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1 Sequence Alignment

Consider two sequences of numbers 1,...,n;
and 1,...,ns. An alignment is an arrange-
ment of the two sequences into two stacked rows,
possibly including “spaces” (two opposite spaces
not allowed).

1 2 - 3 4 5 6 7 8 9 10
1 - 2 3 4 5 6

Table 1: An example of an alignment

The two sequences of numbers could be associ-
ated with the positions of characters in a DNA
or protein sequence.

Example
1,2, ... ,10 ~» AGTGCAGATA
1,2, ... 6 ~ ACTGGA

What is the “best” alignment?
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Edit distance

To assess which alignment is better, we need to
score the alignments (assign numbers to them).

A simple way is to measure the edit distance
between the aligned strings:

e Fach mismatch increases the score by 1.

e Fach insertion (space) increases the score

by 1.
Example
AGT-GCAGATA AG-TGCAGATA
ACTG--G-A-- A-CTG--GA--
Score: 8 Score: 6

Best possible score:5, e.g.,

AGTGCAGATA
ACTG--GA--
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Alignment graph, alignment vector

Each alignment can be characterised as a path
through a directed graph.

0 1 2 3 4 5 6 7 8 9 10
0 N
1 l

5

N
Figure 1: Alignment graph. Directed edges
from (i,7) to (« + 1,7), (: + 1,5 + 1) and

(i,7 +1). Each path starting at (0,0) and end-
ing at (ny,ns) corresponds to an alignment.

Moreover, we can characterise this path by an
alignment vector x = (x,...,xy) of Os, 1s
and 2s, where x; denotes the “direction” the
path takes at the ¢th traversed node: 0 = hori-
zontal, 1 = diagonal and 2 = vertical.
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Example

For example, the alignment in Table 1 corre-
sponds to the path in Figure 1 and the align-

ment vector of length £ = 11 in Table 2.

|1 0 2 1 1 0 0 1 1 0
1 2 - 3 4 5 6 7 8 9
1 - 2 3 4 - - 5 6 -

Table 2: Each alignment vector corresponds to

an alignment

Let S(ax) denote the score of the alignment cor-
responding to alignment vector . Let X be the

space of all possible alignment vectors.

We thus have translated the alignment problem
into the Combinatorial Optimisation Problem:

mingex S(x) .
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Remark 1

When using the edit distance, the score depends
in an “additive” way on the path. The optimal
score can efficiently be determined by Dynamic
Programming.

In practice more complicated scoring functions
are used. Still, DP works in many cases.

When the scoring function depends on the whole
path, then the COP is NP-complete. In partic-
ular, this holds for structure alignments, where
the alignment corresponds to the spatial posi-
tion of a protein residue (character).

Deterministic algorithms only give one possible
alignment and say nothing about the distribu-
tion of optimal alignments.

By using randomised optimisation technique, we
can address the last two issues.
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2 Sequence alignment via CE

We wish to “solve” (1) using a Model-based
Optimisation approach:

1. Simulate a sample in X in accordance
with a probabilistic model,

2. Update the model in light of the sam-
ple to produce a better scoring sam-
ple next time.

By iterating this procedure we expect to gener-
ate alignment vectors with a minimal or close
to minimal score.

We need to specify

1. how we generate the samples ( i.e., align-
ment vectors),

2. how we update the model.
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In our case:

1. Run a Markov chain on the alignment graph,
starting at (0,0) and ending at (nq,ns2).

2. Adjust the one-step transition probabili-
ties of the Markov chain via Cross-Entropy
maximisation.

Parameters:
The chain has one-step transition probabilities:

from to with prob.
(4,9) | (i+1,) r (2, 7)
(¢,9) | (6,5+1) d(i, )

(Note that here r stand for right and d for down.)

update the parameters of the Markov chain, i.e.,
the r(7,7) and d(i,j), at the end of each itera-
tion.
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Cross-Entropy Method

Gather the parameters in a vector v. Let f(-;v)
denote the density (pmf) of the alignment vec-
tor X under v. Let H(X;v) = Itg(x)<}-

Generate sequences vg, v1,... and vg,71,... as
follows: Start with some vgy. Let n = 0, and re-
peat the following until convergence is reached:

e Draw a random sample X(l),... ,X(N)
from f(-;v,).

e (Calculate the scores for each of these vec-
tors, and order them from smallest to biggest,
s1 < ...<spy. Let & be the integer part
of pN. Define vy, = s¢.

e Let v,.1 be that value of v which max-
imises
N

Y H(XWiy) log f(XP55) . (2)
k=1

Increase n by 1.
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Define:

X(i,7): the set of all  going through (i, 7).

X, (1,7): the set of x going (i,7) — (i + 1, ).
X,4(i,7) the set of ® going (i,7) — (4,7 + 1).

X/(iaj) — X(Zaj) - Xr(zaj) - Xd(zaj)

Then, we can write

n1 1n2 1

[T 1T (G I

1=0 35=0
+ d(Z,]) IXd(’i,j)(w)

b (= (i) — d(i.g) IX/@,j)(a:)) .

f(z;v)

It follows that the optimal updating parameters
are found by optimising

N’I’Ll 1n2 1

53 3 HXy)(10g(7(6.0)) L 6 (X)

k=1 =0 3=0
+10g(J(Z7]))IXd(Z,])(X)

~

+log(1 —7(4,75) — d(z, 7)) Ix'u,j)(X))

with respect to 7#(i, j) and d(i, §) for all i and j.
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We can do this by differentiating the previous
expression with respect to 7(z, j) and d(z, ) and
equating it to zero. This gives:

Srct HX™ ) Lx e 26,503

Zk:l H(X®); ) Iixe x( i)
(3)

r(i,5) =

and

Zk 1 (X k)vfy) I{X(k)GXd(%J)}
S H(x® )vV)I{Xéx(z,J)}

These estimators have an easy interpretation.

(i, j) (4)

For example, to obtain 7(z, j) we

e count the number of paths (out of N) go-
ing from (4, 7) to (4, j+1) that have a score
less than or equal to 7, and

e divide this number by the total number
of paths passing through (7, 7) that have
a score less than or equal to 7.
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3 Algorithm

1. Initialise all r(¢,5) = d(¢,5) = 1/3 on the
interior of the graph.

2. Generate N paths via the Markov process.

3. Calculate the scores for each of these
paths. Let v be the smallest score of the best
p x 100% alignments.

4. Update the parameters.

Update r(i,7) as
# paths from (7, 5) to (¢ + 1,7) with a score <~

# paths passing through (7, 7)
Update d(i, ) as

# paths from (4, 5) to (4,5 + 1) with a score <~

# paths passing through (7, j)

5. Repeat steps 2-5, until convergence has
been reached.
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Remark 2

e Note that the initial parameter vector, the stop-
ping criterion, the sample size N and the pro-
portion p have to be specified in advance.

e We can introduce a mixing factor in the updat-
ing procedure (ax the old parameter value +
(1 — a)x the new value.

e Instead of starting always at (0,0) we can let the
MC start anywhere on the left-upper border,
with probabilities p(i,j). These are updated
via the same argument as

# paths starting from (7, j) with a score <~

# paths starting from (i, j)
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Research Directions

. The alignments were generated via a spe-

cific Markov process, but there are many
different ways to do this. Which are the
better ones?

. For structure-to-structure alignment the

alignment problem is NP-complete. How
does the CE method compare to existing
heuristics?

. How easy is it implement the algorithm on

a parallel computer. How does it perform
on a parallel computing cluster?

. What is the relationship with other MBO

algorithms, and how can we use this to
further increase the efficiency?
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5 Consensus Sequences

Consider a set of k sequences S = {S1,...,Sk}
of lengths L4, ..., L; respectively. A consensus
sequence for the sequences of S is a sequence X
that minimises

k

> d(X,S;)

1=1

where d(X,.5;) is the edit distance between X
and Sz

Remark 3 A consensus sequence X can be
used to induce a multiple sequence alignment of
S by first forming pairwise alignments between

X and each S5;.
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Consensus Sequences by CE

Now let X be the set of sequences formed from
the letters A, C, G, T with lengths in the range
Lyin <L < L,,... We wish to find a consensus
sequence by model-based optimisation:

1. Simulate a sample in X in accordance
with a probabilistic model,

2. Update the model in light of the sam-
ple to produce a better scoring sam-
ple next time.

We need to specify

1. how we generate the samples ( i.e., candi-
date consensus sequences),

2. how we update the model.
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TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTCGCCGGAGATGAAAACCTTTTTT
TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCCGTCTTGTACGCCGGAGATGAAAACCTTTTT
TCCTTGTAGTAGAAACTAATACACCAGTCGTGTAAACCGGAGATGAAAACCTTTTT
TCCTTGTAGTAGAAACTAATACACCAGTCTTGTAAACCGGAGATGAAAACCTTTTT
TCCTTGTCGTATAAACTAATACACCAGTCTTGTACGCCGGAGATGAAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT
TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGGAGATGCAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCCTTTT
TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT
TCCCCGCAGTATAGACTAACACACCAGTCTTGTAAGCCGGAGATGAAAACCCTTTT
TCCTTGTGGTATAGACTAATACACCAGTCTTGCAAACCGAAGATGAGAACCTTTTT
TCCTTGTAGTACAAACTAACACACCAGTCTTGTAAACCGGAGATGAAAACCTTTCT
TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAACCGGAGATGAAAACCTTTTT

Table 3: An example of a consensus sequence
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