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Abstract: For metapopulation management problems with small stateespit is typically possible to model
the problem as a Markov decision process (MDP), and find amaptontrol policy using stochastic dynamic
programming (SDP). SDP is an iterative procedure that seegptimise a value function at each timestep by
trying each of the actions defined in the MDP.

Although SDP gives the optimal solution to conservation aggment questions in a stochastic world, its
applicability has always been limited by the so-called euwtdimensionality. The curse of dimensionality
is the problem that adding new state variables inevitaldults in much larger (often exponential) increases
in the size of the state space, which can make solving sujgdigfismall problems impossible. A large state
space makes optimal SDP solutions computationally experisicompute because optimal SDP techniques
require the value function to be updated for the entire stp#ee for every time step. The high computational
requirements of large SDP problems means that only simglelption management problems can be analysed.

In this paper we present an application of the on-line speaiegpling algorithm proposed by Kearns, Mansour
& Ng (2002), which can be used to approximate the optimaltgmiuof a MDP for a given starting state.
The algorithm is particularly attractive for problems wldrge state spaces as it has a running time that is
independent of the size of the state space of the problem.

We apply the algorithm of Kearns et al. (2002) to a hypotltiish metapopulation where we define the
management objective to be to maximise the number of ocdym¢ches during the management horizon.
Our model has multiple management options to combat theatthref water abstraction and waterhole
sedimentation. We compare the performance of the optinhatigo to the results of the on-line sparse sampling
algorithm for a simple 3-waterhole case. We find that the @gpration algorithm out-performs a random
strategy for almost all combinations tested. In this casepn-line algorithm gives the best approximation to
the optimal SDP solution with three look-ahead steps anttyus samples per approximation step. For this
simple problem there does not appear to be much benefit iednirg the number of samples, although deeper
simulation is required to confirm this. If only limited contjng power is available, these results suggest that
the best approximation will be obtained using three lookaahsteps and two samples per approximation step.

General results for management are hard to obtain from ki@erétical model, as the results are highly
dependent on the arbitrary parameters used to generatesihiést However the results obtained suggest that
the continued presence of water in the system is criticdiecstrvival of the metapopulation, and that for this
parameter set, prevention of water abstraction is more litapbthan catchment management for this system.
Further work needs to be done to properly parameterize tbideirbefore general results can be drawn with
more confidence.

This paper introduces a new algorithm to conservation mamagt that provides a way to avoid the effects
of the curse of dimensionality. The work has the potentialtow us to approximate solutions to much more
complex metapopulation management problems in the future.
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management; On-line sparse sampling algorithm
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1. INTRODUCTION

Markov Decision Processes. Many conservation problems can be thought of as sequentigiing to
make ‘good’ decisions when the dynamics of the system ahastic, where ‘good’ refers to maximising
or minimising a specified conservation objective (Possamgtret al. 2001, Shea et al. 1998). Thinking
of conservation problems this way makes them amenable wtiolusing Markov Decision Processes
(MDPs). A MDP provides a formal framework for making sequerdecisions under uncertainty and has five
components: i) the state space (we assume that this is fimiteliacrete), ii) the set of management actions
that can influence the system, iii) the time frame of intere$tthe transition probability matrix, and v) the
immediate costs (or rewards) associated with being in angst@te and taking a given action. The solution to a
MDP is an optimal policy. The policy associates each statk an action so that if the policy is followed, the
objective will be achieved with maximum probability. For raan depth discussion on using Markov decision
theory in ecology and conservation management, see Man@dik (2000), or Possingham et al. (2001).

Generating the optimal solution: stochastic dynamic progamming.

For Markov Decision Processes (MDP) with small state spaiteés possible to use stochastic dynamic
programming (SDP) (Puterman 1994) to compute an optimatrabsolution. SDP is an iterative procedure
that optimises a value function at each timestep by tryirghesd the actions: defined in the MDP. The set
of all possible actions for a stateis defined asA(s). The value function represents the global value of being
in a state relative to the objective. The optimal value fiowcl *(s) for a states € S at any timet can be
computed iteratively using the infinite-time version of Ben’s optimality equation (Puterman 1994) and the
estimate of the value function from the previous time step:

Vi(s) = min [ri(s,a) +7 > P(s/ls.a) - Via ()] (1)
) s’eS

wherer, (s, a) is the local cost paid for being in stateand taking actioru at timet, ~ is a discount factor
(0 < v < 1) that discounts the importance of future states becauseattgeuncertain, and(s’|s, a) is the
probability of transition from state to states’ after taking actiorm:. The discount factor can be thought of as
how much we value future rewards compared to immediate lien&ystems with higher values gfplace a
greater value on future rewards, whereas systems with leaees ofy place a greater emphasis on obtaining
immediate rewards. For discount factors less than unity (1), equatior Il converges to the optimal value
functionV*(s).

Once the value function has converged, the optimal potitis) for states is the action that minimises the
value function:

7 (s) = argmin[r(s,a) + Z P(s'|s,a) - V*(s"))]. 2
a€A(s) s'es

The applicability of SDP is limited by the curse of dimensbty, which is the problem that adding new state
variables results in exponential increases in the sizeestate space. This ‘curse’ makes computing even a
simple optimal SDP solution computationally expensiverfaany realistic models. The reason that the SDP
algorithm is time-consuming for large state spaces is thtimal SDP techniques require the value function to
be updated for the entire state space for every time stepreudting high costs mean that only very simple
models can be analysed.

Dealing with large state spaces : an on-line sparse sampliraggorithm.

When the state space for a conservation management problangés true optimal SDP solutions become
simply too difficult to calculate. In this section we deseriéan on-line sparse sampling algorithm proposed
by Kearns et al. (2002), which can be used to approximatetimal solution for a given starting state. The
term ‘on-line’ means that the policy is evaluated one step titne based on the current state of the system.
The algorithm is particularly attractive for problems wldrge state spaces as it has a running time that is
independent of the size of the state space of the problem.

The Kearns et al. (2002) algorithm requires both an inpuéstad a generative model which is able to predict
transition probabilities from the current state (for thégopr the generative model is equivalent to the transition
probability matrix because the underlying dynamic is amisstime Markov chain). The algorithm calculates
a near optimal policy for the input state in the next timestsing the generative model to sample states in the
vicinity of the starting state. The algorithm “looks aheadtiefined number of time steps and carries out a
smaller sub-MDP calculation on the states that are likelygtoisited in the future. Because the algorithm only
looks at states in the neighbourhood of the current staggyalicy obtained will only approximate the optimal



solution for the current state. This means we sacrifice tingpcationally expensive global optimal solution
for a faster local approximation that can be computed forsingd state space.

In practice, the Kearns et al. (2002) algorithm means trgivery actionC' times from each state For each
new states’, the generative model is used to again try each aafidimes. The recursion is repeated for a
defined number /) of look-ahead steps. The process is best visualised a® alimgram of depti{ and
branch widthC' (Figure[1). The total size of the treed¥|A|C)*.

Using the states generated by the model, the
value function for the current state can be updated Generate

C states

according to (Bret & Garcia 2004):

Generate
C states

V(s)ifh =0

Mingea(s)Qn (s, a) otherwise

where Qp(s,a) =

[’I“(S, (L) + % Zs’GS(s,a,C) VCahfl(s/)L 2
3)

whereh € {0,1,..,H} is the iteration index and _
S(s,a, C) is the set of states that are sampled fronfrigure 1. The Kearns et al. sparse look-ahead tree for
initial states after carrying out action. Equatior[ 3 an initial states,, with C=3 samples and two actions
is an iterative equation where each step is denoted a2 (modified from Reret & Garcia (2004)).

using the index:. The approximately optimal value

function V' (s) is computed for the current statke £ 0) by simulatingC daughter states and computing the
value function for each daughter state. The Q-functioniie far all actionsa whenh = 0 (i.e. Qo(s,a) = 0),

and so all future values can be derived iteratively from.tfise best action for the current time step is the
action that results in the minimum value @1y (s, a). For further explanation of the algorithm, refer to Kearns
et al. (2002).

In this paper we follow the work of &et & Garcia (2004) and demonstrate the use of this alguorith
in metapopulation management. A metapopulation is a daleof spatially separated populations of a
single species with some degree of movement between pamddtevins 1969, Hanski & Gaggiotti 2004).

We investigate the performance of the algorithm by comjutive optimal solution for a spatially explicit

metapopulation management problem with three patches amgaring it to the predictions of the Kearns
et al. (2002) approximation for different valuesigfandC.

2. METHODS

An application: an arid-zone fish metapopulation. To illustrate how the sparse sampling approximation
can be used to solve more complex conservation problemstialbp explicit metapopulation model (Day &
Possingham 1995, Ovaskainen & Hanski 2004) was constrtcteolve an optimal management problem for
fish populations in a series of waterholes in a hypothetiealisarid zone river. For most of the year the river
does not flow, restricting fish species in the river to remmeaterholes. Infrequent large rainfall events cause
the river to flow, and allow the fish to disperse to other sitethe river. We assume that there are two major
threats to fish in the river: sedimentation of the waterhdies to poor land practices causing erosion in the
riparian zone; and abstraction of water from the waterhbjecal land owners for use on agricultural land.
To test the algorithm, we modelled a simplified 3-patch syst®ecause this system is relatively small, we
can calculate an optimal solution using SDP which can be emetjto the results of the on-line solution. The
initial state of the system is shown in figlide 2.

The metapopulation model. Each «—3 units — < 2 units >

patch in the metapopulation is allowed 2 2

to have three state variables: patch| 2l 2] Dwater
occupancy ¢= 1 or O if occupied or @<

empty respectively), current water depthl g 1y - 1 sediment
of the pond ¢ € {0,1,2.z}), and total _ . o< . - edimen
depth (i.e. top of bank to deepest point)™— ooten 2 batch 3

of the pond ¢ € {0,1,2... zpaz}).- In  _. - : .
this paSer Wé(c setiw 3. 2C|-he 3r)1its of Figure 2. Initial state of the hypothetical river system. The water

depth are not specified but can be thougﬁ@pacity of each patch is 3 units. Patches 1 and 2 are occapikd
of as relative units (e.g. empty, lowat full water capacity. Patch 3 is unoccupied, partly sedie,

medium and high water levels). For &nd has 1 unit of water.



system with)M patches, the size of the state space willH{e ., + 1)(%=t2)]M. The system is modelled
as a discrete-time Markov chain (e.g. Akcakaya & Ginzbu&p(), Day & Possingham (1995), Possingham
(1996)). This section describes the model and records halefine the transition probability for the Markov
chain.

In the absence of management, there are five independergsgascthat may occur: sedimentation of one
or more of the waterholes, water abstraction from the watesh a rainfall event, and fish colonisation and

extinction events. Itis assumed that evaporation redingesater level in the ponds on a much slower timescale
than sedimentation and abstraction, and so we neglect mtapofrom the model.

Sedimentation of a waterhole is assumed to occur with piibtyalh and, if it occurs, has the result that the
total depth of pond is reduced by one unite{ — =; — 1, wherez; is the pond depth of thé" pond).

To define the transition probability after sedimentation eftosystem ofM ponds, we first define a vector
X = (71,29, ...,z2r). The effect of sedimentation in th& patch in the next time step is determined by the
random variabl@( (4), which has observed valug € {0,1,2, ..., Zjas }, Vi € {1,2,..., M}. The probability
distribution of a transition in the/” pond from stateX( ) to a new state determmed By (i) is: P(X'(i) =
X(i) — 11X (1), X'(i) > 0) = &, P(X'(i) = X(i)|X(i)) = 1 — 6, and otherwise the probability of transition
is zero. Each pond may undergo a transition independentlyeobthers, so the probability of transition from
X to a stateX” is:

P(X'|X) = HP (4)

Similarly, abstraction may occur with probability, in which case it reduces the depth of water in pend
by one unit ; — d; — 1, whered; is the depth of water in thé" pond). We define a vector of depths

D = (dy,ds,...,dyr). The effect of abstraction in thé" patch in the next time step is determined by the
random variabIeD’(z’), which has observed valug € {0,1,2,...,2;},Vi € {1,2,..., M}. The probability
distribution of a transition due to abstraction is given ByD’ (i) = D(i)—1|D(i), D ( ) >0) =k, P(D'(i) =
D(i)|D(i)) = 1 — &, otherwise the probability of transition is zero. Analogdo the sedimentation case,
the probability of transition fronD to D’ is given by the product of the per-patch conditional proliis:

P(D'|D) = TT;Z, P(D' ()| D(i)).

The system is assumed to be driven by occasional very langialiaevents that completely fill the ponds, so
we neglect small rainfall events. Rainfall can occur witblbility p and is assumed to fill all ponds to their
maximum water depthz{) simultaneously. The transition probability to std@¥ resulting from a rainfall
event using the vector of water depths after sedimentatidnedstractiorD’ is p, if D” = X', and1 — p if
D" = D'. If neither condition is satisfied, the transition probipiis zero.

We can combine the probabilities of abstraction and rditdajet the probability that the water depth changes
in one time step:

P(D"|D) = P(D"|D')P(D'| D). (%)

The processes of colonisation and extinction are obtaisedjwa modified incidence function model (Hanski
1994). For a waterhole to be colonised, there needs to béicisuf depth of water in the river for neighbouring
waterholes to be connected by a continuous stream of watedeWbte the waterhole depth at which connection
occurs with the parametel, and we let the nearest upstream waterhole from a wateittbkg has a depth
less thanl* be at position (v € {i,i+1, ..., M}), and the nearest downstream waterhole with depth less than
d* be at positionu (v € {1, ..., i}). If there are no waterholes downstream or upstream witthdeps thani*,

u andv respectively are not defined by this notation, and we defiaedmnected region explicitly. If there are
waterholes with depth less thai above and below patch thenu andv are already defined, and the stream
around waterhole is connected from waterholes+ 1 up tov — 1. We define this connected stream segment
using the indey, such thatj € {u +1,...,i — 1,4, + 1,...,o — 1}. When all upstream patches have depth
greater tham* (i.e. whenw is not defined), the connected section is frpm {u+1, ..., M — 1, M }, and when

all downstream patches have depth greater thae. whenu is not defined), the connected segment is from
jef{1,2,...,0—1}.

For a stateN = (n1,ns, ..., nar), we define a random variabl¥’ (i) representing the occupancy state of the
it" waterhole, which has observed valug € {~0, 1}, Vi € {1,2, ...,~M}. The probability of colonisation
of the i*" waterhole is given by: @V'(i) = 1|N(i) = 0) = ¢;, P(N'(i) = 0|N(i) = 0) = 1 — ¢;, and

P(N'(i)|N (7)) = 1 if neither of these conditions are satisfied. We define- ﬁ if S; >0, andc; =0
e



otherwise. The parametegt is a fitting parameter that describes the colonisationtsitmfithe species (smaller
y’ values correspond to better dispersal (Hanski 1994))%nd Z#i n; exp(—ap;;)(d; — d*). The depth

of the j*" waterholed; serves as a measure of patch quality and causes deeperaledeidhave a higher
probability of sending colonists to other waterholes. Tisteshce between waterholésaind j is p;;, n; is

the occupancy of thg!” waterhole, andy is a constant that represents the survival rate of migrdfusthe
illustrative case study in this paper, we make the simpigyassumption that the waterholes are connected
whenever there is water in the systedi & 0).

The probability of extinction of the** waterhole from the new occupancy stdfé(z‘) is determined by
a random variableV” (i), which has observed value; € {0,1},Vi € {1,2,..,M}. The probability
of extinction is given by PN”(i) = O|N'(i) = 1) = e;, P(N"(i) = 1|N'(i)) = 1) = 1 — ¢;, and
P(N"(i)|N'(i)) = 1 if neither of these two conditions are satisfied. We define= min [d%, 1], whered;

is the depth of thé!” pond, and? and 3 are two constants that scale the extinction probaf)ility1&)depth of
water in the waterhole.

The colonisation and extinction probabilities can be usatkfine the probability that the waterhole occupancy
changes in one time step:
M
P(N"|N) = [T PN (6) [N () P(V' (4) |V (3)). (6)
i=1

We are now ready to define the transition probability. We apresent a stateV, D, X) as a vector of
the vectorsN, D and X defined above. Thus the probability of transition to a neviest&”, D", X') is
P(N", D", X'|N, D, X), which we can simplify to:

=P(N,D,X'|N,D,X)P(N,D",X'|N,D,X")P(N", D", X'|(N, D", X")
— P

(N"|N)P(D”|D)P(X'| X). )

Using equationEl4,]5, aind 6, the value of equdilon 7 can bendieted. The order of events in a timestep is
sedimentation-abstraction-rainfall-colonisationiestion.

Problem formulation as a Markov Decision Process. We define the management objective to be to
minimise the number of waterholes that do not have fish ptesach year throughout the management
horizon. We have already defined the state space of the systemmetapopulation model section above. For
a system of\/ patches, we defind 4+ 3 management actions. The metapopulation model allows neasiag
to reduce sedimentation by improving catchment manageprewtices (i.e. decrease— ¢’), or by direct
intervention by dredging one of th&/ waterholes to deepen it sufficiently for fish to re-colonisduring

the next rainfall event (i.e; — z.,.4.). TO manage abstraction, managers may directly policerhaties to
prevent illegal water removal (reduge— «'). Finally, if no management is required, managers may ahtms
take no action. It is assumed that managers can carry ouboelaction per time step, and we do not consider
the cost of management actions. The transition probadsifor the MDP assuming no management are defined
by the metapopulation model of sectioh 2. When a managem#anas selected, the transition probabilities
have the same form, but the parameter corresponding to beteset action is changed as described earlier in
this paragraph.

The cost function(s) for being in a state is simply equal to the total number of waterholes minus thalmer

of occupied waterholes in that state (i/d. — Zf\il ni,n; € {0,1}). The management objective is equivalent
to minimising the cost function over the management pefiad.this paper, we set an infinite time horizon for
management, and evaluate the optimal solution until ithrea@n equilibrium strategy.

Algorithm evaluation. The optimal solution for the problem is given by evaluatirguations[1l and12
using the transition probability from equatioh 7, wheredkees = (N, D, X), ands’ = (N", D", X’). The
cost is given byr(s,a,t) = r(s), and the action is chosen from the sHts) = 1,2,..., M + 3, where each
number inA(s) refers to one of the management options.

To evaluate the Kearns et al. (2002) algorithm, we use emuidiand a set value dff and C to find the
optimal action for the current time step. The approximat®nsed to generate a trajectory of states over the
management period by carrying out the algorithm to find thet betion, simulating the next state by applying
the best action to the current state, then repeating th@xzippation process to find the best action for the new
state. This is repeated for the desired trajectory length.



3. RESULTS AND DISCUSSION

Performance of the approximation algorithm. The results of carrying out the on-line sampling algorithm
are compared against the optimal solution for the 3-pat¢h= 3) metapopulation in figurigl 3. The total cost
plotted in figurd_B is the total number of instances that a ate was unoccupied over the full management
period. The solid black line gives the cost of carrying ow tiptimal solution until an equilibrium policy
is reached (11 timesteps). The random solution is the refu#tndomly choosing a management option for
each timestep. Both of these scenarios are evaluated 5@8 tionobtain the average result in the figure.
The remaining three lines on the figure show the results obth&ne approximation algorithm faf'=2, 6,
and 10 samples respectively, plotted against the deptheofoibk-ahead algorithm (horizontal axis). Each
approximation was run for the same length of time as the @tsolution (11 timesteps) and the process was
repeated 30 times to give the average values plotted in theefig
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Figure 3. Performance of the Kearns et al. sparse look-ahead algoatiainst the optimal solution and a
random management strategy. The trajectories are runagpiilibrium is reached (11 steps). The vertical axis
shows the average cost over the full 11-step trajectory aftdtiple trials (see text). Parameters used for this
simulation weres= 0.05;4'= 0.0005;x= 0.2;x'= 0.02;p= 0.3;a= 0.01;y'=0.1;6=0.1; 3= 0.3;~v=0.8.

The approximation algorithm out-performs a random strategcept whenC=2, H=1. In this case the
algorithm only chooses one more new state from the nex¢-diatribution than the random strategy and looks
no further ahead than the random strategy, so the resultdshoudiffer greatly from the random strategy. The
approximation was simulated just 30 times (the randomesisais simulated 500 times) so there is likely to
be uncertainty in the approximation since so few sampledaden at each step. It is likely that the cost of
approximating with just one look-ahead step should in faatdughly equal to a random strategy (as is the case
whenC= 6 or 10).

Péret & Garcia (2004) found the existence of an optimal nundfdook-ahead steps when the number of
samplesC is fixed. In figure[B, there appears to be a minimum cost at tlogleahead steps in the case
where C=2, although deeper simulation should be carried out to taiglclaim more credence. However
where computer power is limited, best results for the apprakon will be obtained by using 3 look-ahead
steps. Interestingly there does not seem to be much gairirig o®re than two samples to look-ahead, since
the results forC=6 and(C=10 do not result in average costs that are noticeably lohen theC=2 case.
This is probably caused by this particular model, which h&sgha probability of visiting only a few states
in any one time step. It would be very interesting to see i§ tigpplies more generally to metapopulation
models, as removing the need to sample a large number o$ stagach timestep will increase the speed of
the approximation.

Lessons for River Management. The system is highly dependent on the presence of adequa& wa
in the system. This means that whenever a state is reache® wWieeremaining occupied patches have low
water, the optimal action is always to prevent water remdna@h the stream. Where only one patch was
occupied and had sufficient water, deepening the neares pats the best option. In general, catchment
management was only a good option if there was no advantageet@nting abstraction (i.e. remaining
waterholes full/lempty). However this finding reflects thegmaeters used in this model (the probability of
abstraction is much greater than the probability of sedtatem). The results intuitively make sense, however
since the parameters were not based on empirical data, aristb generalise management lessons from this
hypothetical model. More work needs to be done to propentgmpaterise the model.



4. CONCLUSIONS

The on-line approximation algorithm of Kearns et al. (2002)vides a relatively efficient way to solve Markov
decision problems with very large state spaces. In this paye demonstrated that the algorithm performs
well against the optimal solution to a small but complex rpefaulation problem. We also showed that
the approximation out-performs a random strategy. Thifésfirst time this method has been applied to a
metapopulation problem and provides a powerful tool foviegl complex conservation management problems
in the future.

The greatest limitation to the algorithm is that althougé #figorithm is state space independent, it still has a
state space that increases exponentially with the numbeokfahead steps (Kearns et al. 2002). Consequently
the algorithm still has a long running time. An interestingegtion for further research will be to consider at
what sized state space it is worth moving from a conventiSiEd? solution to an approximation algorithm such
as this.

Other than being state space independent, the other beh#fis @lgorithm is that it is calculated on-line.
This means that each update is calculated based on the tcstaig: of the system and is based on the current
generative model. This means that the algorithm could pieignbe used to evaluate optimal solutions when
the generative model changes with time. This adaptive agpraliffers from off-line approaches like SDP,
which need to evaluate the full optimal solution assumindaticsgenerative model. Another problem for
future research is to attempt to use an on-line approachye partially observable MDPs in conservation.

This paper introduces a new algorithm to conservation memagt. This method theoretically enables us
to solve optimal management problems with infinitely larggtes spaces. Greater complexity in decision
making models means we can better represent the real wealdinlg to more realistic decisions and improved
conservation management.
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