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Random Processes

-

A random process is a collection of random variables
Indexed by some set I, taking values in some set S.

-

® [ isthe index set, usually time, e.g. Z™, R, R™.
# S isthe state space, e.qg. Z*, R", {1,2,...,n}, {a,b,c}.

We classify random processes according to both the index
set (discrete or continuous) and the state space (finite,
countable or uncountable/continuous).

o |
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Markov Processes

f.’ A random process is called a Markov Process if, T

conditional on the current state of the process, its future
IS Independent of its past.

o More formally, X (¢) iIs Markovian if has the following
property:

P(X(tn) = jn’X(tn—l) = -1, -+ X(tl) = ]1)
— P(X(tn) — ]n ’ X(tn—l) — jn—l)

for all finite sequences of times t; < ... < t, € I and of
states j51,...,9, € S.

o |
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Time Homogenelity

-

A Markov chain (X (¢)) Is said to be time-homogeneous if

-

P(X(s+1) =7]X(s) =1)
IS iIndependent of s. When this holds, putting s = 0 gives

P(X(s+1) =7 X(s) = 1) = P(X(t) = [ X(0) = 7).

o |
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Time Homogenelity

-

A Markov chain (X (¢)) Is said to be time-homogeneous if

-

P(X(s+1) =7]X(s) =1)
IS iIndependent of s. When this holds, putting s = 0 gives

P(X(s+1) =7 X(s) = 1) = P(X(t) = [ X(0) = 7).

Probabilities depend on elapsed time, not absolute time.

o |
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Discrete-time Markov chains

o N

#® Attime epochsn =1,2,3,...the process changes from
one state ; to another state j with probability p;;.

o |

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 — p. 6



Discrete-time Markov chains
L -

#® Attime epochsn =1,2,3,...the process changes from
one state ; to another state j with probability p;;.

#» We write the one-step transition matrix
P = (pij, i,j € 5).

o |

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 — p. 6



Discrete-time Markov chains

o N

#® Attime epochsn =1,2,3,...the process changes from
one state ; to another state j with probability p;;.

#» We write the one-step transition matrix
P = (pij, i,j € 5).

o Example: a frog hopping on 3 rocks. Put S = {1,2, 3}.

-

DO Col Ut
W 00— DO +—=
O RN

o |
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DTMC example

o N

o Example: A frog hopping on 3 rocks. Put S = {1, 2, 3}.

-

W= OO[—= D=
== DO

P =

WIS Col Lt

0

# We can gain some insight by drawing a picture:

N
/”k 1/8
Oe——=@x N
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DTMCs: n-step probabillities

o N

# We have P, which tells us what happens over one time
step; lets work out what happens over two time steps:

PP = P(Xy = j| Xo =)

=) P(X1=k|Xo=9)P(X2=j|X1 =k, Xo=1)
keS

= Zpikpkj-

o |
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DTMCs: n-step probabillities

o N

# We have P, which tells us what happens over one time
step; lets work out what happens over two time steps:

PP = P(Xy = j| Xo =)

=) P(X1=k|Xo=9)P(X2=j|X1 =k, Xo=1)
keS

= Zpikpkj-

® So P? = pp=p2
® Similarly, P®) = p2p = p3 and P = p,

o |
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DTMC: Arbitrary Initial distributions

o N

# We may wish to start the chain according to some initial
distribution 7(9),



DTMC: Arbitrary Initial distributions

o N

# We may wish to start the chain according to some initial
distribution 7(9),

# We can then calculate the state probabillities
m() = (wj(.”), j € S) of being in state j at time n as
follows:

7™ =N P(Xo = k) P(X, = j| Xo = k)
kesS

keS

o |
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DTMC: Arbitrary Initial distributions

o N

# We may wish to start the chain according to some initial
distribution 7(9),

# We can then calculate the state probabillities
m() = (wj(.”), j € S) of being in state j at time n as
follows:

7™ =N P(Xo = k) P(X, = j| Xo = k)
kesS

keS

® Or, in matrix notation, =™ = 70 pm: similarly we can
. show that 7("*1) = z(n) p, N
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Class structure

o N

#® We say that a state ¢ leads to 5 (written ¢ — j) If it Is
possible to get from 7 to 5 in some finite number of

jumps: pg-?’) > () for some n > 0.

o |
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Class structure

-

#® We say that a state ¢ leads to 5 (written ¢ — j) If it Is
possible to get from 7 to 5 in some finite number of

jumps: p,g?’) > () for some n > 0.

# We say that : communicates with j (written ¢ < j) if
i — jand j — 1.
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Class structure

-

#® We say that a state ¢ leads to 5 (written ¢ — j) If it Is
possible to get from 7 to 5 in some finite number of
jumps: p,g?’) > () for some n > 0.

# We say that : communicates with j (written ¢ < j) if
i — jand j — 1.

# The relation « partitions the state space into
communicating classes.

o |
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Class structure

We say that a state ¢ leads to j (written ¢ — j) if itis
possible to get from 7 to 5 in some finite number of

jumps: p,g?’) > () for some n > 0.

We say that : communicates with j (written i <~ j) If
i — jand j — 1.

The relation < partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.

|
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Class structure

We say that a state ¢ leads to j (written ¢ — j) if itis
possible to get from 7 to 5 in some finite number of
jumps: p,g?’) > () for some n > 0.

We say that : communicates with j (written i <~ j) If
i — jand j — 1.

The relation < partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.

These properties are easy to determine from a
transition probability graph.

|
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Classification of states

o N

# We call a state 7 recurrent or transient according as
P(X,, =1 for infinitely many n) is equal to one or zero.

o |
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Classification of states

f # We call a state 7 recurrent or transient according as T
P(X,, =1 for infinitely many n) is equal to one or zero.

s A recurrent state is a state to which the process
always returns.

s A transient state is a state which the process
eventually leaves for ever.

o |
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Classification of states

o N

# We call a state 7 recurrent or transient according as
P(X,, =1 for infinitely many n) is equal to one or zero.

s A recurrent state is a state to which the process
always returns.

s A transient state is a state which the process
eventually leaves for ever.

#® Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then
they are recurrent/transient together.

#» We therefore speak of recurrent or transient classes

o |
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Classification of states

o N

# We call a state 7 recurrent or transient according as
P(X,, =1 for infinitely many n) is equal to one or zero.

s A recurrent state is a state to which the process

always returns.
s A transient state is a state which the process
eventually leaves for ever.

#® Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then

they are recurrent/transient together.
#» We therefore speak of recurrent or transient classes

# We also assume throughout that no states are periodic.

o |
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DTMCs: Two examples
B -

® S irreducible:

()

o S={0}uUC, where C'is atransient class:

O BN
v

~

|
.
winocolon O
Wl ool DN~

@ (1000\
1/4 1/3 lOll
/B&\ P=l0511
N O O 2@y \o2lg/ N
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DTMCs: Quantities of interest
-

Quantities of interest include: T
# Hitting probabillities.

# EXxpected hitting times.

# Limiting (stationary) distributions.
o

Limiting conditional (quasistationary) distributions.

o |
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DTMCs: Hitting probabillities
-

Let o; be the probability of hitting state 1 starting in state .

-

® Clearly a; = 1; and for i # 1,

a; = P(hit 1 |start in ¢)

= Y P(X) =k|Xo=1) P(hit 1|startin k)
kesS

= Zpiko%
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DTMCs: Hitting probabillities
-

Let o; be the probability of hitting state 1 starting in state .
® Clearly a; = 1; and for i # 1,

-

a; = P(hit 1 |start in ¢)

= Y P(X) =k|Xo=1) P(hit 1|startin k)
kesS

= szk&k

#® Sometimes there may be more than one solution
a = (a4, 1 € 9) to this system of equations.

If this is the case, then the hitting probabilites are given
L by the minimal such solution.

|
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Example: Hitting Probabillities
- -

@ (1000\

1/4 1/3 l()ll

/’3&\ P = (2)511“1l

1/4 §§Z

O =@y \0 210/

Let «; be the probability of hitting state 3 starting in state .

Soas=1and o; =), pira:

g —
_ 1 1 1
a1 = 500 + 702 —+ 7063

5 1 1
Qg = g0 + gy + 703
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Example: Hitting Probabillities
- -

@ (1000\

1/4 1/3 l()ll

/’3&\ P = (2)511“1l

1/4 §§Z

O =@y \0 210/

Let «; be the probability of hitting state 3 starting in state .

(0N [0

9
oo | B ] 0
13 0.57

\1/) \ 1)
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DTMCs: Hitting probabillities Il
-

Let 5; be the probabillity of hitting state 0 before state WV,
starting in state .

-

® Clearly 5y =1and gy = 0.
® For0O<i:< N,

B; = P(hit 1 before n | startin i)

— ZIP(Xl = k| Xo = 1) P(hit 1 before n |start in k)
keS

= b

# Again, we take the minimal solution of this system of
equations.

o |
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Example: Hitting Probabillities Il
-

@ (1000\

1/4 1/3 l()ll

/’3&\ P = (2)511“1l

1/4 §§Z

O =@y \0 210/

Let 5; be the probabillity of hitting 0 before 3 starting in .
SoGy=1,083=0and 3 = ;. pif:

B = 3580+ 152+ 153
Bo = 201 + 202 + 13
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Example: Hitting Probabillities Il
- -

@ (1000\

1/4 1/3 l()ll

/’3&\ P = (2)511“1l

1/4 §§Z

O =@y \0 210/

Let 5; be the probabillity of hitting 0 before 3 starting in .

(1) (0

b 0.61

6 — 23
5 0.43

\1/) \ 1)

2
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DTMCs: Expected hitting times

L N

# Clearly m = 0; and for ¢ #£ 0,

et 7; be the expected time to hit state 1 starting in state .

7; = E(time to hit 1 |start in ¢)

=1+ ) P(X; =k|X=1) E(time to hit 1|start in k)
keS

=1+ me

# If there are multiple solutions, take the minimal one.

o |
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Example: Expected Hitting Times
B -

(s)
ﬂm&\ P =
@?@@1/8

Let 7; be the expected time to hit 2 starting in .

-

WD Co| Ut
W OOl DO —
O =N

Som=0and =1+ ), pipTk:

7‘1:1—|—%7'2—|—%7'3

7‘3:1—|—%7'1—|—%7'2
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Example: Expected Hitting Times

o N

(s)
ﬂm&\ P =
@?@@1/8

Let 7; be the expected time to hit 2 starting in .

-

WD Co| Ut
W OOl DO —
O RN

2.25
= o
2.5

O O

DOt



DTMCs: Hitting Probabilities and Times
B -

# Just systems of linear equations to be solved.
# In principle can be solved analytically when S is finite.

# When S is an infinite set, if P has some regular
structure (p;; same/similar for each ¢) the resulting

systems of difference equations can sometimes be
solved analytically.

® Otherwise we need numerical methods.

o |
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DTMCs: The Limiting Distribution

fAssume that the state space is irreducible, aperiodic and
recurrent.

-

# What happens to the state probabillities 7r§"> as n — oo?
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DTMCs: The Limiting Distribution

fAssume that the state space is irreducible, aperiodic and
recurrent.

-

# What happens to the state probabilities wj(.") as n — oo?

® We know that 7(*»*t1) = (n) p,

o |
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DTMCs: The Limiting Distribution

fAssume that the state space is irreducible, aperiodic and
recurrent.

-

# What happens to the state probabilities wj(.") as n — oo?

® We know that #(*+1) = z(n) p,
# So if there is a limiting distribution 7, it must satisfy

T=mnP (and ) . m=1).

(Such a distribution is called stationary.)

o |
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A

DTMCs: The Limiting Distribution

recurrent.

.

9

o

9

ssume that the state space is irreducible, aperiodic and

-

What happens to the state probabilities wj(.") as n — oo?

We know that 7(**1) = z(n) p,
So if there is a limiting distribution 7, it must satisfy

T=mnPF

(and ) . m=1).

(Such a distribution is called stationary.)

This limiting distribution does not depend on the initial

distribution.

|
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DTMCs: The Limiting Distribution

fAssume that the state space is irreducible, aperiodic and
recurrent.

-

# What happens to the state probabilities wj(.") as n — oo?

® We know that #(*+1) = z(n) p,
# So if there is a limiting distribution 7, it must satisfy

T=mnP (and ) . m=1).

(Such a distribution is called stationary.)

# This limiting distribution does not depend on the initial
distribution.

#® When the state space is infinite, it may happen that

L 7r§"> — 0 for all ;. J
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Example: The Limiting Distribution
- -

(o)
@#@@1@

Substituting P into 7 = 7w P gives

-

WIS Co| Ut
W OOl DO
O BN

5 2
T = gM2 + 373,

1 1 1
Ty = 571 + gT2 + 373,

1 1
T3 = 5T + T2,

which together with > . m; = 1 yields

_( 38 32 27\ ~
L r= (£ 22)~(039033028). |
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DTMCs: The Limiting Conditional Dist’n
- -

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} U O).

# The limiting distribution is (1,0,0,...).

v Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 — p. 23



DTMCs: The Limiting Conditional Dist’n
- -

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} U O).

# The limiting distribution is (1,0,0,...).
# Instead of looking at the limiting behaviour of

P(X, = j|Xo=i) =p.},

we need to look at
()

1—pjp

P(Xn:j‘Xn?éOaXO:i):

fori, 5 € C.

o |
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DTMCs: The Limiting Conditional Dist’n
- -

® |t turns out we need a solution m = (m;, i € C) of
mPo = rm,

for some r € (0,1).



DTMCs: The Limiting Conditional Dist’n
- -

® |t turns out we need a solution m = (m;, i € C) of
mPo = rm,

for some r € (0,1).
o If C is a finite set, there is a unique such r.
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DTMCs: The Limiting Conditional Dist’n

f # [t turns out we need a solution m = (m;, i € C') of T
mPo = rm,

for some r € (0,1).
o If C is a finite set, there is a unique such r.

# If C'Is infinite, there is r* € (0, 1) such that all r in the
interval [»*, 1) are admissible; and the solution
corresponding to » = r* Is the LCD.

o |

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 — p. 24



Example: Limiting Conditional Dist’n
- -

@ (1000\
1/4 1/3 1 1 1
/’3& P = gg%%
1/4 ggz
O =@y \0210)
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Example: Limiting Conditional Dist’n
- -

1/4 1/3
2/3 1/4 PC —
1/4

O =@y

5/8

h
wirn ool O
W OO x| =
O B
\—/
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Example: Limiting Conditional Dist’n

o N

/\\ i
5 11

2/3 1/4 Po = 90 1 1
i
33

QTN G = O

5/8

Solving mPo = rm, we get

ri~0.773 and  m~(0.45, 0.30, 0.24)



DTMCs: Summary

. N

#® n-step transition probabilities,

rom the one-step transition probabilities we can calculate:

hitting probabillities,
expected hitting times,

o
o
# limiting distributions, and
o

limiting conditional distributions.

o |
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Continuous Time

o N

# In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.

o |
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Continuous Time

o N

# In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.

# Continuous time is slightly more difficult to deal with as
there is no real equivalent to the one-step transition
matrix from which one can calculate all quantities of
Interest.

o |
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-

9

o

Continuous Time

-

In the real world, time is continuous — things do not
happen only at prescribed, equally spaced time points.

Continuous time is slightly more difficult to deal with as
there is no real equivalent to the one-step transition
matrix from which one can calculate all quantities of
Interest.

The study of continuous-time Markov chains is based
on the transition function.

|
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CTMCs: Transition Functions

f » |f we denote by p;;(¢) the probability of a process T
starting in state ¢ being in state ; after elapsed time ¢,

then we call P(t) = (pi;(t), ¢,5 € S, t > 0) the transition
function of that process.

o |
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CTMCs: Transition Functions

f » |f we denote by p;;(¢) the probability of a process T
starting in state ¢ being in state ; after elapsed time ¢,
then we call P(t) = (pi;(t), ¢,5 € S, t > 0) the transition
function of that process.

# P(t) is difficult/impossible to write down in all but the
simplest of situations.

o |
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CTMCs: Transition Functions
L -

» |f we denote by p;;(¢) the probability of a process

starting in state ¢ being in state ; after elapsed time ¢,
then we call P(t) = (pi;(t), ¢,5 € S, t > 0) the transition
function of that process.

# P(t) is difficult/impossible to write down in all but the
simplest of situations.

® However all is not lost: we can show that there exist
quantities ¢;;, 7,7 € .S satisfying

10 i+

Y,

_ +y _— J tl0
¢ij = pi;(07) = 1 — pii(¢)
lim 1= 7.
t10 t

o |
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CTMCs: The g-matrix
- -

o We call the matrix Q = (¢i;, i,j € S) the g-matrix of the
process and can interpret it as follows:

s Fori+#j, qi; € [0,00) Is the instantaneous rate the
process moves from state ; to state j, and

s q; = —q;; € |0, 0] Is the rate at which the process
leaves state ;.

s We also have } ., qij < g

o |
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CTMCs: The g-matrix
- -

o We call the matrix Q = (¢i;, i,j € S) the g-matrix of the
process and can interpret it as follows:

s Fori+#j, qi; € [0,00) Is the instantaneous rate the
process moves from state ; to state j, and

s q; = —q;; € |0, 0] Is the rate at which the process
leaves state ;.

s We also have } ., qij < g

® When we formulate a model, it is ¢) that we can write
down; so the question arises, can we recover P(-) from

Q = P'(0)?

o |
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CTMCs: The Kolmogorov DES

f # If we are given a conservative g-matrix ), then a T
Q-function P(t) must satisfy the backward equations

P'(t) = QP(t), t >0,

and may or may not satisfy the forward (or master)
equations
P'(t) = P(t)Q, t >0,

with the initial condition P(0) = I.

o |
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CTMCs: The Kolmogorov DES

f # If we are given a conservative g-matrix ), then a T
Q-function P(t) must satisfy the backward equations

P'(t) = QP(t), t >0,

and may or may not satisfy the forward (or master)
equations

P'(t) = P(t)Q,  t>0,
with the initial condition P(0) = I.

# There Is always one such @Q-function, but there may
also be infinitely many such functions — so @ does not
necessarily describe the whole process.

o |
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CTMCs: Interpreting the g-matrix
-

Suppose X (0) = i:

-

# The holding time H; in state ¢ IS exponentially
distributed with parameter ¢;, 1.e.

P(H; <t)=1-—¢e % t > 0.
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CTMCs: Interpreting the g-matrix
fSuppose X(0) =

# The holding time H; in state ¢ IS exponentially
distributed with parameter ¢;, 1.e.

P(H; <t)=1-—¢e % t > 0.

# After this time has elapsed, the process jumps to state j
with probability ¢;;/q;.
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CTMCs: Interpreting the g-matrix
fSuppose X(0) = T

# The holding time H; in state ¢ IS exponentially
distributed with parameter ¢;, 1.e.

P(H; <t)=1-—¢e % t > 0.

# After this time has elapsed, the process jumps to state j
with probability ¢;;/q;.

® Repeat...

o |
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CTMCs: Interpreting the g-matrix
fSuppose X(0) = T

# The holding time H; in state ¢ IS exponentially
distributed with parameter ¢;, 1.e.

P(H;<t)=1—¢"%  t>0.
# After this time has elapsed, the process jumps to state j
with probability ¢;;/q;.
® Repeat...

# Somewhat surprisingly, this recipe does not always
describe the whole process.

o |
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CTMCs: An Explosive Process
-

Consider a process described by the g-matrix

-

(N ifj=id+1,
gij = { —XN\ if 7 =1,
0 otherwise.

\

® Assume \; >0, VieSs.
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CTMCs: An Explosive Process
-

Consider a process described by the g-matrix

-

(N ifj=id+1,
qGj = —Niif j =1,
0 otherwise.

\

® Assume \; >0, VieSs.
#® Suppose we start in state 7.
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CTMCs: An Explosive Process
-

Consider a process described by the g-matrix

-

(N ifj=id+1,
qGj = —Niif j =1,
0 otherwise.

\

® Assume \; >0, VieSs.
® Suppose we start in state .
o Stay for time H;, ~ exp(\;,) then move to state iy + 1,
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CTMCs: An Explosive Process
-

Consider a process described by the g-matrix

-

(N ifj=id+1,
qGj = —Niif j =1,
0 otherwise.

\

Assume \; >0, VieSs.
Suppose we start in state .
Stay for time H;, ~ exp(\;,) then move to state iy + 1,

© o o 0

Stay for time H;, 11 ~ exp(Ai,+1) then move to ig + 2, ...

o |
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-

Consider a process described by the g-matrix

© o o o o

CTMCs: An Explosive Process
-

(N ifj=id+1,
gij = { —XN\ if 7 =1,
0 otherwise.

\

Assume \; >0, VieS.

Suppose we start in state ij.

Stay for time H;, ~ exp(\;,) then move to state iy + 1,
Stay for time H;, 11 ~ exp(Ai,+1) then move to ig + 2, ...

Define 7, = S"°*"~! [, to be the time of the nth jump.

1=10

We would expect T := lim,, .o 15, = 0.

|
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CTMCs: An Explosive Process
B | o

Lemma: Suppose {S,,, n > 1} Is a sequence of
iIndependent exponential rv’s with respective rates «;, and

put S=5",5
Then either S = oo a.s. or S < o a.s., according as > .-, a,z

dlverges or converges.

o We identify S,, with the holding times H;,.,, and S with
1.

o |
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CTMCs: An Explosive Process
B | o

Lemma: Suppose {S,,, n > 1} Is a sequence of
iIndependent exponential rv’s with respective rates «;, and

put S=5",5
Then either S = oo a.s. or S < o a.s., according as > .-, a,z

dlverges or converges.

o We identify S,, with the holding times H;,.,, and S with
1.

o |[f, for example, \; = 2, we have

L SO P(T < x0) = 1. J
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CTMCs: Reuter’s Unigueness Condition

o N

# For there to be no explosion possible, we need the
backward equations to have a unique solution.
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CTMCs: Reuter’s Unigueness Condition
- -

# For there to be no explosion possible, we need the
backward equations to have a unique solution.

# When () Is conservative, this is equivalent to

Zqz‘]w]‘ —vx; 1€S5
JjeSs

having no bounded non-negative solution (z;, < € 5)
except the trivial solution x; = 0 for some (and then all)
v > 0.

o |
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CTMCs: Ruling Out Explosion

o .

# Analysis of a continuous-time Markov process Is greatly
simplified if it is regular, that is non-explosive.
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CTMCs: Ruling Out Explosion

o .

# Analysis of a continuous-time Markov process Is greatly
simplified if it is regular, that is non-explosive.

#® A process is regular if
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CTMCs: Ruling Out Explosion

o .

# Analysis of a continuous-time Markov process Is greatly
simplified if it is regular, that is non-explosive.

#® A process is regular if
» The state space Is finite.

o |
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CTMCs: Ruling Out Explosion

o .

# Analysis of a continuous-time Markov process Is greatly
simplified if it is regular, that is non-explosive.

#® A process is regular if
» The state space Is finite.
s The g-matrix is bounded, that is sup, ¢; < oc.

o |
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CTMCs: Ruling Out Explosion

o .

# Analysis of a continuous-time Markov process Is greatly
simplified if it is regular, that is non-explosive.
#® A process is regular if
» The state space Is finite.
s The g-matrix is bounded, that is sup, ¢; < oc.
s Xy =1 andilis recurrent.

o |
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-

o

o

CTMCs: Ruling Out Explosion
=

Analysis of a continuous-time Markov process is greatly
simplified if it is regular, that is non-explosive.

A process is regular if

» The state space Is finite.

s The g-matrix is bounded, that is sup, ¢; < oc.

s Xy =1 andilis recurrent.

Reuter’s condition simplifies considerably for a

birth-death process, a process where from state ¢, the
only possible transitions areto: — 1 or i + 1.

We now assume that the process we are dealing with is
non-explosive, so () Is enough to completely specify the
process.
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CTMCs: The Birth-Death Process

N N

A Birth-Death Process on {0,1,2,...} isa CTMC with
g-matrix of the form

;

A it 9 =141

Lb; ifj=1—1,1>1
Gij = —(Ni+p)if j=i>1

— Ao it j=¢=0

\O otherwise

where \;, u; >0, Vies.
_ M A
We also set m; = 1, and 7; = e

o |
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CTMCs: Quantities of interest

A N

# Hitting probabillities.

gain we look at

# EXxpected hitting times.
# Limiting (stationary) distributions.
# Limiting conditional (quasistationary) distributions.

o |
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CTMCs: Hitting Probabillities
-

Using the same reasoning as for discrete-time processes,
we can show that the hitting probabilites «; of a state x,
starting in state ¢, are given by the minimal non-negative
solution to the system «,, = 1 and, for i # x,

Z qz-jozj = 0.

jes

-

o |
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CTMCs: Hitting Probabillities
-

Using the same reasoning as for discrete-time processes,
we can show that the hitting probabilites «; of a state x,
starting in state ¢, are given by the minimal non-negative
solution to the system «,, = 1 and, for i # x,

Z qz-jcvj = 0.

JjeS

-

For a BDP, we can show that the probability of hitting 0 is
one if and only If

o |
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CTMCs: Hitting times
-

Again, we can use an argument similar to that for
discrete-time processes to show that the expected hitting
times r; of state x, starting in ¢, are given by the minimal
non-negative solution of the system 7, = 0 and, for i # x,

ZqijTj = —1.

JjeSsS

-

o |
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CTMCs: Hitting times
-

Again, we can use an argument similar to that for
discrete-time processes to show that the expected hitting
times r; of state x, starting in ¢, are given by the minimal
non-negative solution of the system 7, = 0 and, for i # x,

ZqijTj = —1.

JjeSsS

-

For a BDP, the expected time to hit zero, starting in state i IS
given by

o |
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CTMCs: Limiting Behaviour
-

fAs with discrete-time chains, the class structure is
Important in determining what tools are useful for analysing
the long term behaviour of the process.

o |
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CTMCs: Limiting Behaviour
-

fAs with discrete-time chains, the class structure is
Important in determining what tools are useful for analysing
the long term behaviour of the process.

# If the state space is irreducible and positive recurrent,
the limiting distribution is the most useful device.

o |
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CTMCs: Limiting Behaviour
-

fAs with discrete-time chains, the class structure is
Important in determining what tools are useful for analysing
the long term behaviour of the process.

# If the state space is irreducible and positive recurrent,
the limiting distribution is the most useful device.

o If the state space consists of an absorbing state and a
transient class, the limiting conditional distribution is of
most use.

o |
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A

.

CTMCs: Limiting Distributions

ssume that the state space S is irreducible and recurrent. T

Then there is a unique (up to constant multiples) solution
m = (m;, © € .S) such that

m) =0,

where 0 Is a vector of zeros. If ) . m; < oo, then 7 Is can be

normalised to give a probability distribution which is the

limiting distribution. (If = is not summable then there is no
proper limiting distribution.)

|
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CTMCs: Limiting Distributions

fAssume that the state space S is irreducible and recurrent. T

Then there is a unique (up to constant multiples) solution
m = (m;, © € .S) such that

m) =0,

where 0 Is a vector of zeros. If ) . m; < oo, then 7 Is can be

normalised to give a probability distribution which is the

limiting distribution. (If = is not summable then there is no
proper limiting distribution.)

For the BDP, the potential coefficients m; = 1, m; = A;j;gAu—l
are the essentially unique solution of 7() = o.

o |
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CTMCs: Limiting Conditional Dist'ns
-

If the S = {0} U C" and the absorbing state zero is reached
with probability one, the limiting conditional distribution is
given by m = (m;, © € C) such that

-

mQc = —vm,

for some v > 0.

o |
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CTMCs: Limiting Conditional Dist'ns
-

If the S = {0} U C" and the absorbing state zero is reached
with probability one, the limiting conditional distribution is
given by m = (m;, © € C) such that

-

mQ)c = —vm,
for some v > 0.

When C' is a finite set then there is a unique such v.

o |
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CTMCs: Summary

o N

# Countable state Markov chains are stochastic modelling
tools which have been analysed extensively.

# Where closed form expressions are not available there
are accurate numerical methods for approximating
guantities of interest.

# They have found application in fields as diverse as
ecology, physical chemistry and telecommunications
systems modelling.

o |
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