Sequence Alignment By Rare Event Simulation

MASCOS Symposium University of Queensland, 26 November 2004

Jonathan M. Keith and Dirk P. Kroese

Department of Mathematics The University of Queensland

Email: jonathan@maths.uq.edu.au http://www.maths.uq.edu.au/~kroese/

Outline

- 1. Sequence Alignment
- 2. Sequence Alignment via Rubinstein's Cross-Entropy Method
- 3. The Algorithm
- 4. Directions for Future Research
- 5. (Optional) Consensus Sequences

1 Sequence Alignment

Consider two sequences of numbers $1, \ldots, n_1$ and $1, \ldots, n_2$. An **alignment** is an arrangement of the two sequences into two stacked rows, possibly including "spaces" (two opposite spaces not allowed).

Table 1: An example of an alignment

The two sequences of numbers could be associated with the positions of characters in a DNA or protein sequence.

Example

$$1,2,\ldots,10 \rightsquigarrow \mathsf{AGTGCAGATA}$$

$$1,2,\ldots,6 \rightsquigarrow ACTGGA$$

What is the "best" alignment?

Edit distance

To assess which alignment is better, we need to score the alignments (assign numbers to them).

A simple way is to measure the **edit distance** between the aligned strings:

- Each **mismatch** increases the score by 1.
- Each insertion (space) increases the score by 1.

Example

AGT-GCAGATA
ACTG--G-A-Score: 8
AG-TGCAGATA
A-CTG--GA-Score: 6

Best possible score:5, e.g.,

AGTGCAGATA 1 2 3 4 5 6 7 8 9 10 ACTG--GA-- 1 2 3 4 - - 7 8 - -

Alignment graph, alignment vector

Each alignment can be characterised as a path through a directed graph.

Figure 1: Alignment graph. Directed edges from (i,j) to (i+1,j), (i+1,j+1) and (i,j+1). Each path starting at (0,0) and ending at (n_1,n_2) corresponds to an alignment.

Moreover, we can characterise this path by an **alignment vector** $\boldsymbol{x} = (x_1, \dots, x_\ell)$ of 0s, 1s and 2s, where x_i denotes the "direction" the path takes at the *i*th traversed node: 0 = horizontal, 1 = diagonal and 2 = vertical.

Example

For example, the alignment in Table 1 corresponds to the path in Figure 1 and the alignment vector of length $\ell = 11$ in Table 2.

Table 2: Each alignment vector corresponds to an alignment

Let S(x) denote the *score* of the alignment corresponding to alignment vector x. Let \mathcal{X} be the space of all possible alignment vectors.

We thus have translated the alignment problem into the Combinatorial Optimisation Problem:

$$\min_{\boldsymbol{x} \in \mathcal{X}} S(\boldsymbol{x}) . \tag{1}$$

Remark 1

- When using the edit distance, the score depends in an "additive" way on the path. The optimal score can efficiently be determined by Dynamic Programming.
- In practice more complicated scoring functions are used. Still, DP works in many cases.
- When the scoring function depends on the whole path, then the COP is NP-complete. In particular, this holds for structure alignments, where the alignment corresponds to the spatial position of a protein residue (character).
- Deterministic algorithms only give one possible alignment and say nothing about the *distribution* of optimal alignments.

By using *randomised* optimisation technique, we can address the last two issues.

2 Sequence alignment via CE

We wish to "solve" (1) using a **Model-based Optimisation** approach:

- 1. Simulate a sample in \mathcal{X} in accordance with a probabilistic model,
- 2. Update the model in light of the sample to produce a better scoring sample next time.

By iterating this procedure we expect to generate alignment vectors with a minimal or close to minimal score.

We need to specify

- 1. how we generate the samples (i.e., alignment vectors),
- 2. how we update the model.

In our case:

- 1. Run a Markov chain on the alignment graph, starting at (0,0) and ending at (n_1, n_2) .
- 2. Adjust the one-step transition probabilities of the Markov chain via Cross-Entropy maximisation.

Parameters:

The chain has one-step transition probabilities:

from	to	with prob.
$\overline{(i,j)}$	(i+1,j)	r(i,j)
(i,j)	(i, j+1)	d(i,j)
(i,j)	(i+1,j+1)	1 - r(i,j) - d(i,j)

(Note that here r stand for right and d for down.)

update the parameters of the Markov chain, i.e., the r(i,j) and d(i,j), at the end of each iteration.

Cross-Entropy Method

Gather the parameters in a vector \boldsymbol{v} . Let $f(\cdot; \boldsymbol{v})$ denote the density (pmf) of the alignment vector \boldsymbol{X} under \boldsymbol{v} . Let $H(\boldsymbol{X}; \gamma) = I_{\{S(\boldsymbol{X}) \leq \gamma\}}$.

Generate sequences v_0, v_1, \ldots and $\gamma_0, \gamma_1, \ldots$ as follows: Start with some v_0 . Let n = 0, and repeat the following until convergence is reached:

- Draw a random sample $\boldsymbol{X}^{(1)}, \ldots, \boldsymbol{X}^{(N)}$ from $f(\cdot; \boldsymbol{v}_n)$.
- Calculate the scores for each of these vectors, and order them from smallest to biggest, $s_1 \leq \ldots \leq s_N$. Let ξ be the integer part of ρN . Define $\gamma_n = s_{\xi}$.
- Let v_{n+1} be that value of \tilde{v} which maximises

$$\sum_{k=1}^{N} H(\boldsymbol{X}^{(k)}; \gamma_n) \log f(\boldsymbol{X}^{(k)}; \tilde{\boldsymbol{v}}) . \qquad (2)$$

Increase n by 1.

Define:

$$\mathcal{X}(i,j)$$
: the set of all \boldsymbol{x} going through (i,j) . $\mathcal{X}_r(i,j)$: the set of \boldsymbol{x} going $(i,j) \to (i+1,j)$. $\mathcal{X}_d(i,j)$ the set of \boldsymbol{x} going $(i,j) \to (i,j+1)$. $\mathcal{X}'(i,j) = \mathcal{X}(i,j) - \mathcal{X}_r(i,j) - \mathcal{X}_d(i,j)$.

Then, we can write

$$egin{array}{lll} f(m{x};m{v}) &=& \prod_{i=0}^{n_1-1} \prod_{j=0}^{n_2-1} igg(r(i,j) \, I_{\mathcal{X}_r(i,j)}(m{x}) \ &+& d(i,j) \, I_{\mathcal{X}_d(i,j)}(m{x}) \ &+& (1-r(i,j)-d(i,j)) \, I_{\mathcal{X}'(i,j)}(m{x}) igg) \; . \end{array}$$

It follows that the optimal updating parameters are found by optimising

$$\sum_{k=1}^{N} \sum_{i=0}^{n_1-1} \sum_{j=0}^{n_2-1} H(\boldsymbol{X}; \gamma) \left(\log(\tilde{r}(i, j)) I_{\mathcal{X}_r(i, j)}(\boldsymbol{X}) + \log(\tilde{d}(i, j)) I_{\mathcal{X}_d(i, j)}(\boldsymbol{X}) + \log(1 - \tilde{r}(i, j) - \tilde{d}(i, j)) I_{\mathcal{X}'(i, j)}(\boldsymbol{X}) \right)$$

with respect to $\tilde{r}(i,j)$ and $\tilde{d}(i,j)$ for all i and j.

We can do this by differentiating the previous expression with respect to $\tilde{r}(i,j)$ and $\tilde{d}(i,j)$ and equating it to zero. This gives:

$$\tilde{r}(i,j) = \frac{\sum_{k=1}^{N} H(\mathbf{X}^{(k)}; \gamma) I_{\{\mathbf{X}^{(k)} \in \mathcal{X}_{r}(i,j)\}}}{\sum_{k=1}^{N} H(\mathbf{X}^{(k)}; \gamma) I_{\{\mathbf{X} \in \mathcal{X}(i,j)\}}},$$
(3)

and

$$\tilde{d}(i,j) \frac{\sum_{k=1}^{N} H(\mathbf{X}^{(k)}; \gamma) I_{\{\mathbf{X}^{(k)} \in \mathcal{X}_{d}(i,j)\}}}{\sum_{k=1}^{N} H(\mathbf{X}^{(k)}; \gamma) I_{\{\mathbf{X} \in \mathcal{X}(i,j)\}}}.$$
(4)

These estimators have an easy interpretation.

For example, to obtain $\tilde{r}(i,j)$ we

- count the number of paths (out of N) going from (i, j) to (i, j+1) that have a score less than or equal to γ , and
- divide this number by the total number of paths passing through (i, j) that have a score less than or equal to γ .

3 Algorithm

- 1. Initialise all r(i,j) = d(i,j) = 1/3 on the interior of the graph.
- **2. Generate** N paths via the Markov process.
- 3. Calculate the scores for each of these paths. Let γ be the smallest score of the best $\rho \times 100\%$ alignments.
- 4. Update the parameters.

Update r(i,j) as

 $\frac{\text{\# paths from }(i,j) \text{ to } (i+1,j) \text{ with a score} \leq \gamma}{\text{\# paths passing through } (i,j)} \;.$

Update d(i,j) as

 $\frac{\text{\# paths from }(i,j) \text{ to } (i,j+1) \text{ with a score} \leq \gamma}{\text{\# paths passing through } (i,j)} \;.$

5. Repeat steps 2–5, until convergence has been reached.

Remark 2

- Note that the initial parameter vector, the stopping criterion, the sample size N and the proportion ρ have to be specified in advance.
- We can introduce a mixing factor in the updating procedure ($\alpha \times$ the old parameter value + $(1-\alpha)\times$ the new value.
- Instead of starting always at (0,0) we can let the MC start anywhere on the left-upper border, with probabilities p(i,j). These are updated via the same argument as

```
\frac{\text{\# paths starting from }(i,j) \text{ with a score} \leq \gamma}{\text{\# paths starting from }(i,j)} \;.
```

4 Research Directions

- 1. The alignments were generated via a specific Markov process, but there are **many different ways** to do this. Which are the better ones?
- 2. For structure-to-structure alignment the alignment problem is NP-complete. How does the CE method compare to existing heuristics?
- 3. How easy is it implement the algorithm on a parallel computer. How does it perform on a parallel computing cluster?
- 4. What is the relationship with other MBO algorithms, and how can we use this to further increase the efficiency?

5 Consensus Sequences

Consider a set of k sequences $S = \{S_1, \ldots, S_k\}$ of lengths L_1, \ldots, L_k respectively. A consensus sequence for the sequences of S is a sequence X that minimises

$$\sum_{i=1}^{k} d(X, S_i)$$

where $d(X, S_i)$ is the edit distance between X and S_i .

Remark 3 A consensus sequence X can be used to induce a multiple sequence alignment of S by first forming pairwise alignments between X and each S_i .

Consensus Sequences by CE

Now let \mathcal{X} be the set of sequences formed from the letters A, C, G, T with lengths in the range $L_{min} \leq L \leq L_{max}$. We wish to find a consensus sequence by model-based optimisation:

- 1. Simulate a sample in \mathcal{X} in accordance with a probabilistic model,
- 2. Update the model in light of the sample to produce a better scoring sample next time.

We need to specify

- 1. how we generate the samples (i.e., candidate consensus sequences),
- 2. how we update the model.

TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT TCCTTGTAGTATAAACTAATACACCAGTCTTGTCGCCGGAGATGAAAACCTTTTTT TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT TCCTTGTAGTATAAACTAATACACCCGTCTTGTACGCCGGAGATGAAAACCTTTTT TCCTTGTAGTAGAAACTAATACACCAGTCGTGTAAACCGGAGATGAAAACCTTTTT TCCTTGTAGTAGAAACTAATACACCAGTCTTGTAAACCGGAGATGAAAACCTTTTT TCCTTGTCGTATAAACTAATACACCAGTCTTGTACGCCGGAGATGAAAACCTTTTT TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGGAGATGCAAACCTTTTT TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCCTTTT TCCTTGTCGTATAAACTAATACACCAGTCTTGTAAACCGAAGATGAAAACCTTTTT TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAGCCGGAGATGAAAACCTTTTT TCCCCGCAGTATAGACTAACACACCAGTCTTGTAAGCCGGAGATGAAAACCCTTTT TCCTTGTGGTATAGACTAATACACCAGTCTTGCAAACCGAAGATGAGAACCTTTTT TCCTTGTAGTACAAACTAACACACCAGTCTTGTAAACCGGAGATGAAAACCTTTCT

TCCTTGTAGTATAAACTAATACACCAGTCTTGTAAACCGGAGATGAAAACCTTTTT

Table 3: An example of a consensus sequence