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The Exponential Family
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Definition
A family of probability distributions which satisfy

p(x|θ) = exp(〈φ(x), θ〉 − g(θ))

Details

φ(x) is called the sufficient statistic of x.
g(θ) is the log-partition function and it ensures that the
distribution integrates out to 1.



Example: Normal Distribution
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Engineer’s favorite

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
where x ∈ R =: X

Massaging the math

p(x) = exp
(
〈(x, x2)︸ ︷︷ ︸

φ(x)

, θ〉 − µ2

2σ2
+

1

2
log(2πσ2)︸ ︷︷ ︸
g(θ)

)
Using the substitution θ2 := −1

2σ
−2 and θ1 := µσ−2 yields

g(θ) = −1

4
θ2

1θ
−1
2 +

1

2
log 2π − 1

2
log−2θ2



Example: Multinomial Distribution
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Many discrete events
Assume that we n events, each which all may occur with
a certain probability πx.

Guessing the answer
Use the map φ : x→ ex, that is, ex is an element of the
canonical basis (0, . . . , 0, 1, 0, . . .) as sufficient statistic.

=⇒ p(x) = exp(〈ex, θ〉 − g(θ))
where the normalization is

g(θ) = log

n∑
i=1

exp(θi)



The Log-Partition Function
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Generating Cumulants
g(θ) is the normalization for p(x|θ) Taking the derivative
wrt. θ we can see that

∂θg(θ) = Ex∼p(x|θ) [φ(x)]

∂2
θg(θ) = Covx∼p(x|θ) [φ(x)]

Good News
g(θ) is a convex function

Very Good News

− log p(X|θ) =

m∑
i=1

−〈φ(xi), θ〉 +mg(θ)

is convex. So Maximum Likelihood Estimation is a con-
vex minimization problem.



Tossing a dice
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Priors
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Problems with Maximum Likelihood
With not enough data, parameter estimates will be bad.

Prior to the rescue
Often we know where the solution should be.

Normal Prior
Simply assume θ ∼ N(0, σ21).

Posterior

− log p(θ|X) =

m∑
i=1

−〈φ(xi), θ〉 + g(θ)︸ ︷︷ ︸
− log p(xi|θ)

+
1

2σ2
‖θ‖2 + const.︸ ︷︷ ︸
− log p(θ)

Good News
Minimizing− log p(θ|X) is a convex optimization problem.



Tossing a dice with priors
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The Gaussian Process Link
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Normal Prior on θ . . .

θ ∼ N(0, σ21)

. . . yields Normal Prior on t(x) = 〈φ(x), θ〉
Distribution of projected Gaussian is Gaussian.
The mean vanishes

Eθ[t(x)] = 〈φ(x),Eθ[θ]〉 = 0

The covariance yields

Cov[t(x), t(x′)] = Eθ [〈φ(x), θ〉〈θ, φ(x′)〉] = σ2〈φ(x), φ(x′)〉︸ ︷︷ ︸
:=k(x,x′)

. . . so we have a Gaussian Process on x . . .
with kernel k(x, x′) = σ2〈φ(x), φ(x′)〉.



Conditional Distributions
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Conditional Density

p(x|θ) = exp(〈φ(x), θ〉 − g(θ))
p(y|x, θ) = exp(〈φ(x, y), θ〉 − g(θ|x))

Maximum a Posteriori Estimation

− log p(θ|X) =

m∑
i=1

−〈φ(xi), θ〉 +mg(θ) +
1

2σ2
‖θ‖2 + c

− log p(θ|X, Y ) =

m∑
i=1

−〈φ(xi, yi), θ〉 + g(θ|xi) +
1

2σ2
‖θ‖2 + c

Solving the Problem
Expand θ in a linear combination of φ(xi, yi).
Solve convex problem in expansion coefficients.



General Strategy
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Choose a suitable sufficient statistic φ(x, y)

Conditionally multinomial distribution leads to Gaus-
sian Process multiclass estimator: we have a distribu-
tion over n classes which depends on x.
Conditionally Gaussian leads to Gaussian Process re-
gression: we have a normal distribution over a random
variable which depends on the location.
Note: we estimate mean and variance.
Conditionally Poisson distributions yields spatial Pois-
son model.

Solve the optimization problem
This is typically convex.

The bottom line
Instead of choosing k(x, x′) choose k((x, y), (x′, y′)).



Example: GP Classification
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Sufficient Statistic
We pick φ(x, y) = φ(x)⊗ ey, that is

k((x, y), (x′, y′)) = k(x, x′)δyy′ where y, y′ ∈ {1, . . . , n}
Kernel Expansion

By the representer theorem we get that

θ =

m∑
i=1

∑
y

αiyφ(xi, y)

Optimization Problem
Big mess . . . but convex.



A Toy Example
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Noisy Data

Alexander J. Smola: Exponential Families in Feature Space, Page 15



Example: GP Regression
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Sufficient Statistic (Standard Model)
We pick φ(x, y) = (yφ(x), y2), that is

k((x, y), (x′, y′)) = k(x, x′)yy′ + y2y′
2 where y, y′ ∈ R

Traditionally the variance is fixed, that is θ2 = const..
Sufficient Statistic (Fancy Model)

We pick φ(x, y) = (yφ1(x), y2φ2(x)), that is

k((x, y), (x′, y′)) = k1(x, x
′)yy′+k2(x, x

′)y2y′
2 where y, y′ ∈ R

We estimate mean and variance simultaneously .
Kernel Expansion

By the representer theorem (and more algebra) we get

θ =

(
m∑
i=1

αi1φ1(xi),

m∑
i=1

αi2φ2(xi)

)



Training Data

Alexander J. Smola: Exponential Families in Feature Space, Page 17



Mean ~k>(x)(K + σ21)−1y
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Variance k(x, x) + σ2 − ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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Adaptive Variance Method
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Optimization Problem:

minimize
m∑

i=1

−1
4

 m∑
j=1

α1jk1(xi, xj)

>  m∑
j=1

α2jk2(xi, xj)

−1  m∑
j=1

α1jk1(xi, xj)


−1

2
log det−2

 m∑
j=1

α2jk2(xi, xj)

− m∑
j=1

[
y>i α1jk1(xi, xj) + (y>j α2jyj)k2(xi, xj)

]
+

1
2σ2

∑
i,j

α>1iα1jk1(xi, xj) + tr
[
α2iα

>
2j

]
k2(xi, xj).

subject to 0 �
m∑

i=1

α2ik(xi, xj)

Properties of the problem:
The problem is convex
The log-determinant from the normalization of the
Gaussian acts as a barrrier function .
We get a semidefinite program.



Heteroscedastic Regression
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Natural Parameters
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Structured Observations
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Joint density and graphical models

Hammersley-Clifford Theorem

p(x) =
1

Z
exp

(∑
c∈C

ψc(xc)

)
Decomposition of any p(x) into product of potential func-
tions on maximal cliques.



Application to Exponential Families
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Hammersley-Clifford Corollary
Combining the CH-Theorem and exponential families

p(x) =
1

Z
exp

(∑
c∈C

ψc(xc)

)
p(x) = exp (〈φ(x), θ〉 − g(θ))

we obtain a decomposition of φ(x) into

p(x) = exp

(∑
c∈C

〈φc(xc), θc〉 − g(θ)

)
Consequence for Kernels

k(x, x′) =
∑
c∈C

kc(xc, x
′
c)



Conditional Random Fields
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Dependence structure between variables

Time t− 2 t− 1 t t + 1 t + 2

X ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x

Y ?>=<89:;y ?>=<89:;y ?>=<89:;y ?>=<89:;y ?>=<89:;y

Key Points
We can drop cliques in x: they do not affect p(y|x, θ).
Compute g(θ|x) via dynamic programming.
Assume stationarity of the model, that is θc does not
depend on the position of the clique.
We only need a sufficient statistic φxy(xt, yt) and
φyy(yt, yt+1).



Computational Issues
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Conditional Probabilities:

p(y|x, θ) ∝
T∏
t=1

exp (〈φxy(xt, yt), θxy〉 + 〈φyy(yt, yt+1), θyy〉)︸ ︷︷ ︸
M(yt,yt+1)

So we can compute p(yt|x, θ) and p(yt, yt+1|x, θ) via dy-
namic programming.

Objective Function:

− log p(θ|X,Y ) =

m∑
i=1

−〈φ(xi, yi), θ〉 + g(θ|xi) +
1

2σ2
‖θ‖2 + c

∂θ − log p(θ|X,Y ) =

m∑
i=1

−φ(xi, yi) + E [φ(xi, yi)|xi] +
1

σ2
θ

We only need E [φxy(xit, yit)|xi] and E
[
φyy(yit, yi(t+1))|xi

]
.



CRFs and HMMs
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Conditional Random Field: maximize p(y|x, θ)

Time t− 2 t− 1 t t + 1 t + 2

X ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x

Y ?>=<89:;y ?>=<89:;y ?>=<89:;y ?>=<89:;y ?>=<89:;y

Hidden Markov Model: maximize p(x, y|θ)

Time t− 2 t− 1 t t + 1 t + 2

X ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x

Y //?>=<89:;y //

OO

?>=<89:;y //

OO

?>=<89:;y //

OO

?>=<89:;y //

OO

?>=<89:;y //

OO



Extension: Missing Variables
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Basic Idea
We can integrate out over missing variables to obtain

p(y|x, θ) =
∑
xmiss

p(y, xmiss|x, θ)

=
∑
xmiss

exp(〈φ(x, xmiss, y), θ〉 − g(θ|x))

= exp(g(θ|x, y)− g(θ|x))

Big Problem
The optimization is not convex any more. But it still is a
difference of two convex functions.

Solve via Concave-Convex procedure (i.e. EM)
Use fancy DC programming (to do)



Extension: SVM
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Basic Idea
Instead of minimizing − log p(y|x, θ) optimize a trimmed
log likelihood ratio

R(x, y, θ) := log
p(y|x, θ)

maxy′ 6=y p(y|x, θ)
= 〈φ(x, y), θ〉 −max

y′ 6=y
〈φ(x, y′), θ〉

Minimizing min(ρ − R(x, y, θ), 0) gives the large-margin
criterion.

Technical Detail
For sequences finding the best and second-best se-
quence is done by dynamic programming. We get the
Maximum-Margin-Markov Networks.



Extension: Perceptron
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Basic Idea
For correct classification it is sufficient if the log-
likelihood ratio R(x, y, θ) > 0.

Algorithm
Initialize θ = 0
Repeat

If R(xi, yi, θ) < 0 update θ ← θ+(φ(xi, yi)−φ(xi, y
∗)).

Until all R(xi, yi, θ) > 0

Convergence
The perceptron algorithm converges in ‖θ‖2

max‖φ(xi,y)‖2
up-

dates.



Extension: Partial Labels
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Semi-supervised learning
We have both the training set X,Y and the test patterns
X ′ available at estimation time. Can we take advantage
of this additional information (aka “transduction”)?

Partially labeled data
Some observations may have uncertain labels, i.e., yi ∈
Yi ⊆ Y (such as yi ∈ {apple,oranges} but yi 6= pear).
Can we use the observations and also infer labels?

Clustering
Here we have no label information at all. The goal is to
find a plausible assignment of yi such that similar obser-
vations tend to share the same label.

Key Idea
We maximize the likelihood p(y|t,X) over t and y.



Extension: Distributed Inference
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Interacting Agents
We have a set of agents which only interact with their
neighbors.

Junction Tree
Can use distributed algorithm to find junction tree based
on local neighborhood structure. This assumes “nice”
structure in the neighborhood graph.

Local Message Passing
Use the Generalized Distributive Law, if junction tree is
thin enough. Messages are expectations of φc(xc).

Alternative
When no junction tree exists, just use loopy belief prop-
agation. And hope . . .



Summary
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Sufficient statistic leads to kernel via

k(x, x′) = 〈φ(x), φ(x′)〉

Maximum a posteriori is convex problem

Conditioning turns simple models into fancy nonpara-
metric estimators, such as

Normal distribution =⇒ regression
Multinomial distribution =⇒ multiclass classification
Structured statistic =⇒ CRF
Poisson distribution =⇒ spatial disease model
Latent category =⇒ clustering model



Shameless Plugs
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We are hiring. For details contact
Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions
PhD scholarships
Postdoctoral positions, Senior researchers
Long-term visitors (sabbaticals etc.)

More details on kernels
http://www.kernel-machines.org
http://www.learning-with-kernels.org
Schölkopf and Smola: Learning with Kernels

Machine Learning Summer School
http://canberra05.mlss.cc
MLSS’05 Canberra, Australia, 23/1-5/2/2005
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