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| Habitat dynamics

“Classical” patch-occupancy metapopulation
models assume that habitat is a constant
component of the model.

e Many patchy habitats are not static:
e Habitat may be affected by environmental events;

e Species utilising successional habitat depend on
habitat dynamics;

e Some species appear to have a negative impact on

their local habitat.
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| Modelling dynamic habitat

We will explicitly model suitable and unsuitable
habitat in addition to the number of patches
occupied by a species.

Let:

e NV be the total number of habitat patches,

e X =[X Y|! be the state of the metapopulation, where
e X Is the number of suitable patches;

e Y Is the number of occupied patches.
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The model of the half-hour...

(Habitat dynamics driven by
catastrophes.)
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The model of the half-hour...

occupied habitat

| |
x=i-] X x+1

suitable habitat
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| | ocal events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

o (r,y) — (r+1,y) atrate r (N — x),

e Each occupied patch produces migrants at rate c,
which may colonise empty, suitable patches
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| | ocal events

Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

o (z,y) — (z+1,y) atrate r (N — z),
o (z,y) — (z,y+1)atrate cy (£ — &),

e Each local population goes extinct at rate e

B



Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

e (7,y) — (z+1,y) atrate r (N — x),
o (z,y) — (z,y+1)atrate cy (£ — &),
¢ (:I:,y) 7 (Qf,y — 1) at rate ey.
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Our paired metapopulation-habitat states will
make the following transitions due to local
population or habitat processes:

e (7,y) — (z+1,y) atrate r (N — x),
o (z,y) — (z,y+1)atrate cy (£ — &),
¢ (:I:,y) 7 (Qf,y — 1) at rate ey.

on S ={(z,y) | z,y eN,0 <y <z <N}
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| Wide-scale (catastrophic) events

Catastrophic jumps occur at a constant rate, -,
affecting each habitat patch independently.
Catastrophes are binomial In size...

(2,y) = (x = (i +J),y—j) atrate
)

e p IS the probability that any suitable patch Is

rendered unsuitable by a catastrophe. I



I The model again...
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| Finite State-space Processes

When N is finite, we can hope to evaluate
measures of interest directly.

e For example: expected extinction times (a.k.a. first
passage or ’hitting’ times) are finite with probability 1!

If NV is small, (e.g.) expected extinction times are

easy to calculate.
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| Difficulties as V 1

Direct computation of hitting times, etc.,
becomes Iinfeasible as N gets large:

#S = 2(N+1)(N +2).

e To make progress, we need good
approximations: e.g. stochastic differential
equations for the Imitas N — oc?

B



| Simulations

Simulations can inform our intuition about the
behaviour of a process, and suggest possible
approximations.

B



| Simulations
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| Simulations

(How does the process change as N increases?)
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| Simulations

As N Increases, the process begins to look more
deterministic.
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| Proportional scaling

In order to get a limit to the process, we need to
scale it. If X(¢) = [X(¢) Y (¢)]! is our unscaled
process, scale first by 1/N.

It Is possible to show that as N — oo,
(N~'Xy — Xy) = 0 (assuming
N-1X 5 (0) = Xn(0)).

e X is deterministic between catastrophes of fixed size,
and these catastrophes occur at the same time as

catastrophes in Xy. I
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This suggests X as an approximation to X . We
can easily write down the generator:

fo(l',y) — T(l o x)f:l:(zay)
+ |ey(z —y) — ey] fy(z,y)
+v[f(x —px,y —py) — f(z,9)].
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| Proportional scaling

This suggests X as an approximation to X . We
can easily write down the generator:

fo(l',y) — T(l o x)faf(may)
+ [ey(z —y) — ey] fy(z, )
+ v [flx —pzx,y —py) — f(z,y)].

(The generator tells us how the distribution of X

changes over time.)



| Hitting. times

There’s a lot we can do with this simple scaling.

A solution A(x,y) to the system of equations

th(l’,y) — _17 (SIZ’,y) € H C [Ov 1]27
hMz,y) =0, (2,y) ¢ H,

gives the expected time to depart the set H

(Gihman & Skorohod, 1972).



| Hitting. times

Example. Let H ={(r.y):0<g<y <z <1},
where ¢ Is a level of functional or quasi-extinction
of the species, Iin terms of the proportion of
occupied habitat patches.

1

H={(xy):q<ysx<1l}
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| Hitting. times

Example. Let H ={(r.y):0<g<y <z <1},
where ¢ Is a level of functional or quasi-extinction
of the species, Iin terms of the proportion of
occupied habitat patches.

Fortunately, it Is relatively easy to show that In
this case, a solution h(z,y) exists, but...

e The solution can be tough to evaluate (numerically)!

e The existence of a solution is not proven for other

(even closely related) models. I



| A central imit scaling

Density dependent processes (as X would be,
If not for the catastrophes) are well known to
converge to Gaussian diffusion processes when
appropriately scaled and normalised.

Let Zx(t) = VN(N"'Xn(t) — Xy(t)). Then itis
possible to show that

/AY //
X v X |
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| A central limit

What is Z? From the theory of density dependent
processes we might expect a diffusion process
with drift, plus catastrophes, and that is exactly
what we get.

It Is again possible to write down the generator...
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| Generator of Z

Generator G f(z1, z2, x1, x9) Of |Z7T XT}T has components:

e Drift components derived from

OF;

=1L,

CZy CZ1 — 2C29 — €

e Diffusion components Zr(1 — z) f,., and

%[022(21 — 22) -+ GZQ]fZQZQ.

e Catastrophe component obtained by
E[f(Zl -+ Ul, Lo + UQ, ) — f(Zl, ZQ, )}, where (Ul, UQ) 1S

bivariate normal. I
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| A central limit

What is Z? From the theory of density dependent
processes we might expect a diffusion process
with drift, plus catastrophes, and that is exactly
what we get.

It Is again possible to write down the generator...

...and we could approximate X by X + N~1/2Z
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| Future directions

e Extension of this approach to general density
dependent processes subject to a wider class of
catastrophes.

e |nvestigation of the accuracy of the approximations and
their properties (e.g. hitting times).

e When do features of small-NV processes remain in
large-N approximations?
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