ON BIRTH-DEATH PROCESSES AND EXTREME ZEROS OF ORTHOGONAL POLYNOMIALS

Erik A. van Doorn

Department of Applied Mathematics

University of Twente

Enschede, The Netherlands

Stochastics and Special Functions Brisbane, 22 May 2009

outline

1. orthogonal polynomials

- definitions, notation
- zeros, orthogonalizing measure
- OP's on $[0, \infty)$

2. birth-death processes (with killing)

- definitions, notation
- decay rate
- recent results

3. extreme zeros of OP's

orthogonal polynomials

definition: $\{P_n(x), n = 0, 1, ...\}$ (monic, $\deg(P_n) = n$) is orthogonal polynomial sequence (OPS) if there exists (Borel) measure ψ (of total mass 1) such that

$$\int_{-\infty}^{\infty} P_n(x) P_m(x) \psi(dx) = k_n \delta_{nm}$$

with $k_n > 0$ (ψ is not necessarily unique)

Favard's theorem:

 $\{P_n(x),\ n=0,1,\ldots\}$ is OPS \iff there exist $c_n\in\mathbb{R},\ \lambda_n>0$ such that

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

orthogonal polynomials

point of departure: $\{P_n(x), n = 0, 1, ...\}$ satisfies

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

with $c_n \in \mathbb{R}, \ \lambda_n > 0$

general problem: find information on orthogonalizing measure from coefficients in recurrence relation (cf. Chihara's book)

fact: support of orthogonalizing measure is related to zeros of polynomials

approach: find information on zeros of $P_n(x)$ from coefficients in recurrence relation

$$\{P_n(x), n = 0, 1, \ldots\}$$
 satisfies

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

if $a_j > 0$ and

$$T_n := \begin{pmatrix} c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\ a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & c_{n-1} & \lambda_n/a_n \\ \cdots & \cdots & 0 & a_n & c_n \end{pmatrix}$$

then

$$\det(xI_n - T_n) = P_n(x)$$

observation: zeros of $P_n(x)$ are eigenvalues of T_n

 $\{P_n(x), n = 0, 1, \ldots\}$ is OPS with zeros x_{ni}

zeros of $P_n(x)$ real and distinct:

$$x_{n1} < x_{n2} < \ldots < x_{nn}$$

interlacing property:

$$x_{n+1,i} < x_{ni} < x_{n+1,i+1}$$

hence

$$\xi_i := \lim_{n \to \infty} x_{ni}$$
 and $\sigma := \lim_{i \to \infty} \xi_i$

exist, and

$$-\infty \le \xi_i \le \xi_{i+1} \le \sigma \le \infty$$

$$\{P_n(x), n = 0, 1, \ldots\}$$
 is OPS with zeros x_{ni}

let

$$\xi_i := \lim_{n \to \infty} x_{ni}$$
 and $\sigma := \lim_{i \to \infty} \xi_i$

then

$$-\infty \le \xi_i \le \xi_{i+1} \le \sigma \le \infty$$

moreover

$$\xi_i = \xi_{i+1} \implies \xi_i = \sigma$$

similarly

$$\eta_i := \lim_{n \to \infty} x_{n,n-i+1}$$
 etc

 $\{P_n(x), n = 0, 1, \ldots\}$ is OPS with zeros x_{ni} and $\xi_i := \lim_{n \to \infty} x_{ni}$

then

$$-\infty \le \xi_i \le \xi_{i+1} \le \sigma = \lim_{i \to \infty} \xi_i \le \infty$$

and

$$\xi_i = \xi_{i+1} \implies \xi_i = \sigma$$

if $\xi_1 > -\infty$ there are three possibilities:

1.
$$\xi_1 < \dots < \xi_i < \xi_{i+1} < \dots < \sigma = \infty$$

2.
$$\xi_1 < \dots < \xi_i < \xi_{i+1} < \dots < \sigma < \infty$$

3.
$$\xi_1 < \cdots < \xi_i = \xi_{i+k}$$
 for some i and all $k > 0$

orthogonalizing measure

 $\{P_n(x),\ n=0,1,\ldots\}$ is OPS satisfying $P_n(x)=(x-c_n)P_{n-1}(x)-\lambda_n P_{n-2}(x)$ $P_0(x)=1,\ P_1(x)=x-c_1$

theorem: if $\xi_1 > -\infty$ there exists an orthogonalizing measure ψ for $\{P_n(x)\}$, that is,

$$\int_{-\infty}^{\infty} P_m(x) P_n(x) \psi(dx) = k_n \delta_{mn}$$

such that

$$\sigma = \infty \Rightarrow \operatorname{supp}(\psi) = \{\xi_1, \xi_2, \ldots\}$$
$$\sigma < \infty \Rightarrow \operatorname{supp}(\psi) \cap (-\infty, \sigma] = \overline{\{\xi_1, \xi_2, \ldots\}}$$

remark: ψ not necessarily unique (Hamburger moment problem)

orthogonalizing measure

$$\{P_n(x),\ n=0,1,\ldots\}$$
 is OPS satisfying
$$P_n(x)=(x-c_n)P_{n-1}(x)-\lambda_n P_{n-2}(x)$$

$$P_0(x)=1,\ P_1(x)=x-c_1$$

general problem: find information on orthogonalizing measure from coefficients in recurrence relation

specific problem: find information on ξ_1 (and x_{n1} , and ξ_2) in terms of coefficients in recurrence relation

observe: $\{\tilde{P}_n(x) := (-1)^n P_n(-x), n = 0, 1, ...\}$ is OPS with $\tilde{c}_n := -c_n$ and $\tilde{\lambda}_n := \lambda_n$, hence

$$x_{nn} = -\tilde{x}_{n1}$$

 $\{P_n(x), n = 0, 1, \ldots\}$ is OPS satisfying

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

with $c_n \in \mathbb{R}, \ \lambda_n > 0$

recall: zeros of $P_n(x)$ are eigenvalues of

$$T_n = \begin{pmatrix} c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\ a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & c_{n-1} & \lambda_n/a_n \\ \cdots & \cdots & 0 & a_n & c_n \end{pmatrix}$$

where $a_i > 0$

theorem (Gilewicz & Leopold (1985), vD (1984,1987)):

$$x_{n1} = \max_{a>0} \min_{1 \le i \le n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

$$\xi_1 = \max_{a>0} \inf_{i\geq 1} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

where $\lambda_1 = 0$, $a = (a_1, a_2, ...)$

proof: Geršgorin discs

theorem (vD (1987), Ismail & Li (1992):

$$x_{n1} = \max_{h} \min_{1 \le i < n} \frac{1}{2} \left\{ c_i + c_{i+1} - \sqrt{(c_{i+1} - c_i)^2 + \frac{4\lambda_{i+1}}{(1 - h_i)h_{i+1}}} \right\}$$

where $h = (h_1, ..., h_n), h_1 = 0, h_n = 1, 0 < h_i < 1 (1 < i < n)$

$$\xi_1 = \max_{b} \inf_{i \ge 1} \frac{1}{2} \left\{ c_i + c_{i+1} - \sqrt{(c_{i+1} - c_i)^2 + 4\lambda_{i+1}/b_i} \right\}$$

where $b = (b_1, b_2, ...)$ is a chain sequence

proof: ovals of Cassini

theorem (vD (1987), Levenshtein (1995)):

$$x_{n1} = \min_{h \ge 0} \left\{ \sum_{i=1}^{n} \left(h_i^2 c_i - 2h_{i-1} h_i \sqrt{\lambda_{i+1}} \right) \right\}$$

where $h = (h_0, \dots, h_n), h_0 = 0, \sum_{i=1}^n h_i^2 = 1$

$$\xi_1 = \inf_{h \ge 0} \left\{ \lim_{n \to \infty} \inf \left\{ \sum_{i=1}^n \left(h_i^2 c_i - 2h_{i-1} h_i \sqrt{\lambda_{i+1}} \right) \right\} \right\}$$

where $h = (h_0, h_1, ...), h_0 = 0, \sum_{i=1}^{\infty} h_i^2 = 1$

proof: Courant-Fischer theorem/Raleigh quotients/field of values (symmetrize T_n by suitable similarity transformation)

orthogonal polynomials on $[0,\infty)$

theorem: the following are equivalent:

- (i) $\xi_1 \ge 0$
- (ii) there exist numbers $\alpha_n > 0$ and $\beta_{n+1} > 0$ such that $c_1 = \alpha_1$, and, for n > 1,

$$c_n = \alpha_n + \beta_n$$
$$\lambda_n = \alpha_{n-1}\beta_n$$

(iii) there exist numbers $\alpha_n > 0$, $\beta_{n+1} > 0$ and $\gamma_n \ge 0$ such that $c_1 = \alpha_1 + \gamma_1$, and, for n > 1,

$$c_n = \alpha_n + \beta_n + \gamma_n$$
$$\lambda_n = \alpha_{n-1}\beta_n$$

orthogonal polynomials on $[0,\infty)$

 $\xi_1 \ge 0 \iff$ there exist numbers $\alpha_n > 0$ and $\beta_{n+1} > 0$ such that $c_1 = \alpha_1$ and, for n > 1,

$$c_n = \alpha_n + \beta_n, \quad \lambda_n = \alpha_{n-1}\beta_n$$

 \iff there exist numbers $\alpha_n > 0$, $\beta_{n+1} > 0$ and $\gamma_n \ge 0$ such that $c_1 = \alpha_1 + \gamma_1$ and, for n > 1,

$$c_n = \alpha_n + \beta_n + \gamma_n, \quad \lambda_n = \alpha_{n-1}\beta_n$$

assuming ψ is unique:

if $\gamma_n > 0$ for some n then $\psi(\{0\}) = 0$ and

$$\int_{(0,\infty)} x^{-1} \psi(dx) < \infty$$

if $\gamma_n \equiv 0$ then

$$\psi(\{0\}) = \left\{ \sum_{n} \frac{\alpha_1 \dots \alpha_n}{\beta_2 \dots \beta_{n+1}} \right\}^{-1} \ge 0$$

summary OPS on $[0,\infty)$

$$\{P_n(x),\ n=0,1,\ldots\} \text{ satisfies}$$

$$P_n(x)=(x-\alpha_n-\beta_n-\gamma_n)P_{n-1}(x)-\alpha_{n-1}\beta_nP_{n-2}(x)$$

$$P_0(x)=1,\ P_1(x)=x-\alpha_1-\gamma_1$$
 with $\alpha_n>0,\ \beta_{n+1}>0$ and $\gamma_n\geq 0$

 \Longrightarrow

 $\{P_n(x), n = 0, 1, \ldots\}$ is OPS with respect to measure ψ with support in $[0, \infty)$ and

$$\xi_1 = \lim_{n \to \infty} x_{n1} = \inf \operatorname{supp}(\psi)$$

$$\xi_i = \lim_{n \to \infty} x_{ni} = \inf \left\{ \operatorname{supp}(\psi) \setminus \bigcup_{j < i} \xi_j \right\}$$

$$\sigma = \lim_{i \to \infty} \xi_i = \inf \overline{\operatorname{supp}(\psi)}$$

birth-death process with killing

definition: birth-death process with killing is Markov process $\{X(t),\ t\geq 0\}$ on $\{0,1,\ldots\}$ with coffin state 0, birth rate $\alpha_n>0$ and killing rate $\gamma_n\geq 0$ in state $n\geq 1$, and death rate $\beta_n>0$ in state n>1

representation for i, j > 0:

$$p_{ij}(t) := \Pr\{X(t) = j \mid X(0) = i\} = \pi_j \int_0^\infty e^{-xt} Q_i(x) Q_j(x) \psi(dx)$$

with

$$\pi_1 := 1, \ \pi_n := \frac{\alpha_1 \dots \alpha_{n-1}}{\beta_2 \dots \beta_n} \ (n > 1)$$

and

$$\alpha_n Q_n(x) = (\alpha_n + \beta_n + \gamma_n - x)Q_{n-1}(x) - \beta_n Q_{n-2}(x)$$

 $Q_0(x) = 1, \quad \alpha_1 Q_1(x) = \alpha_1 + \gamma_1 - x$

birth-death processes with killing

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-xt} Q_i(x) Q_j(x) \psi(dx)$$
$$t = 0: \qquad \delta_{ij} = \pi_j \int_0^\infty Q_i(x) Q_j(x) \psi(dx)$$

defining

$$P_n(x) = (-1)^n \alpha_1 \alpha_2 \dots \alpha_n Q_n(x)$$

we have

$$P_n(x) = (x - \alpha_n - \beta_n - \gamma_n) P_{n-1}(x) - \alpha_{n-1} \beta_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - \alpha_1 - \gamma_1$$

OPS with respect to measure ψ on $[0, \infty)!$

note: let

$$R_{n} = \begin{pmatrix} 0 & 0 & 0 & \cdots & \cdots \\ -\alpha_{1} - \gamma_{1} & \alpha_{1} & 0 & \cdots & \cdots \\ \beta_{2} & -\alpha_{2} - \beta_{2} - \gamma_{2} & \alpha_{2} & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \alpha_{n-1} \\ \cdots & \cdots & \cdots & \beta_{n} & -\alpha_{n} - \beta_{n} - \gamma_{n} \end{pmatrix}$$

truncated q-matrix of birth-death process with killing, then

$$P_n(x) = \det(xI_n + R_n)$$

so zeros of $P_n(x)$ are eigenvalues of $-R_n$

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-xt} Q_i(x) Q_j(x) \psi(dx)$$

hence

$$p_j := \lim_{t \to \infty} p_{ij}(t) = \pi_j \psi(\{0\})$$

$$p_{ij}(t) - p_j = \pi_j \int_{0+}^{\infty} e^{-xt} Q_i(x) Q_j(x) \psi(dx)$$

interest: decay rate

$$\delta = \xi_1 + \xi_2 \mathbb{I}_{\{\xi_1 = 0\}}$$

note: if $\psi(\{0\}) = 0$ then $\xi_1 > 0$ or $\xi_1 = \xi_2 = 0$, so that $\delta = \xi_1$; if $\psi(\{0\}) > 0$ then $\xi_1 = 0$, so that $\delta = \xi_2$

given: birth rates α_n , death rates β_{n+1} and killing rates γ_n , $n \geq 1$

problem: determine decay rate $\delta = \xi_1 + \xi_2 \mathbb{I}_{\{\xi_1 = 0\}}$

recall: if $\gamma_n \equiv 0$ then $\psi(\{0\}) \geq 0$ is known; if $\gamma_n > 0$ for some n then $\psi(\{0\}) = 0$

if $\psi(\{0\}) = 0$ (and hence $\delta = \xi_1$):

Q1: $\xi_1 = ?$

Q2: $\xi_1 > 0$?

if $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (and hence $\xi_1 = 0$ and $\delta = \xi_2$):

Q3: $\xi_2 = ?$ (spectral gap)

Q4: $\xi_2 > 0$?

problem: determine $\delta = \xi_1 + \xi_2 \mathbb{I}_{\{\xi_1 = 0\}}$

approach if $\psi(\{0\}) = 0$ (hence $\delta = \xi_1$): representations for ξ_1

approach if $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (hence $\delta = \xi_2$): *dual* process

definition: given α_n , β_{n+1} and $\gamma_n \equiv 0$ the dual process has rates

$$\tilde{\alpha}_n:=\beta_{n+1},\quad \tilde{\beta}_{n+1}:=\alpha_{n+1},\quad \tilde{\gamma}_1:=\alpha_1,\ \tilde{\gamma}_n:=0\ (n>1)$$
 then $\{\tilde{P}_n(x)\}$ OPS w.r.t $\tilde{\psi}$:

$$\alpha_1 \tilde{\psi}([0,x]) = \int_0^x u \psi(du), \quad x \ge 0$$

hence

$$\xi_2 = \tilde{\xi}_1$$

recall: (Geršgorin discs)

$$\xi_1 = \max_{a>0} \inf_{i} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

where $c_1 = \alpha_1 + \gamma_1$ and

$$c_i = \alpha_i + \beta_i + \gamma_i, \quad \lambda_i = \alpha_{i-1}\beta_i \quad (i > 1)$$

so, if $\gamma_i \equiv 0$ and $\psi(\{0\}) > 0$ (hence $\delta = \xi_2$) then

$$\delta = \xi_2 = \tilde{\xi}_1 = \max_{a>0} \inf_{i} \left\{ \tilde{\alpha}_i + \tilde{\beta}_i + \tilde{\gamma}_i - a_{i+1} - \frac{\tilde{\alpha}_{i-1}\tilde{\beta}_i}{a_i} \right\}$$
$$= \max_{a>0} \inf_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i\beta_i}{a_i} \right\}$$

decay rate: more recent results

setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Geršgorin + duality:

$$\delta = \max_{a>0} \inf_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

Granovsky & Zeifman (1997), Chen (2001):

$$\delta = \max_{a>0} \inf_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$
$$= \min_{a>0} \sup_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

where $\beta_1 = 0$, $a = (a_1, a_2, ...)$

decay rate: more recent results

setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Miclo (1999), Chen (2000):

$$\delta > 0 \iff \sup_i \left\{ \left(\sum_{j \leq i} \frac{1}{\alpha_j \pi_j} \right) \left(\sum_{j > i} \pi_j \right) \right\} < \infty$$

where

$$\pi_1 = 1, \ \pi_j = \frac{\alpha_1 \dots \alpha_{j-1}}{\beta_2 \dots \beta_j} \ (j > 1)$$

recall:
$$\psi(\{0\}) > 0 \iff \sum_{i} \pi_{i} < \infty$$

implications for OP's

translation Miclo-Chen result: explicit criterion for positivity of spectral gap if ξ_1 is known

theorem: let

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

and suppose $\xi_1 > -\infty$ then, defining $\pi_1 = 1$, $\alpha_1 = c_1 - \xi_1$ and, for n > 1,

$$\beta_n = \lambda_n / \alpha_{n-1}, \ \alpha_n = c_n - \xi_1 - \beta_n$$
$$\pi_n = (\alpha_1 \dots \alpha_{n-1}) / (\beta_2 \dots \beta_n)$$

we have

$$\xi_2 > \xi_1 \iff \sup_i \left\{ \left(\sum_{j \le i} \frac{1}{\alpha_j \pi_j} \right) \left(\sum_{j > i} \pi_j \right) \right\} < \infty$$

decay rate: more recent results

setting: $\gamma_n \equiv 0$ and $\psi(\{0\}) > 0$ (so that $\xi_1 = 0$ and $\delta = \xi_2$)

Geršgorin + duality:

$$\delta = \max_{a>0} \inf_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

Granovsky & Zeifman (1997), Chen (2001):

$$\delta = \max_{a>0} \inf_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$
$$= \min_{a>0} \sup_{i} \left\{ \alpha_i + \beta_{i+1} - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} \right\}$$

where $\beta_1 = 0$, $a = (a_1, a_2, ...)$

Granovsky-Zeifman-Chen result suggestive of

theorem: let

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

then, not only

$$\xi_1 = \max_{a>0} \inf_{i} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

but also

$$\xi_1 = \min_{a>0} \sup_i \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

more generally:

Granovsky-Zeifman-Chen result suggestive of

theorem: let

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

then, not only

$$x_{n1} = \max_{a>0} \min_{i \le n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

but also

$$x_{n1} = \min_{a>0} \max_{i \le n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$

 $\{P_n(x), n = 0, 1, \ldots\}$ is OPS satisfying

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

$$P_0(x) = 1, \quad P_1(x) = x - c_1$$

with $c_n \in \mathbb{R}, \ \lambda_n > 0$

recall: zeros of $P_n(x)$ are eigenvalues of

$$T_n = \begin{pmatrix} c_1 & \lambda_2/a_2 & 0 & \cdots & \cdots \\ a_2 & c_2 & \lambda_3/a_3 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & c_{n-1} & \lambda_n/a_n \\ \cdots & \cdots & 0 & a_n & c_n \end{pmatrix}$$

where $a_i > 0$

theorem:

$$x_{nn} = \max_{a>0} \min_{i \le n} \left\{ c_i + a_{i+1} + \frac{\lambda_i}{a_i} \right\}$$

proof: Perron-Frobenius theory for positive matrices

 $\tilde{T}_n := T_n + dI$ positive for d sufficiently large, corresponds to $\tilde{c}_n := c_n + d$, $\tilde{\lambda}_n := \lambda_n$, and has eigenvalues $\tilde{x}_{ni} = x_{ni} + d$

Collatz-Wielandt:

$$x_{nn} = \max_{x>0} \min_{i} \frac{(T_n x)_i}{x_i} = \min_{x>0} \max_{i} \frac{(T_n x)_i}{x_i}$$

corollary:

$$x_{n1} = \min_{a>0} \max_{i \le n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}$$