > 0 such that
c1 = a1+ v, and, forn > 1,
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orthogonal polynomials on [0, c0)

§1 > 0 <= there exist numbers an > 0 and 8,41 > 0 such that
c1 = «q and, for n > 1,

cn = an + Bn, An = an_108n

<= there exist numbers ap > 0, 8,41 > 0 and v, > 0
such that ¢y = a1 + ~v1 and, for n > 1,

cn = an + Bn + Yn, An = Oén—lﬁn

assuming % is unique:
if v > 0 for some n then % ({0}) = 0 and

~1
/(O,oo) x~ " (dr) < oo
if vn = 0 then

1
wiob = {Z 6(;.1.'.'?&:1} =0
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summary OPS on [0, c0)

{Pn(x), n=20,1,...} satisfies
Pn($> — (33 — oy — Pn — W’n)Pn—l($> — Oén—lﬁnpn—Q(iU)
Po(z) =1, Pi(z)=2x—01—m

with an > 0, 8,41 >0 and v, > 0

—

{Pn(x), n = 0,1,...} is OPS with respect to measure vy with
support in [0,00) and

£1 = lim z,1 = infsupp(y)

n—oo

& = lim z,,;, = inf {SUDD(¢)\ Uj<i 5]}

n—aoeo

o= lim & = infsupp(vy)

1— 00
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birth-death process with Killing

definition: birth-death process with killing is Markov process
{X(t), t >0} on {0,1,...} with coffin state 0, birth rate a;, > 0O
and killing rate v, > 0 in state n > 1, and death rate 3, > 0 in
staten > 1

representation for ¢,5 > O:

pii() == Pr{X () = j|X(0) = i} = m; | ~ e™™Qi(2)Q;(2)(da)

with
m =1, = 1%l (n>1)

Bo...0n

and
anQn(z) = (an + Bn + v — 2)Qp—-1(x) — BnQn—2(x)
Qo(z) =1, a1Qi(z)=a1+7 —=
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birth-death processes with Kkilling

pi(D) =5 [~ e Qi(@)Q; (x)(do)
t=0; iy = [ Qu@)Q;(@)u(da)
defining

Po(z) = (D) "a1as...0nQn(x)
we have
Pno(z) = (r —an — Bn — m)Pr—1(x) — ap_18nFPp_2o(x)
Po(z) =1, Pi(z) =z—a1—m1

OPS with respect to measure ¢ on [0, c0)!
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zeros of orthogonal polynomials

note: let
[ 0 0 0 )
—01 — 71 a1 0
R, — 52 —ap — 2 — 72 a2
.. . e 1
K o B —om— Bn—n)

truncated g-matrix of birth-death process with killing, then

Pn(z) = det(zl, + Ryn)

so zeros of P,(x) are eigenvalues of —Rj,
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birth-death processes: decay rate

pi;(t) =, /OOO e~ "Qi(2)Q; (x)y (dx)

hence

pj = lim p;;(t) = 79 ({0})

pii(t) —p; =, /O Oj e~ Qy(2)Q; () (da)

iInterest: decay rate

0 = &1 + &2l —0y

note: if ¢({0}) =0 then & > 0 or £&1 = & = 0, so that § = &;q;
if ¥({0}) >0 then £&4 =0, so that § =&
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birth-death processes: decay rate

given: birth rates an, death rates 3,41 and killing rates v, n > 1
problem: determine decay rate § = &1 + 5211{51:0}

recall: if v, =0 then ¥({0}) > 0 is known; if vy, > 0 for some n
then ¢ ({0}) =0

if ({0}) = 0 (and hence § = £1):

QL: =7

Q2: ¢&,>07

if vn =0 and %({0}) > 0 (and hence ¢&; = 0 and § = &5):
Q3: & = 7 (spectral gap)

Q4: €5 >0 7
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birth-death processes: decay rate

problem: determine 6 = &1 + 521[{&:0}
approach if ¥»({0}) = 0 (hence § = £1): representations for &;
approach if v, =0 and ¥ ({0}) > 0 (hence § = &£»): dual process

definition: given an, 6,41 and v, = 0 the dual process has rates
on = Bp+1, Pnt1l = Qpt1, 71 :=0a1, Yn =0 (n>1)
then {P,(z)} OPS w.r.t ¢ :
_ x
a15([0.a]) = [ w(du), =>0

hence

~

§o=&1
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birth-death processes: decay rate

recall: (Gersgorin discs)

>\.
¢1 = maxinf {ci —aj41 — —7’}

a>0 1 a;

where ¢q1 = a1 + 1 and

c;=o;+ 0B+ N=a_18 GE>1)

so, if v, =0 and ¥ ({0}) > 0 (hence § = &) then

N _ _ _ _ e 10
0 =& =& =maxinfea; + 6 + 7 —aj41 — — 16%}

a>0 ¢ a;

. ;5
= r;m>ea(>)<|r;f a; + Bit1 — @41 — }

ajg
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decay rate: more recent results

setting: v, =0 and ¥ ({0}) > 0 (so that & =0 and § = &5)

Gersgorin + duality:

a>0 1 a;

0 = maxinf {047; + B’i—l—l — Qj41 — Oézﬁz}

Granovsky & Zeifman (1997), Chen (2001):

0

| o B
maxinf {Oéq; + Bit1 — i1 — zﬁz}

a>0 1

gl>i8 Sl;p {Oéi T Bit1 — @41 —

where 81 =0, a = (al,ag, .. )
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decay rate: more recent results

setting: v, =0 and ¥ ({0}) > 0 (so that &1 =0 and § = &»)

Miclo (1999), Chen (2000):

6>0 — SW{(ZO:W-) (ij)}<oo

a1 ...05-1

Ba ... 0

where

(7>1)

=1, ;=

recall: ({0}) >0 < > 7 <
J
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implications for OP’s

translation Miclo-Chen result: explicit criterion for positivity of
spectral gap if & is known

theorem: let

Pn(z) = (z —cn) Pp_1(x) — AnPp_2(x)
Po(z) =1, Pi(z) =z—c1

and suppose &1 > —oo then, defining m1 = 1, a1 = ¢1 — &1 and,
forn>1,

Bn = )\n/an—la an = cp — &1 — Bn

T = (041 e O‘n—l)/(BQ cee 6n)

oo {25 (o))
? §<i X975 ) \j>i

26
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decay rate: more recent results

setting: v, =0 and ¥ ({0}) > 0 (so that & =0 and § = &5)

Gersgorin + duality:

a>0 1 a;

0 = maxinf {047; + B’i—l—l — Qj41 — Oézﬁz}

Granovsky & Zeifman (1997), Chen (2001):

0

| o B
maxinf {Oéq; + Bit1 — i1 — zﬁz}

a>0 1

gl>i8 Sl;p {Oéi T Bit1 — @41 —

where 81 =0, a = (al,ag, .. )
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extreme zeros of orthogonal polynomials

Granovsky-Zeifman-Chen result suggestive of

theorem: let

Pn(z) = (& — cn) Pr—1(x) — MPp_2(x)
Py(z) =1, Pi(z) =z—c1

then, not only

)\.
= maxinfic;, —a;4 1 — —
o1 a>0 i {CZ bt 1 az}
but also
. A
{1 = min su {Ci — Q41 — —}

1 a;

28



extreme zeros of orthogonal polynomials

more generally:
Granovsky-Zeifman-Chen result suggestive of

theorem: let

Po(z) = (x —cn)Pp—1(x) — \nPp_2(x)
Po(z) =1, Pi(z) =z —c1

then, not only

. i
T,1 = maxminic, — a1 — —
nl = 230 i<n { v il a;

but also

. Aj
T,1 = Min max {ci — a1 — —

a>0 1<n a;
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extreme zeros of orthogonal polynomials

{Pn(z), n=20,1,...} is OPS satisfying

Pn(z) = (x —cn)Pp—1(x) — \nPp_2(x)
Po(z) =1, Pi(z) =z —c1

recall: zeros of P,(x) are eigenvalues of

(¢1 Mafan O .. coe )
ap ¢ Az/a3

Cn_l )\n/aﬂn,

\ 0 an Cn )

where a; > O
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extreme zeros of orthogonal polynomials

theorem:

. %
Tnn = MaxXmin<c;, + a; + —
T a0 i<n { el

proof: Perron-Frobenius theory for positive matrices

T, = T, + dI positive for d sufficiently large, corresponds to
Cn .= cn+d, A\n := An, and has eigenvalues z,,;, = x,,; + d

Collatz-Wielandt:

Thx); Thx);
Tnn = Max min (Th); — min max( n)i
x>0 1 xT; x>0 1 T;

corollary:

. i
To1 = MiNnMax<ic, — a1 — =%
nl ™= 450 i<n { v il a;

31



