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Outline

• A rare event problem
• Stochastic SIS Logistic Epidemic (SIS)
• Crude Monte Carlo Method (CMCM)
• Importance Sampling (IS)
• Cross-Entropy Method (CE)
• Comparison of simulation estimates
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A rare event problem

Denote X(t) as the size of the population at time t.

Let N denote the maximum population size.

We wish to estimate

α = P(X(t) hits 0 before N).
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Notation
• Suppose (X(t) : t ≥ 0) is a birth-death process

on finite space X = {0, 1, . . . , N}.
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Figure 1: Transition diagram of a finite-state birth-death process

• Let (Xm,m = 0, 1, . . . ) denote the corresponding
jump chain.

• Let A be the collection of all the sample paths of
(Xm) & let A0 be the collection of all the paths
that hit 0 before N .

• Let X = (X0, X1, . . . ) be a random sample path
of A and let A be the event {X ∈ A0}.
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Equation

Then we can write

α = P(A)

= EfH(X) =

∫

A

H(x)f(x; u, P )µ(dx).

where
• H(X) is the indicator function of the rare event

A defined by

H(x) =

{

1 if x ∈ A0

0 if x 6∈ A0.
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Equation

Then we can write

α = P(A)

= EfH(X) =

∫

A

H(x)f(x; u, P )µ(dx).

and
• f(x; u, P ) = u(x0)

∏m−1
k=0 P (xk, xk+1).

• u = (u(i) : i ∈ X ) is the initial distribution.
• P = (P (i, j) : i, j ∈ X ) is the one-step transition

matrix of (Xm).
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Stochastic SIS Logistic
Epidemic

• The SIS model is a finite-state birth and death
process for which the origin is an absorbing
state.

• The rate of infection per contact is denoted by λ
and µ denotes the per-capita death rate.
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Figure 2: Transition diagram of SIS model
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Stochastic SIS Logistic
Epidemic

The non-zero transition rates are defined as

λi = λ
1

N
i(N − i) and µi = µi.

The jump chain (Xm) has jump probabilities

pi =
λ(N − i)

µN + λ(N − i)

and qi = (1− pi) =
µN

µN + λ(N − i)
.
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Crude Monte Carlo Method

We can estimate our probability using CMCM. This
involves simulating n replicates, X

1, . . . ,Xn, from
f( · ; u, P ) and setting

α̂ =
1

n

n
∑

k=1

H(Xk).

We simulate our model until the process hits N or 0.
We count 1 if the process hits 0.

The number of trials needed to get one successful trial
has a geometric distribution with the expected value
being 1/p, where p is the probability of a successful
trial.
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CMCM example

If we start in State 8 and we wish to estimate the
probability of reaching 0 before 10, then we would
require 1/α runs to see one successful path hit 0
before 10. (Failure is hitting 10 before 0.)

The exact value of α starting in state 8 is 1.18E-05.
Thus we need around 1/1.18E-05 ≈ 85, 000 runs to
see our first path hit 0 before 10.

If we use CMCM, then we would require many more
than 85, 000 runs to obtain a reasonable estimate
for α.
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Importance Sampling

• ũ to be an alternative initial distribution

• P̃ to be an alternative transition matrix

• g(x; ũ, P̃ ) = ũ(x0)
∏m−1

k=0 P̃ (xk, xk+1)

The following conditions must also hold:

u(i) > 0 implies ũ(i) > 0

and P (i, j) > 0 implies P̃ (i, j) > 0.
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• ũ to be an alternative initial distribution

• P̃ to be an alternative transition matrix

• g(x; ũ, P̃ ) = ũ(x0)
∏m−1

k=0 P̃ (xk, xk+1)

The following conditions must also hold:

u(i) > 0 implies ũ(i) > 0
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Importance Sampling

Under the alternative measure g we can estimate α by

α = EfH(X) =

∫

A

H(x)
f(x; u, P )

g(x; ũ, P̃ )
g(x; ũ, P̃ )µ(dx)

= Eg

(

H(X)LT (X; u, P, ũ, P̃ ); T <∞

)

,

where

Lm(x;u, P, ũ, P̃ ) =
f(x;u, P )

g(x; ũ, P̃ )
=

u(x0)
∏m−1

k=0 P (xk, xk+1)

ũ(x0)
∏m−1

k=0 P̃ (xk, xk+1)
.

with T = inf{m : Xm = 0 or Xm = N} ("Stopping Time")
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Importance Sampling estimator

We can estimate α using the importance sampling
(IS) estimator, defined by

α̂ =
1

n

n
∑

i=1

H(X)Lm(X;u, P, ũ, P̃ ),

where (recall)

Lm(x;u, P, ũ, P̃ ) =
f(x;u, P )

g(x; ũ, P̃ )
=

u(x0)
∏m−1

k=0 P (xk, xk+1)

ũ(x0)
∏m−1

k=0 P̃ (xk, xk+1)
.
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Optimal IS density

Which change of measure gives the IS estimator with
smallest variance?

The smallest variance is obtained when g = g∗, the
optimal importance sampling density, given by

g∗(x) =
|H(x)|f(x; u, P )

∫

A |H(x)|f(x; u, P )µ(dx)
.

If H(x) ≥ 0, then

g∗(x) =
H(x)f(x; u, P )

α
.

Rare Event Simulation using Importance Sampling and Cross-Entropy – p. 15



Optimal IS density

Which change of measure gives the IS estimator with
smallest variance?

The smallest variance is obtained when g = g∗, the
optimal importance sampling density, given by

g∗(x) =
|H(x)|f(x; u, P )

∫

A |H(x)|f(x; u, P )µ(dx)
.

If H(x) ≥ 0, then

g∗(x) =
H(x)f(x; u, P )

α
.

Rare Event Simulation using Importance Sampling and Cross-Entropy – p. 15



Optimal IS density

Which change of measure gives the IS estimator with
smallest variance?

The smallest variance is obtained when g = g∗, the
optimal importance sampling density, given by

g∗(x) =
|H(x)|f(x; u, P )

∫

A |H(x)|f(x; u, P )µ(dx)
.

If H(x) ≥ 0, then

g∗(x) =
H(x)f(x; u, P )

α
.

Rare Event Simulation using Importance Sampling and Cross-Entropy – p. 15



Cross-Entropy Method

The Kullback-Leibler Cross-Entropy (CE) measure
defines a "distance" between two densities g and h

D(g, h) =

∫

g(x) ln
g(x)

h(x)
µ(dx)

=

∫

g(x) ln g(x)µ(dx)−

∫

g(x) ln h(x)µ(dx).

The purpose of CE is to choose the IS density h such
that the "distance" between the optimal IS density g∗

and density h is as small as possible.
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Properties of CE

1. D(· , ·) is non-symmetric ie: D(g, h) 6= D(h, g),
thus D(g, h) is not a true distance between g and
h in a formal sense, although

2. D(g, h) ≥ 0.

3. D(g, g) = 0.
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Restrict the IS density

If we restrict the density to belong to some family F
which contains the original density

f(x; u, P ) = u(x0)
m−1
∏

k=0

P (xk, xk+1)

and the alternative density

f(x; ũ, P̃ ) = ũ(x0)
m−1
∏

k=0

P̃ (xk, xk+1)
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CE optimisation problem

Then the CE method aims to solve the parametric
optimisation problem

min
(ũ,P̃ )

D(g∗, f( · ; ũ, P̃ )),

where (recall)

g∗(x) =
H(x)f( · ; u, P )

α
.
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CE reference parameter

Since f( · ; u, P ) does not depend on (ũ, P̃ ),
minimising the CE distance between g∗ and
f( · ; ũ, P̃ ) is equivalent to maximising, with respect
to (ũ, P̃ ),
∫

|H(x)|f(x;u, P ) ln f(x; ũ, P̃ )µ(dx)

= E(u,P )|H(X)| ln f(X; ũ, P̃ ).

Assuming H(X) ≥ 0, the optimal P̃ (with respect to
CE) is the solution to

P̃ ∗ = arg max
P̃

E(u,P )H(X) ln f(X; u, P̃ ).
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CE reference parameter

The optimal transition probability matrix is given by

P̃ ∗(i, j) =
E(u,P )H(X)

∑

k:Xk=i 1(Xk+1=j)

E(u,P )H(X)
∑

k:Xk=i 1
.

We can approximate this optimal transition
probability matrix by implementing IS to obtain:

P̃ ∗

l+1(i, j) ≈

∑

X
n

X=X
1 H(X)Lm(X;u, P, u, P̃l)

∑

k:Xk=i 1(Xk+1=j)
∑

X
n

X=X
1 H(X)Lm(X;u, P, u, P̃l)

∑

k:Xk=i 1
,
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Initial CE parameter

Original parameters:

pi =
λ(N − i)

µN + λ(N − i)
and qi = (1− pi) =

µN

µN + λ(N − i)
.

Initial change of measures:

p̃i =
µ(N − i)

λN + µ(N − i)
and q̃i = (1− p̃i) =

λN

λN + µ(N − i)
.
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Comparison of simulation
estimates

N = 10, λ = 0.9, µ = 0.1, ρ = 0.11, X0 = 8,

No. of CE runs= 4

Sample Size Exact IS CMCM
50 1.18E-05 1.40E-05 0

100 1.18E-05 1.64E-05 0
1000 1.18E-05 1.18E-05 0
2000 1.18E-05 1.18E-05 0
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Comparison of CE runs
N = 10, λ = 0.9, µ = 0.1, ρ = 0.11, X0 = 8,

Sample Size = 1000, Exact = 1.18E-05

CE run IS 2 StD p̃1 p̃5 p̃9

0 1.47E-05 3.21E-06 0.091 0.053 0.011
1 1.16E-05 1.79E-06 0.091 0.212 0
2 1.18E-05 4.12E-07 0.127 0.256 0
3 1.18E-05 1.38E-07 0.118 0.277 0
4 1.18E-05 9.09E-08 0.125 0.282 0
5 1.18E-05 5.89E-08 0.134 0.270 0
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