Exponential Families in Feature Space

Alexander J. Smola Alex.Smola@anu.edu.au

National ICT Australia

Machine Learning Program

RSISE, The Australian National University

Thanks to Yasemin Altun, Stephane Canu, Thomas Hofmann, and Vishy Vishwanathan

Outline

Exponential Families

- Definition, Examples, Priors
- Inference

Conditionally Multinomial Models

- Gaussian Process Classification
- Multiclass models

Conditionally Normal Models

- Gaussian Process regression
- Heteroscedastic noise

Structured Estimation

- Conditional Random Fields
- Clifford Hammersley decompositions

The Exponential Family

Definition

A family of probability distributions which satisfy

$$p(x|\theta) = \exp(\langle \phi(x), \theta \rangle - g(\theta))$$

Details

- $g(\theta)$ is the log-partition function and it ensures that the distribution integrates out to 1.

Example: Normal Distribution

Engineer's favorite

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$
 where $x \in \mathbb{R} =: \mathfrak{X}$

Massaging the math

$$p(x) = \exp\left(\langle \underbrace{(x, x^2)}_{\phi(x)}, \theta \rangle - \underbrace{\frac{\mu^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)}_{g(\theta)}\right)$$

Using the substitution $\theta_2:=-\frac{1}{2}\sigma^{-2}$ and $\theta_1:=\mu\sigma^{-2}$ yields

$$g(\theta) = -\frac{1}{4}\theta_1^2\theta_2^{-1} + \frac{1}{2}\log 2\pi - \frac{1}{2}\log -2\theta_2$$

Example: Multinomial Distribution

Many discrete events

Assume that we n events, each which all may occur with a certain probability π_x .

Guessing the answer

Use the map $\phi: x \to e_x$, that is, e_x is an element of the canonical basis $(0, \dots, 0, 1, 0, \dots)$ as sufficient statistic.

$$\implies p(x) = \exp(\langle e_x, \theta \rangle - g(\theta))$$

where the normalization is

$$g(\theta) = \log \sum_{i=1}^{n} \exp(\theta_i)$$

The Log-Partition Function

Generating Cumulants

 $g(\theta)$ is the normalization for $p(x|\theta)$ Taking the derivative wrt. θ we can see that

$$\partial_{\theta}g(\theta) = \mathbf{E}_{x \sim p(x|\theta)} \left[\phi(x) \right]$$
$$\partial_{\theta}^{2}g(\theta) = \mathbf{Cov}_{x \sim p(x|\theta)} \left[\phi(x) \right]$$

Good News

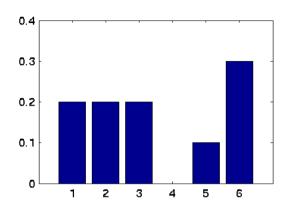
 $g(\theta)$ is a convex function

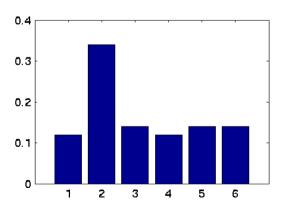
Very Good News

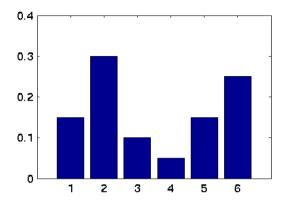
$$-\log p(X|\theta) = \sum_{i=1}^{m} -\langle \phi(x_i), \theta \rangle + mg(\theta)$$

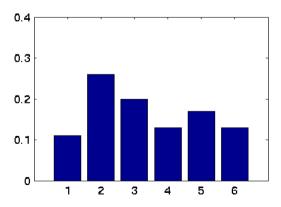
is convex. So Maximum Likelihood Estimation is a convex minimization problem.

Tossing a dice









Priors

Problems with Maximum Likelihood

With not enough data, parameter estimates will be bad.

Prior to the rescue

Often we know where the solution should be.

Normal Prior

Simply assume $\theta \sim \mathcal{N}(0, \sigma^2 \mathbf{1})$.

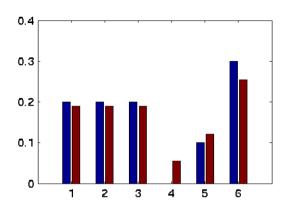
Posterior

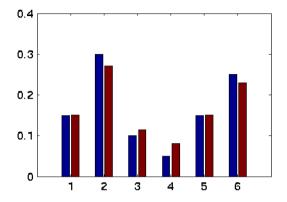
$$-\log p(\theta|X) = \sum_{i=1}^{m} \underbrace{-\langle \phi(x_i), \theta \rangle + g(\theta)}_{-\log p(x_i|\theta)} + \underbrace{\frac{1}{2\sigma^2} \|\theta\|^2 + \text{const.}}_{-\log p(\theta)}$$

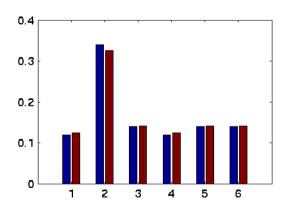
Good News

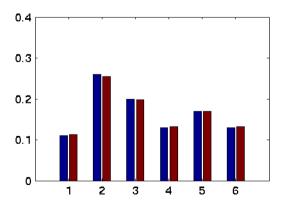
Minimizing $-\log p(\theta|X)$ is a convex optimization problem.

Tossing a dice with priors









The Gaussian Process Link

Normal Prior on θ . . .

$$\theta \sim \mathcal{N}(0, \sigma^2 \mathbf{1})$$

- ... yields Normal Prior on $t(x) = \langle \phi(x), \theta \rangle$
 - Distribution of projected Gaussian is Gaussian.
 - The mean vanishes

$$\mathbf{E}_{\theta}[t(x)] = \langle \phi(x), \mathbf{E}_{\theta}[\theta] \rangle = 0$$

The covariance yields

$$Cov[t(x), t(x')] = \mathbf{E}_{\theta} \left[\langle \phi(x), \theta \rangle \langle \theta, \phi(x') \rangle \right] = \underbrace{\sigma^{2} \langle \phi(x), \phi(x') \rangle}_{:=k(x,x')}$$

 \dots so we have a Gaussian Process on $x \dots$

with kernel
$$k(x, x') = \sigma^2 \langle \phi(x), \phi(x') \rangle$$
.

Conditional Distributions

Conditional Density

$$p(x|\theta) = \exp(\langle \phi(x), \theta \rangle - g(\theta))$$
$$p(y|x, \theta) = \exp(\langle \phi(x, y), \theta \rangle - g(\theta|x))$$

Maximum a Posteriori Estimation

$$-\log p(\theta|X) = \sum_{i=1}^{m} -\langle \phi(x_i), \theta \rangle + mg(\theta) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$
$$-\log p(\theta|X, Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Solving the Problem

- ullet Expand heta in a linear combination of $\phi(x_i,y_i)$.
- Solve convex problem in expansion coefficients.

General Strategy

Choose a suitable sufficient statistic $\phi(x,y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass estimator: we have a distribution over n classes which depends on x.
- Conditionally Gaussian leads to Gaussian Process regression: we have a normal distribution over a random variable which depends on the location.
 - **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yields spatial Poisson model.

Solve the optimization problem

This is typically convex.

The bottom line

Instead of choosing k(x, x') choose k((x, y), (x', y')).

Example: GP Classification

Sufficient Statistic

We pick $\phi(x,y) = \phi(x) \otimes e_y$, that is

$$k((x,y),(x',y')) = k(x,x')\delta_{yy'}$$
 where $y,y' \in \{1,\ldots,n\}$

Kernel Expansion

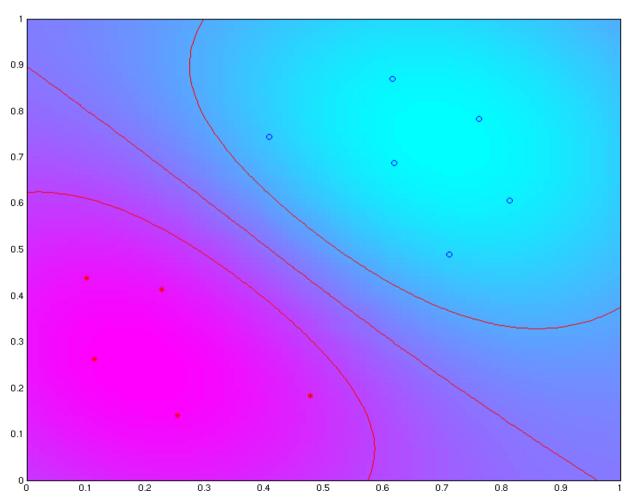
By the representer theorem we get that

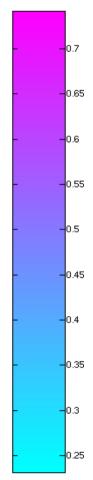
$$\theta = \sum_{i=1}^{m} \sum_{y} \alpha_{iy} \phi(x_i, y)$$

Optimization Problem

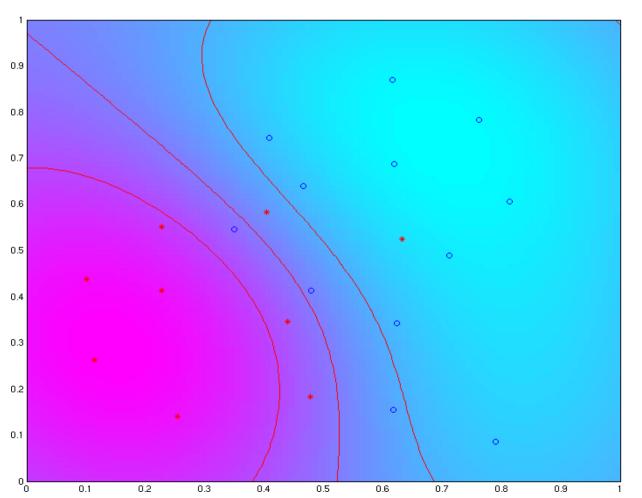
Big mess ... but convex.

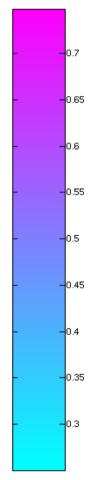
A Toy Example





Noisy Data





Example: GP Regression

Sufficient Statistic (Standard Model)

We pick $\phi(x,y)=(y\phi(x),y^2)$, that is

$$k((x,y),(x',y')) = k(x,x')yy' + y^2y'^2$$
 where $y,y' \in \mathbb{R}$

Traditionally the variance is fixed, that is $\theta_2 = \text{const.}$.

Sufficient Statistic (Fancy Model)

We pick $\phi(x,y)=(y\phi_1(x),y^2\phi_2(x))$, that is

$$k((x,y),(x',y')) = k_1(x,x')yy' + k_2(x,x')y^2y'^2$$
 where $y,y' \in \mathbb{R}$

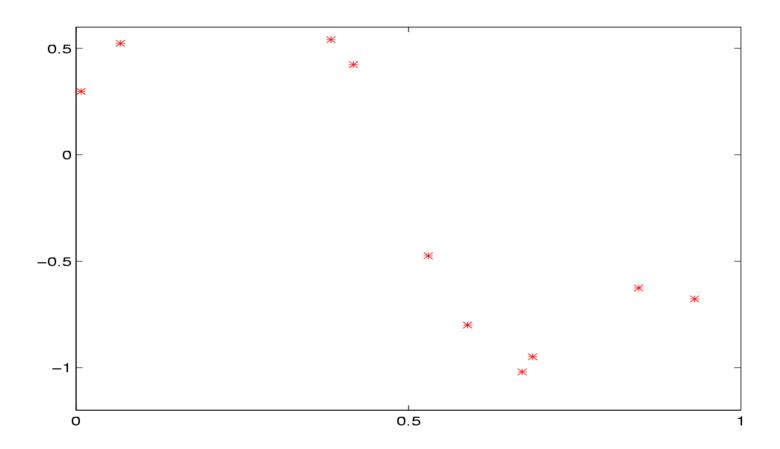
We estimate mean and variance simultaneously.

Kernel Expansion

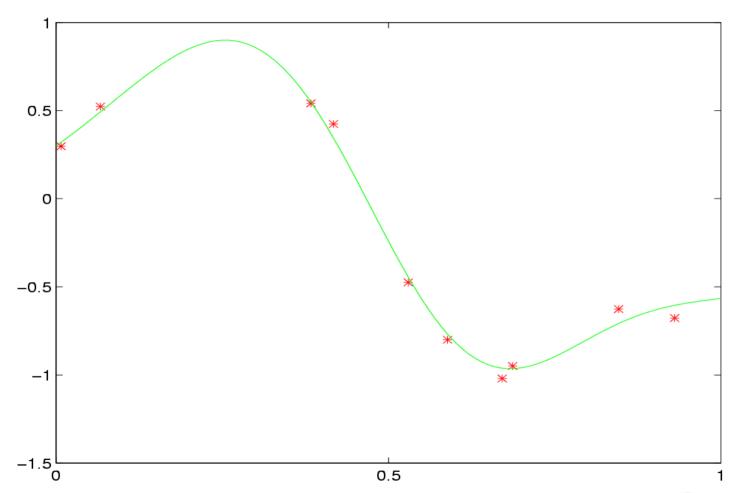
By the representer theorem (and more algebra) we get

$$\theta = \left(\sum_{i=1}^{m} \alpha_{i1}\phi_1(x_i), \sum_{i=1}^{m} \alpha_{i2}\phi_2(x_i)\right)$$

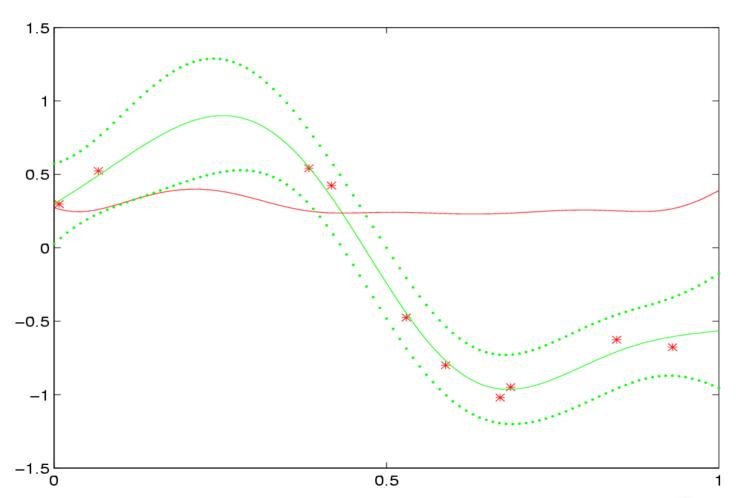
Training Data



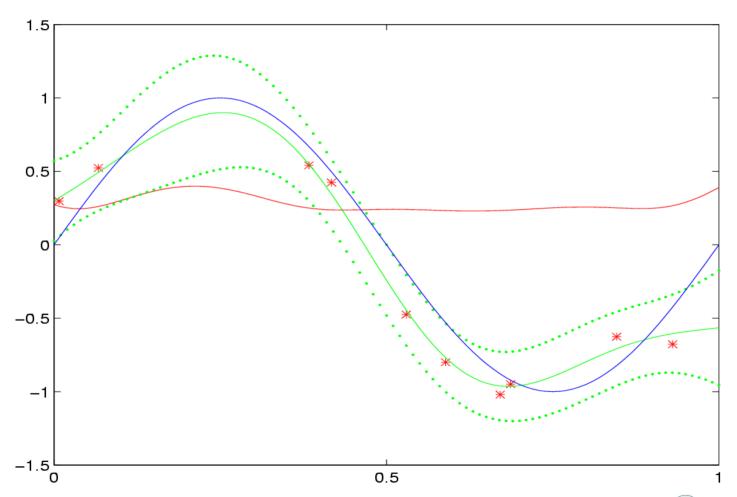
Mean $\vec{k}^{T}(x)(K + \sigma^{2}\mathbf{1})^{-1}y$



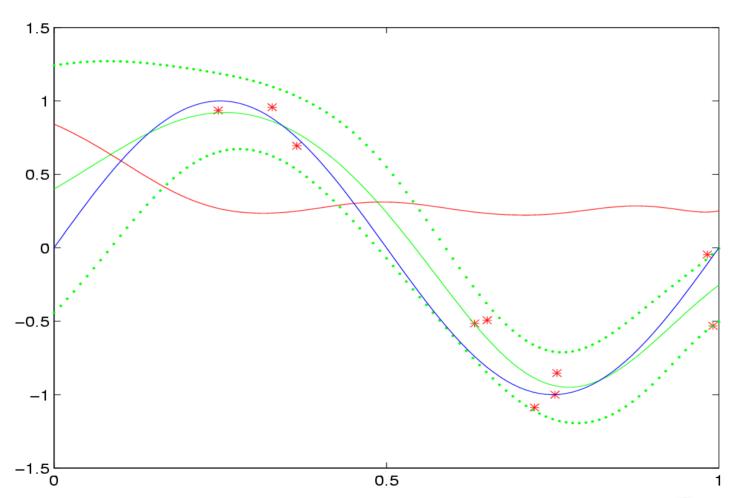
Variance $k(x,x) + \sigma^2 - \vec{k}^{\top}(x)(K + \sigma^2 \mathbf{1})^{-1}\vec{k}(x)$



Putting everything together ...



Another Example



Adaptive Variance Method

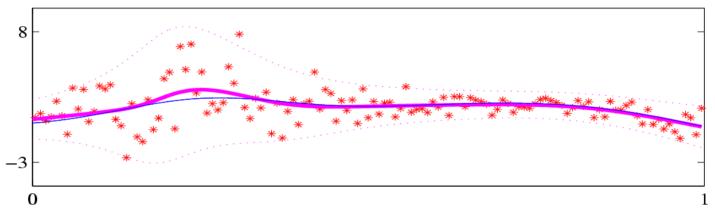
Optimization Problem:

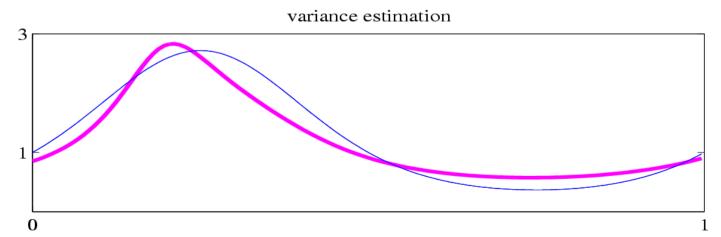
$$\begin{aligned} & \text{minimize } \sum_{i=1}^m \left[-\frac{1}{4} \left[\sum_{j=1}^m \alpha_{1j} k_1(x_i, x_j) \right]^\top \left[\sum_{j=1}^m \alpha_{2j} k_2(x_i, x_j) \right]^{-1} \left[\sum_{j=1}^m \alpha_{1j} k_1(x_i, x_j) \right] \\ & -\frac{1}{2} \log \det -2 \left[\sum_{j=1}^m \alpha_{2j} k_2(x_i, x_j) \right] - \sum_{j=1}^m \left[y_i^\top \alpha_{1j} k_1(x_i, x_j) + (y_j^\top \alpha_{2j} y_j) k_2(x_i, x_j) \right] \right] \\ & + \frac{1}{2\sigma^2} \sum_{i,j} \alpha_{1i}^\top \alpha_{1j} k_1(x_i, x_j) + \operatorname{tr} \left[\alpha_{2i} \alpha_{2j}^\top \right] k_2(x_i, x_j). \end{aligned}$$
 subject to $0 \succ \sum_{i=1}^m \alpha_{2i} k(x_i, x_j)$

Properties of the problem:

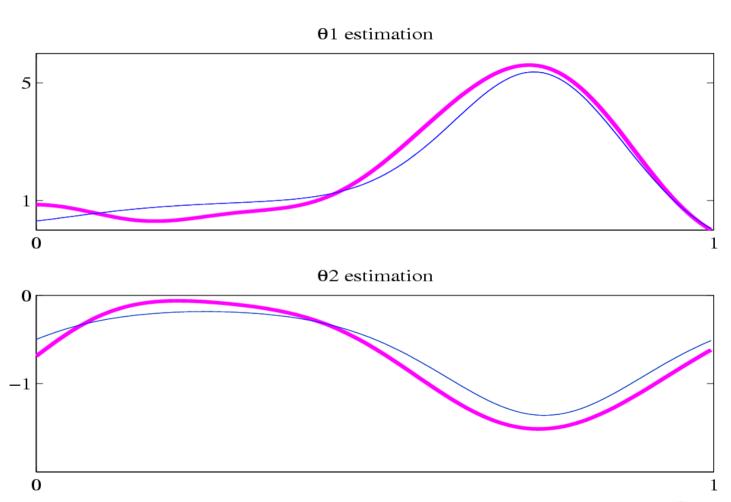
- The problem is convex
- The log-determinant from the normalization of the Gaussian acts as a barrrier function.
- We get a semidefinite program.

Heteroscedastic Regression



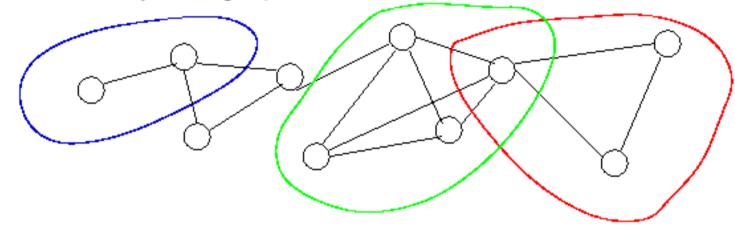


Natural Parameters



Structured Observations

Joint density and graphical models



Hammersley-Clifford Theorem

$$p(x) = \frac{1}{Z} \exp\left(\sum_{c \in \mathcal{C}} \psi_c(x_c)\right)$$

Decomposition of any p(x) into product of potential functions on maximal cliques.

Application to Exponential Families

Hammersley-Clifford Corollary

Combining the CH-Theorem and exponential families

$$p(x) = \frac{1}{Z} \exp \left(\sum_{c \in \mathcal{C}} \psi_c(x_c) \right)$$
$$p(x) = \exp \left(\langle \phi(x), \theta \rangle - g(\theta) \right)$$

we obtain a decomposition of $\phi(x)$ into

$$p(x) = \exp\left(\sum_{c \in \mathcal{C}} \langle \phi_c(x_c), \theta_c \rangle - g(\theta)\right)$$

Consequence for Kernels

$$k(x, x') = \sum_{c \in \mathcal{C}} k_c(x_c, x'_c)$$

Conditional Random Fields

Dependence structure between variables

Key Points

- ullet We can drop cliques in x: they do not affect $p(y|x,\theta)$.
- ullet Compute $g(\theta|x)$ via dynamic programming.
- ullet Assume stationarity of the model, that is θ_c does not depend on the position of the clique.
- ullet We only need a sufficient statistic $\phi_{xy}(x_t,y_t)$ and $\phi_{yy}(y_t,y_{t+1}).$

Computational Issues

Conditional Probabilities:

$$p(y|x,\theta) \propto \prod_{t=1}^{T} \underbrace{\exp\left(\langle \phi_{xy}(x_t, y_t), \theta_{xy} \rangle + \langle \phi_{yy}(y_t, y_{t+1}), \theta_{yy} \rangle\right)}_{M(y_t, y_{t+1})}$$

So we can compute $p(y_t|x,\theta)$ and $p(y_t,y_{t+1}|x,\theta)$ via dynamic programming.

Objective Function:

$$-\log p(\theta|X,Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} ||\theta||^2 + c$$
$$\partial_{\theta} - \log p(\theta|X,Y) = \sum_{i=1}^{m} -\phi(x_i, y_i) + \mathbf{E} \left[\phi(x_i, y_i)|x_i\right] + \frac{1}{\sigma^2} \theta$$

We only need $\mathbf{E}\left[\phi_{xy}(x_{it},y_{it})|x_i\right]$ and $\mathbf{E}\left[\phi_{yy}(y_{it},y_{i(t+1)})|x_i\right]$.

CRFs and HMMs

Conditional Random Field: maximize $p(y|x,\theta)$

Time

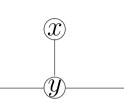
$$t-2$$

$$t-1$$

$$t-2$$
 $t-1$ t $t+1$ $t+2$

$$t+2$$

X



Hidden Markov Model: maximize $p(x, y|\theta)$

Time

$$t-2$$

$$t-1$$

$$t-2$$
 $t-1$ t $t+1$ $t+2$

$$t+2$$

X

Extension: Missing Variables

Basic Idea

We can integrate out over missing variables to obtain

$$\begin{aligned} p(y|x,\theta) &= \sum_{x_{\text{miss}}} p(y,x_{\text{miss}}|x,\theta) \\ &= \sum_{x_{\text{miss}}} \exp(\langle \phi(x,x_{\text{miss}},y),\theta \rangle - g(\theta|x)) \\ &= \exp(g(\theta|x,y) - g(\theta|x)) \end{aligned}$$

Big Problem

The optimization is not convex any more. But it still is a difference of two convex functions.

- Solve via Concave-Convex procedure (i.e. EM)
- Use fancy DC programming (to do)

Extension: SVM

Basic Idea

Instead of minimizing $-\log p(y|x,\theta)$ optimize a trimmed log likelihood ratio

$$R(x, y, \theta) := \log \frac{p(y|x, \theta)}{\max_{y' \neq y} p(y|x, \theta)}$$
$$= \langle \phi(x, y), \theta \rangle - \max_{y' \neq y} \langle \phi(x, y'), \theta \rangle$$

Minimizing $\min(\rho - R(x, y, \theta), 0)$ gives the large-margin criterion.

Technical Detail

For sequences finding the best and second-best sequence is done by dynamic programming. We get the Maximum-Margin-Markov Networks.

Extension: Perceptron

Basic Idea

For correct classification it is sufficient if the log-likelihood ratio $R(x,y,\theta)>0$.

Algorithm

Initialize $\theta = 0$ Repeat

If $R(x_i, y_i, \theta) < 0$ update $\theta \leftarrow \theta + (\phi(x_i, y_i) - \phi(x_i, y^*))$.

Until all $R(x_i, y_i, \theta) > 0$

Convergence

The perceptron algorithm converges in $\frac{\|\theta\|^2}{\max\|\phi(x_i,y)\|^2}$ updates.

Extension: Partial Labels

Semi-supervised learning

We have both the training set X, Y and the test patterns X' available at estimation time. Can we take advantage of this additional information (aka "transduction")?

Partially labeled data

Some observations may have uncertain labels, i.e., $y_i \in \mathcal{Y}_i \subseteq \mathcal{Y}$ (such as $y_i \in \{\text{apple}, \text{oranges}\}\$ but $y_i \neq \text{pear}$). Can we use the observations and also infer labels?

Clustering

Here we have no label information at all. The goal is to find a plausible assignment of y_i such that similar observations tend to share the same label.

Key Idea

We maximize the likelihood p(y|t, X) over t and y.

Extension: Distributed Inference

Interacting Agents

We have a set of agents which only interact with their neighbors.

Junction Tree

Can use distributed algorithm to find junction tree based on local neighborhood structure. This assumes "nice" structure in the neighborhood graph.

Local Message Passing

Use the Generalized Distributive Law, if junction tree is thin enough. Messages are expectations of $\phi_c(x_c)$.

Alternative

When no junction tree exists, just use loopy belief propagation. And hope . . .

Summary

Sufficient statistic leads to kernel via

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

- Maximum a posteriori is convex problem
- Conditioning turns simple models into fancy nonparametric estimators, such as
 - Normal distribution ⇒ regression
 - Multinomial distribution \(\iii\) multiclass classification
 - Structured statistic ⇒ CRF
 - Poisson distribution ⇒ spatial disease model
 - Latent category

 clustering model

Shameless Plugs

We are hiring. For details contact

Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions

- PhD scholarships
- Postdoctoral positions, Senior researchers
- Long-term visitors (sabbaticals etc.)

More details on kernels

- http://www.kernel-machines.org
- http://www.learning-with-kernels.org
 Schölkopf and Smola: Learning with Kernels

Machine Learning Summer School

- http://canberra05.mlss.cc
- MLSS'05 Canberra, Australia, 23/1-5/2/2005

