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Abstract

The term ‘metapopulation’ is used to describe a population of individuals that live as a group

of local populations in geographically separate, but connected, habitat patches. The patches

are situated within an otherwise uninhabitable landscape which dispersing individuals traverse

in search of suitable habitats. The central concepts associated with metapopulation dynamics

are that of local extinction, the extinction of a local population, and recolonisation, where

migrants establish new populations in unoccupied (empty) patches. The relationship between

the processes of local extinction and colonisation is therefore an important consideration when

formulating mathematical metapopulation models.

We shall consider a particular type of metapopulation dynamic where extinction events

and colonisation events are assumed to occur during separate time periods, or phases, that

alternate over time. This seasonal dynamic may be thought of as an annual cycle, say, where

local populations are prone to extinction during winter and new populations establish during

spring. In particular, we model the number nt of occupied patches at time t as a discrete-time

Markov chain (nt : t = 0, 1, 2, . . . ) with transition probabilities that alternate according to the

seasonal phases. The models are naturally constructed in a discrete-time setting due to the

assumed dynamic, however it will be made clear that whether the Markov chains are time-

homogeneous (where the population census is taken after every cycle) or time-inhomogeneous

(where the census is taken after each seasonal phase) depends on the monitoring scheme under

investigation.

We present a number of metapopulation models with the assumed seasonal dynamic where,

in particular, the local extinction process is modelled in the same way in each case whilst the

colonisation process is modelled according to various means of propagation. We assume that

each local population goes extinct with the same, constant, probability, and that all events

are independent. Hence, the number of extinction events that occur during the extinction

phase is binomial. For metapopulation networks with a finite number N of patches, we also

assume that the number of colonisation events that occur during the colonisation phase is
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binomial. We investigate both state-independent and state-dependent colonisation probabil-

ities, where the former is defined with a constant probability and the latter depends on the

current number of occupied patches. Metapopulation models defined with a state-independent

colonisation process are referred to as mainland models because empty patches are thought to

be colonised by migrants from an outside source population (the ‘mainland’) in this case. For

models defined with state-dependent colonisation processes, we refer to these as island models

when colonists originate from occupied patches (islands) or mainland-island models when both

types of colonising behaviour are assumed. The overall two-phase model is called a chain

binomial metapopulation model since the extinction and colonisation processes together define

a sequence of binomial random variables. We also investigate similar models but for networks

with infinitely-many patches (N = ∞); the number of colonisation events is modelled as a

Poisson random variable in such cases.

The discrete-time Markov chain approach is well established in the applied metapopulation

literature, however models of this type are usually examined via numerical methods and simu-

lation. The models presented here are accompanied with extensive analytical treatments. For

most of our finite-patch models, we evaluate conditional state distributions explicitly and use

these distributions to establish convergence results (in the sense of convergence in distribution).

These results include a law of large numbers, which identifies an approximating deterministic

trajectory, and a central limit law, which establishes that the scaled fluctuations about the

deterministic trajectory have an approximate normal (Gaussian) distribution. We show that

the infinite-patch models are equivalent to branching processes.

This body of work culminates by presenting limit theorems for discrete-time metapopulation

models. First, we prove limit theorems for a general class of inhomogeneous Markov chains

that exhibit the particular property of density dependence. These theorems include a law

of large numbers and a central limit law (in the sense of convergence in finite-dimensional

distribution), which establishes that the scaled fluctuations about this deterministic trajectory

have an approximating autoregressive structure. Second, we apply these results to our Markov

chain metapopulation models (both finite-patch and infinite-patch) where we demonstrate that

the limiting behaviour of any of our metapopulation models with density-dependent phases can

be evaluated explicitly, even in situations where a conditional state distribution could not be

determined.
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Chapter 1

Introduction

In this thesis, population models are constructed as time-inhomogeneous Markov chains with

transition matrices that alternate in discrete time. This alternating behaviour effectively models

seasonal variation in population dynamics; a method that has been applied extensively in ecology

(colonisation and extinction of local populations in a metapopulation network) and to a smaller

extent in epidemiology (infection and recovery of individuals during the spread of a disease).

This chapter reviews different types of population models that account for seasonal variation

and motivates the use of inhomogeneous Markov chains for this particular purpose. The chapter

closes by outlining the material presented in this thesis.

1.1 Population modelling

In 1798, Thomas R. Malthus published his philosophical views on the growth of the human

population of the world [57]. He argued that if the population grew without restraint, its growth

would forever be controlled (kept in ‘check’) by the means of subsistence. Malthus went so far

as to propose a crude mathematical model where the (unchecked) population grew according

to a geometric progression whilst subsistence grew according to an arithmetic progression; the

former forever outstripping the latter.

Models introduced by Gompertz in 1825 [32] and Verhulst in 1838 [89] instead accounted

for Malthus’ idea of ‘checked’ growth. Their models defined the change in population size n

at time t as a differential equation, where the quantity n retards over time and slows down to

a fixed point in the model dynamics. Verhulst’s model, as well as its variations, are perhaps

the most well known classic population models. Using Pearl and Reed’s rationale [71] (see

1



2 Chapter 1. Introduction

also [69, 70]), we write Verhulst’s model as

dn

dt
=

λ

N
n(N − n) − µn (n ∈ [0, N ]), (1.1)

where λ is the (pair-wise) birth parameter, µ the death parameter and N the maximum popu-

lation size that can be supported by limited resources; the parameter N is implicitly assumed

to be large so that n is effectively considered as a continuous variable. Indeed, the model given

by (1.1) is well known in two particular guises. In the epidemiology context, (1.1) is the SIS

(Susceptible-Infective-Susceptible) logistic model where, for a closed population of N individu-

als, λ is the rate at which a disease spreads in infective-susceptible pairs and µ is the recovery

rate. In the ecological context, this same model is known as the Levins model due to Levins’

interpretation [51, 53] of (1.1) for a population occupying a network of N habitat patches; λ

being the rate at which new populations establish within pairs of unoccupied-occupied patches

and µ the extinction rate for established populations.

As Verhulst’s model demonstrates, differential equation models are formulated in continuous

time. If a population was considered to grow within discrete time intervals, say, where genera-

tions or breeding cycles do not overlap in time, then the population growth rate dn/dt may be

discretized as nt+1 − nt (using an obvious notation) where t ∈ {0, 1, 2, . . .}. The discrete-time

analogue of Verhulst’s model,

nt+1 − nt =
λ

N
nt(N − nt) − µnt (nt ∈ [0, N ]), (1.2)

is an example of a difference equation (for more examples, see [60] or [61]). Upon solving a

differential equation or a difference equation explicitly for n, the solution is an exact (deter-

ministic) trajectory for the population size as a function of the time variable.

Due to their deterministic nature, the classic differential and difference equation models

do not account for random variation in demographic or environmental factors. Stochastic

models, on the other hand, account for random variation and allow practitioners to calculate

probability distributions for many quantities of interest. Markov processes formulated with

discrete state spaces (commonly referred to as Markov chains) are particularly favoured for

modelling population dynamics due to the advantage of both the Markov Property (that future

predictions only rely on present observations) and being able to model population size with



1.2 Accounting for seasonal variation 3

discrete values. Markov chains may be formulated in continuous time or discrete time depending

on the application of interest.

Birth-death processes, a particular class of continuous-time Markov chains, are natural

stochastic analogues of classic continuous-time population models. For example, the stochastic

analogue of (1.1) is a birth-death process where the population size n is defined to increase by

one unit at rate (λ/N)n(N − n) and decrease by one unit at rate µn, where the parameters

λ and µ are defined as before. Indeed (1.1) approximates its stochastic counterpart as the

population ceiling N grows large [72]. Of course, birth-death processes can accommodate more

general birth rates and death rates.

Population models that are based on discrete-time Markov chains are natural stochastic

analogues for classic discrete-time population models. It will be demonstrated shortly that

discrete-time Markov chains are particularly well suited to modelling seasonal population dy-

namics.

1.2 Accounting for seasonal variation

An assumption common to many population models is that ‘birth’ and ‘death’ events occur in

random order over time, thus implying that the population being modelled does not exhibit any

seasonal dynamics. Even when the population census occurs at discrete time points according

to non-overlapping generations, discrete-time models do not necessarily account for seasonal

behaviour because birth and death events may still be assumed to occur in random order

between those time points. Equation (1.2), for example, does not assume a seasonal dynamic.

Population dynamics that are seasonal in behaviour clearly exhibit a time-dependent struc-

ture and population models that account for this kind of behaviour must necessarily be time-

dependent in some way. Levins [51, 52, 53] was one of the first to account for seasonal variation

and did so by considering Verhulst’s classic differential equation with time-dependent param-

eters. Similar studies were performed on the classic exponential growth model, dn/dt = λn,

where Lewontin and Cohen [54] focused on a discrete-time version of the model while the differ-

ential equation was studied by May [58]. In particular, all three studies are stochastic because

the time-dependent parameters are defined as random variables. The population is subsequently

said to be in a ‘randomly fluctuating environment’, however note that if the random variables
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are independent and identically distributed, then this type of time-dependence does not strictly

account for ‘seasonal’ fluctuations since there is no serial correlation between successive time

points. Explicit solutions were obtained in all three studies. However the method of using

classic population models with time-dependent parameters did not gain traction in the ecolog-

ical literature. A more complicated discrete-time method introduced by Roff [77, 78] gained

traction instead. Roff’s method utilised the concept of un-correlated random fluctuations, but

it is the second type of time-dependence incorporated in his model that successfully accounts

for seasonal variation.

The model developed by Roff [77, 78] considers a population of individuals as a set of

local populations living in a spatially heterogeneous (‘patchy’) environment. This kind of

population structure was recognised by Wright [94], Andrewartha and Birch [4], MacArthur

and Wilson [56], and it is now commonly known as a metapopulation due to Levins’ turn

of phrase for a ‘population of populations’ introduced in 1970 [53]. Roff was particularly

interested in investigating the effect dispersal had on the persistence of the population as a

whole. Modelling the metapopulation on the grand scale (that is, at the patch-occupancy

level where the size of each local population is ignored) does not take dispersal explicitly into

account and so Roff developed a model that tracked the number of individuals in each local

population and the dispersal of individuals around the network. More specifically, Roff’s model

assumed a discrete-time census schedule whereby, during the course of one time interval, the

system underwent a period of dispersal followed by a period of local growth. Dispersal was

either holistic (every individual disperses) or local (a proportion was exchanged between nearest

neighbours) while growth in each local population was modelled using a classic discrete-time

dynamic with time-dependent parameters (which were random though un-correlated). Not

only did Roff account for random fluctuations in the environment, these fluctuations were

defined to occur at a specific stage in the assumed dispersal-growth dynamic. Roff concluded

that population networks connected by dispersal persisted for a significantly longer time than

identical systems without dispersal.

A number of models based on Roff’s discrete seasonal dynamic were later developed. Ches-

son [18] presented a more formal stochastic model while others tended to adopt a deterministic

framework. Deterministic models focused heavily on studying the stability effects of different

local dynamics and these include coupled logistic equation models [45, 36, 33], models with
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general density-dependent local dynamics [23, 96], and models developed in the framework of

adaptive dynamics [24, 67, 68] where the evolution of dispersal rates is studied in populations

comprising a number of genotypes. (For an introduction to adaptive dynamics, I direct the

reader to [91].) One particular study by Parvinen [68] extended Roff’s seasonal dynamic to de-

fine four different time periods corresponding to the following events: reproduction, emigration,

immigration and catastrophes.

In the metapopulation literature, models that account for local population dynamics are

classified as structured population models [37]. Although the models mentioned above are

obviously structured models, the characteristic of importance here is that dispersal from each

patch and internal growth within each patch are assumed to be synchronous events [24, 96].

In this way, these models account for seasonal variation and do so regardless of whether model

parameters are defined to be time-dependent or not.

1.2.1 The discrete-time Markov chain approach

Roff demonstrated that the discrete-time setting is a natural framework for modelling popula-

tion dynamics that exhibit seasonal variation because the time interval need only be divided

in such a way that each sub-interval represents a particular seasonal period. However, a sig-

nificant drawback associated with structured models is the complicated nature of their model

analysis. For example, the deterministic structured models mentioned above exhibit bifurcation

phenomena. A much simpler approach that avoids chaotic dynamics is a stochastic framework

based on discrete-time Markov chains.

The discrete-time Markov chain approach was introduced by Akçakaya and Ginzburg [2]

and their model is described as follows. Suppose that the state of a discrete-time Markov chain

is a vector of size N and that this vector describes the presence/absence of occupants in an

N -patch metapopulation, where the k-th component is 1 or 0 according to whether the k-th

patch is occupied or empty (that is, whether the k-th local population is extant or extinct),

respectively. Local patch dynamics are not taken into account here and so the model is un-

structured (see [37]) as a result. Hence, there are 2N possible states and the zero vector is the

sole absorbing state, corresponding to metapopulation extinction. Suppose that each patch is

associated with a patch-specific local extinction probability, that each patch-pair is associated

with a patch-specific colonisation probability (which can be uni-directional or bi-directional,
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depending on the application), and that local extinction events and colonisation events occur

independently of one another. Given this set-up, two probability transition matrices of size

2N ×2N can be constructed: (i) the matrix E contains positive entries for transitions that only

involve extinction events (all other transitions set with zero probability) and, likewise, (ii) the

matrix C contains positive entries for transitions that only involve colonisation events (all other

transitions set with zero probability). One can then choose to set P = EC or P = CE as the

1-step transition matrix of a time-homogeneous Markov chain.

Indeed, P = EC and P = CE correspond to the transition matrices of two different time-

homogeneous chains that arise by observing a time-inhomogeneous chain with, for example

(see [2]), transition matrix

P (t, t + 1) =











C if t ∈ {0, 2, 4, . . .}

E if t ∈ {1, 3, 5, . . .}

at times t = 1, 3, 5, . . . and t = 0, 2, 4, . . . , respectively. The two observation schemes are

referred to as the EC and CE models [16] for obvious reasons, where the former is used if the

population census is taken after each successive period of colonisation and the latter if census

follows each period of local extinction. Whist the timing of the census does not affect the

dynamics of the system, it is certainly important from an empirical perspective. For example,

the model developed by Klok and De Roos [50] (explored in more detail in the following section)

takes the census after colonisation because the real population under investigation was known

to be more stable at this time.

The model developed by Akçakaya and Ginzburg assumes that local extinction events and

colonisation events occur during separate time intervals in a repeating cycle. These assumptions

effectively imply that the events are synchronous, just like that described for local growth

and dispersal in Roff’s model. It is unclear, though, as to whether Akçakaya and Ginzburg

fully appreciated the discrete model dynamics because there was no evidence to suggest that

the application of interest—a 3-patch metapopulation of mountain gorillas (Gorilla gorilla

beringei)—exhibited this kind of seasonal behaviour. Indeed, they presented results in for CE

model only, stating that “the order of multiplication did not make an important difference in

the results”. Their results consisted of numerical calculations of extinction probabilities, and
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so the ‘difference’ they are referring to is the difference between extinction probabilities that

correspond to the EC and CE models defined with the same model parameters. The size of

the difference is important, since it is an indication of the underlying dynamic, and the results

presented in this thesis demonstrate that the difference between the same quantities of the

respective models can be given explicitly. Akçakaya and Ginzburg’s model certainly simplifies

the way in which combinations of events are counted between discrete time points (that is, by

considering downward jumps and upward jumps in the state space separately), which may or

may not have dictated the model formulation. Nonetheless, the Markov chain approach quickly

took hold in the applied metapopulation literature.

Day and Possingham [22] soon modified the Markov chain approach by allowing local ex-

tinction probabilities to be inversely proportional to patch size and colonisation probabilities

to be dependent on the distance between patch pairs. Their spatially explicit model was ap-

plied to an 8-patch metapopulation of malleefowl (Leipoa ocellata). The authors note a lack

of empirical data with which to estimate extinction and colonisation probabilities, however the

annual breeding behaviour of malleefowl [19] might be considered to fit within the assumed

seasonal dynamic.

The greatest limitation with the Akçakaya-Ginzburg and Day-Possingham models is the

size of the state space. Remembering that these models have 2N states, the numerical analysis

of these models quickly becomes computationally expensive as N increases. Instead of being

concerned with which patches are occupied and which are empty, the most significant change

adopted in later models was to consider the total number of occupied patches instead and this

reduced the size of the state space to N +1 for an N -patch metapopulation1. These models are

computationally inexpensive to analyse even for large (N = 50) networks and can incorporate

spatial information implicitly by allowing colonisation probabilities to depend on the number

of occupied patches.

Metapopulations models described by inhomogeneous Markov chains with scalar states

commonly assume that local extinction events are independent and occur with the same

probability, e. If i patches are occupied at the beginning of the extinction period or phase,

then the number of events that occur during this phase follows the binomial Bin(i, e) law.

1Stochastic patch-occupancy models (SPOMs) defined with scalar states are known as homogeneous SPOMs
in the ecological literature, which distinguish them from heterogeneous SPOMs (vector-state models); ‘hetero-
geneous’ signifies that patches are not assumed to be identical. See [44], for example.
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Colonisation events, on the other hand, are modelled in various ways according to specific

breeding habits or dispersal patterns, or both if necessary. The colonisation process described

by Klok and De Roos’ model [50], for example, considers breeding habits of individuals and

dispersal of offspring separately whereby the reproduction and settlement transition matrices

(non-square) used to model these two processes multiply in this order to produce the overall

(square) colonisation matrix. The breeding process is described by a recursive formula and the

settlement process is governed by a binomial law. In particular, Klok and De Roos designed

their model to track the number of female individuals in a population of common shrews (Sorex

araneus). The model considers each female as occupying one patch in a metapopulation net-

work where this species is known to be susceptible to death during winter (local extinction)

and later breed then disperse from spring through to autumn (colonisation).

The colonisation process described by Hill and Caswell [46] is based on the binomial law

that was designed by Klok and De Roos for the settlement of shrews. This law is described

as follows. Migrating individuals are implicitly assumed to arrive at each patch according to a

time-homogeneous Poisson process with rate βi/N , where i is the number of patches currently

occupied and β is the expected number of propagules produced by each occupied patch. Thus,

the probability that one or more propagules arrive at any given patch is 1 − exp(−βi/N).

Given that i patches are occupied, the total number of colonisation events follows a binomial

Bin(N − i, 1 − exp(−βi/N)) law, however Hill and Caswell go one step further by allowing

only a fixed subset of the N patches to be suitable for habitation. Since the extinction and

colonisation processes together define a sequence of binomial random variables, the authors

called their model a chain binomial metapopulation model.

The method by which seasonal phases are characterised with binomial distributions is a

method reminiscent of the well known Greenwood [34] and Reed-Frost [93, 1] chain binomial

epidemic models. I now review how the inhomogeneous Markov chain method has been applied

to modelling epidemics.

1.2.2 Chain binomial epidemic models

Chain binomial models date back to stochastic formulations by Reed and Frost in 1928 [93, 1]

and Greenwood in 1931 [34]. These models characterise the spread of disease in a discrete-

time setting by assuming that the infectious period is very short in comparison with the latent
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period, the length of which represents the time interval. The infectious period is assumed to

be concentrated at the time of the population census and, during this period, each susceptible

individual is equally likely to contact infected individuals. The Reed-Frost model specifies that

this probability is dependent on the number of infectives while the Greenwood model specifies

a constant. The initial number of infectives are removed and the remaining individuals, a

binomial number of which contracted the infection, effectively live out the latent period in

isolation. The number of susceptible individuals at each census is described by a sequence

of binomial random variables which, until 1971 [28], was not fully appreciated as a sequence

that characterises a discrete-time Markov chain. Although events are defined to occur at a

concentrated point in time, the classic epidemic models account for a unique type of seasonal

variation.

Daley and Gani [20, see Section 4.4] effectively introduced the inhomogeneous Markov chain

concept to epidemic modelling by considering the classic chain binomial epidemic models with

‘replacement’. Each time interval begins by assuming that all infected individuals emigrate from

the system and are replaced with an equal number of individuals, a binomial number of which

are infected. A period of time then follows where the remaining susceptible population are

infected according to another binomial law. The time between one population census and the

next effectively consists of two separate periods (conceptually similar to the local extinction and

colonisation phases in metapopulation models) so that the number of susceptible individuals at

every time step is modelled by an inhomogeneous Markov chain. This model was later applied

by Gani and Stals [29] to a viral plant epidemic in a garden nursery.

Clearly, the Daley-Gani and Hill-Caswell models are extensions of the Reed-Frost and Green-

wood chain binomial models to a time-inhomogeneous framework. The chain binomial concept

has been extended in a slightly different way by others, whereby the three variables of interest in

a population of intravenous drug users—the number of susceptible users willing to share needles,

the number of infective-susceptible contacts and the number of successful transmissions—are

calculated in that order as though following a seasonal dynamic and with each being charac-

terised by binomial distributions (see [31] and modifications by [30]). The underlying discrete-

time Markov chain is not inhomogeneous however the model formulation still accounts for

season variation.
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1.2.3 Further developments

Inhomogeneous Markov chain population models continued to develop by modelling the sea-

sonal processes in different ways. For example, the metapopulation paradigm for modelling

a single population of female individuals with a fixed population ceiling has been adapted by

both Tenhumberg et. al. [88] and Rout et. al. [84] for populations of Arabian Oryx (Oryx leu-

coryx ) and bridled nailtail wallaby (Onychogalea fraenata), respectively. Females are assumed

to produce either a maximum of one offspring [88] or multiple offspring [84], and recursive

formulas are used to calculate the total number of female offspring produced in each breeding

(colonisation) season.

Butterflies have also received some attention. Zhang, Liu and Xu [97] applied Day and

Possingham’s vector-state model to two species of butterfly (the Marsh Fritillary, Euphydryas

aurinia, and the Knapweed Fritillary, Melitaea phoebe) where empirical studies supported the

assumed seasonal dynamic. In particular, the incidence of E. aurinia was known to depend on

the height of host plants in habitat patches while M. phoebe was sensitive to the density of host

plants. These results were used to modify expressions for patch-specific event probabilities.

More recently, an analytical study of a vector-state metapopulation model with patch-

specific extinction probabilities and a general colonisation probability that depends on the

current proportion of occupied patches was presented by McVinish and Pollett [64]. The limiting

behaviour of the model was investigated by letting the total number of habitat patches grow

to infinity. The metapopulation models presented in this thesis are defined with scalar states

and the limiting behaviour of these models are investigated in the same limit.

Although some inhomogeneous Markov chain models have been developed for epidemics,

the approach clearly dominates in the applied metapopulation literature. In general, discrete-

time Markov chain models are perhaps more popular in the ecological context due to efficient

parameter estimation techniques with patch occupancy data [65, 46] and their applicability

to optimal decision making techniques such as stochastic dynamic programming [88, 84, 76],

although it may also be due to a misconception that discrete-time models are needed if popula-

tions are observed at discrete time points [79, 80]. Nonetheless, inhomogeneous Markov chains

are particularly relevant for studying real metapopulations that exhibit seasonal behaviour.
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1.3 Motivation

In order to develop population models that account for seasonal variation, researchers must

necessarily model each part of the seasonal dynamic separately. For example, local population

growth and dispersal were modelled separately within the structured population approach while

the processes of local extinction and colonisation were modelled separately by the Markov chain

approach. The seasonal periods were modelled in various ways depending on a particular local

dynamic or colonising behaviour under investigation. Despite the simplicity and the growing

popularity of the Markov chain approach, numerical methods and simulation are generally used

for model analysis and typically in the EC case only [22, 46, 88, 84, 97]; the only exception

mentioned so far being [64]. The analysis of structured population models is generally more

explicit.

The chain binomial structure exhibited by the Daley-Gani epidemic model and the Hill-

Caswell metapopulation model is perhaps the most likely characteristic that will accommodate

analytical studies of scalar-state Markov chain models. Indeed this structure instigated the

research presented in this thesis, where the research began by developing a chain binomial

metapopulation model that described the colonisation process in a general way. The simplest

case proved to be tractable and the model analysis for this case was published in 2009 [16]

(later to appear in Ecological Modelling [14]). Of particular importance is that the analysis

completely characterised both EC and CE monitoring schemes. In this thesis, I expand on

the results presented in [16] and extend the framework to include infinite-patch systems. The

following section gives an outline of the thesis, where I detail the types of models to be presented.

1.4 Outline of the thesis

This thesis concerns population models that account for a particular type of dynamic: seasonal

variation. Chapter 1 has introduced the concept of seasonal variation and reviewed mathemat-

ical models that account for such behaviour. The inhomogeneous Markov chain approach is

particularly popular with the applied metapopulation community, however these studies lack

extensive analytical treatments. The research presented in later chapters adapts the inhomo-

geneous Markov chain approach to a range of metapopulation structures but first, Chapter 2

presents basic theory on stochastic discrete-time processes and difference equations necessary
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to the research. The material presented in this thesis is joint work with P.K. Pollett and is

presented in the remaining chapters as follows.

The metapopulation models presented in Chapters 3 and 4 are based on the chain binomial

structure developed by Daley and Gani [20] and by Hill and Caswell [46]. In turn, each chapter

investigates a special case of the model introduced in [16]. First, Chapter 3 examines the

state-independent case called the ‘mainland model’, the simplest and most tractable chain

binomial metapopulation model. A number of explicit expressions for quantities of interest

are presented, including conditional state distributions, limiting distributions and expected

first hitting times. Second, Chapter 4 examines the more general state-dependent case which

accommodates island-type and mainland-island-type metapopulation structures. The difference

between the structures simply corresponds to the nature of the colonising process within the

patch (island) network and an outside source population or ‘mainland’. The state-dependent

case is less tractable however a number of analytical results are presented.

In Chapter 5, three different metapopulation networks with infinitely-many habitat patches

are considered. The models that describe each network account for a local extinction-

colonisation dynamic, as before, where the local extinction process is governed by a binomial

law and the colonisation process is governed by a Poisson law. The Poisson laws are derived

as the asymptotic equivalent of binomial distributions used previously, and so the resulting

infinite-patch models may be thought of as the natural infinite-patch analogues of our finite-

patch chain binomial metapopulation models. Indeed, the conditional state distribution is

shown to be that which describes a (discrete-time) branching process in each case and standard

branching theory is then used to describe the long-term behaviour of the models.

The investigations carried out in Chapters 3, 4 and 5 examine the finite-patch and infinite-

patch models in terms of the time-homogeneous EC and CE monitoring schemes, where some of

these models are shown to be highly tractable. In Chapter 6, these models are re-examined in

terms of the underlying time-inhomogeneous Markov chain. In particular, the chapter presents

a theoretical framework for Markov chains that share the salient features of our metapopu-

lation models, where limit theorems such as a law of large numbers and a central limit law

are established in a general setting. Finite-state and infinite-state Markov chains are treated

separately and it is these results that are used to examine the finite-patch and infinite-patch

models, respectively. I demonstrate that the limiting behaviour of the metapopulation models
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can be evaluated explicitly and even in situations where the conditional state distribution could

not be evaluated.

Finally, in Chapter 7, I conclude by summarising the results of the research and discussing

possibilities for future work.





Chapter 2

Theory

This chapter provides the necessary background on stochastic processes, including discrete-time

Markov chains, branching processes, autoregressive processes and Gaussian processes. Prior

knowledge of commonly used random variables, their distribution functions and their probability

generating functions, is assumed. Also included is theory on difference equations and a list of

notational conventions.

2.1 Introduction

A stochastic process (Xt : t ∈ T, Xt ∈ S) is a collection of random variables that are indexed

by a set T and take values in a set S. The variable t usually represents time and so it may be

that T = {0, 1, 2, . . .} for a discrete-time setting or T = [0,∞) for a continuous-time setting.

The set S is called the state space and this set may be countable (discrete) or non-countable

(continuous). We will be completely concerned with stochastic processes that evolve in discrete-

time and so the time variable t shall henceforth take values in {0, 1, 2, . . .}.
We are particularly interested in stochastic processes that satisfy the Markov Property

(so named after the Russian mathematician A. A. Markov [10] for his famous work on these

processes).

Definition 2.1 A stochastic discrete-time process (Xt : t ≥ 0) is said to satisfy the Markov

Property if

Pr(Xt+1 = j|Xt = it, . . . , X1 = i1, X0 = i0) = Pr(Xt+1 = j|Xt = it) (2.1)

for all t ≥ 0 and all i0, i1, . . . , it, j ∈ S.

15



16 Chapter 2. Theory

Thus, conditioned on the present state, the future state of a process that satisfies the Markov

Property is independent of past values. For the case where S is discrete, the process is called

a discrete-time Markov chain. Later, we will discuss a special class of these chains called

branching processes. For the case where S is continuous, we are interested in one special class

of processes called Gaussian Markov processes. We further classify these processes according

to the time-dependence in equation (2.1).

Definition 2.2 Suppose that the stochastic discrete-time process (Xt : t ≥ 0) satisfies the

Markov Property. This process is then called time-homogeneous if it satisfies

Pr(Xt+1 = j|Xt = i) = Pr(X1 = j|X0 = i)

for all t ≥ 0 and all i, j ∈ S, otherwise the process is called time-inhomogeneous.

Although the Markov Property simplifies the mathematical structure of the process, we note

that it is a biologically sensible property for the population models that will be presented in

later chapters.

In addition, we will also be concerned with deterministic processes that are described by

difference equations, since these equations frequently arise in later chapters as deterministic

approximations of discrete-time Markov chains.

The following sections present theory as it relates to the stochastic and deterministic pro-

cesses mentioned above. Results are stated without proof, however the reader can find proofs

in [35, 66] (discrete-time Markov chains), [8] (branching processes), [26] (Gaussian Markov pro-

cesses) and [47, 85] (difference equations), unless otherwise stated. For those results where

proof is given in only one of two quoted sources, the result is referenced accordingly. The

chapter concludes by listing the notational conventions used in this thesis.

2.2 Discrete-time Markov chains

As the name suggests, a discrete-time Markov chain is a process that evolves in discrete time,

satisfies the Markov Property and has a discrete state space. The state space S may be finite

or countably infinite in the following discussion, and the distinction will be made clear where

necessary.
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2.2.1 Preliminary notation and classifications

Transition probabilities

Let (Xt : t ≥ 0) be a discrete-time Markov chain on the set S, and let this chain be homogeneous

in time. We may think of this chain of random variables as marking the state of a notional

particle at times t = 0, 1, 2, . . . , where the particle is said to make a transition, or ‘jump’,

at these times. The transition probabilities that govern these jumps are the elements of the

transition matrix P = (pij : i, j ∈ S), where pij = Pr(Xt+1 = j|Xt = i). Similarly, the t-step

transition probabilities are the elements of the t-step transition matrix P (t) =
(

p
(t)
ij : i, j ∈ S

)

,

where p
(t)
ij = Pr(Xt = j|X0 = i). These matrices are stochastic matrices, which is to say that

their entries are non-negative and their row sums equal 1. For the t = 1 case, we have that

P (1) = P , and for the t = 0 case, we use the convention that p
(0)
ij = δij (the Kronecker delta) so

that P (0) = I = P 0 (the identity matrix, I). Indeed, we have the following simple result.

Proposition 2.1 The t-step transition matrix is equal to t-th power of P . That is, P (t) =

P t (t ≥ 0), and thus p
(t)
ij is equal to the (i, j)-th entry of P t.

Letting p(t) =
(

p
(t)
j : j ∈ S

)

denote the distribution of Xt, that is, p
(t)
j = Pr(Xt = j), it follows

from Proposition 2.1 that p(t) = p(0)P t (t ≥ 0).

Recurrent states and transient states

The number of times the particle visits a particular state depends on whether the state is

recurrent or transient.

Definition 2.3 State i is called recurrent if Pr(Xt = i for some t ≥ 1|X0 = i) = 1, otherwise

it is called transient.

Having started in a recurrent state i, the particle will return to this state with probability 1 and

return to this state infinitely often. A transient state is visited only a finite number of times.

Before we can describe recurrence and transience in terms of the transition probabilities, we

define the generating functions

Pij(z) =
∞
∑

t=0

ztp
(t)
ij and Fij(z) =

∞
∑

t=0

ztf
(t)
ij , (2.2)
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where p
(t)
ij is the t-step transition probability, as before, and

f
(t)
ij = Pr(Xt = j, Xt−1 6= j, . . . , X2 6= j, X1 6= j, |X0 = i)

is the probability that the first visit to state j, having started in state i, occurs at time t. By

convention, we set f
(0)
ij = 0 for all i and j.

Theorem 2.1 ([35])

(a) Pii(z) = 1 + Fii(z)Pii(z),

(b) Pij(z) = Fij(z)Pjj(z) if i 6= j.

Using this result, we can describe recurrence and transience in terms of
(

p
(t)
ij : t ≥ 0

)

as follows.

Note that the quantity fij =
∑∞

t=0 f
(t)
ij is the probability that, having started in state i, the

particle ever visits state j.

Corollary 2.1

(a) If
∑∞

t=0 p
(t)
jj = ∞, then state j is recurrent and

∑∞
t=0 p

(t)
ij = ∞ for all i such that fij > 0.

(b) If
∑∞

t=0 p
(t)
jj < ∞, then state j is transient and

∑∞
t=0 p

(t)
ij < ∞ for all i.

Corollary 2.2 For a transient state j, we have that p
(t)
ij → 0 as t → ∞ for all i.

Of course, in terms of the quantity fjj =
∑∞

t=0 f
(t)
jj , state j is recurrent if and only if fjj = 1

and state j transient if and only if fjj < 1.

Mean recurrence time

Let Ti = inf{t ≥ 1 : Xt = i} denote the first passage time to state i, noting that the infimum of

the empty set is equal to ∞. We are particularly interested in the special case where Ti = ∞
since this case implies that the process never reaches state i. For example, Pr(Ti = ∞|X0 =

i) > 0 if and only if i is transient, and therefore E(Ti|X0 = i) = ∞ in this case. Noting that

f
(t)
ii = Pr(Ti = t|X0 = i), we present the following definition.

Definition 2.4 The quantity µi = E(Ti|X0 = i) is called the mean recurrence time of state i.

We have that µi =
∑∞

t=0 tf
(t)
ii if i is recurrent and µi = ∞ if i is transient.
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It may be that µi = ∞ for a recurrent state i and so we present another definition.

Definition 2.5 A recurrent state i is called

(a) null-recurrent if µi = ∞, or

(b) positive-recurrent if µi < ∞.

The following result concerns the transition probabilities.

Theorem 2.2 For a null-recurrent state i, we have that p
(t)
ii → 0 as t → ∞ and, as a result,

p
(t)
ji → 0 for all j.

The period of a state

Another property associated with a state is its period.

Definition 2.6 The period d(i) of state i is the greatest common divisor of the set of possible

return times to state i. State i is said to be periodic if d(i) > 1 or aperiodic if d(i) = 1.

Therefore state i is aperiodic if the chain can return in 1, 2, 3, . . . time-steps, since the greatest

common divisor of these epochs is 1. We need only concern ourselves with aperiodic states.

Class structure

We begin with the following definition.

Definition 2.7 State j is said to be accessible from state i (written as i → j) if p
(t)
ij > 0 for

some t ≥ 0. If both i → j and j → i, then i and j are said to communicate (written as i ↔ j).

Recalling that p
(0)
ii = 1, then the t = 0 case implies that i ↔ i for all i ∈ S. If i ↔ j and j ↔ k,

it is a simple matter to show that i ↔ k. Indeed, the relation ↔ is an equivalence relation

on the set S and S therefore partitions into one or more disjoint equivalence classes (sets) of

communicating states.

Theorem 2.3 If i ↔ j, then

(a) i is recurrent (transient) if and only if j is recurrent (transient),

(b) i and j have the same period.
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We can therefore talk of a recurrent (or transient) class and the period of a class.

Definition 2.8 If the state space S forms a single communicating class, then the chain itself

is called irreducible.

A class may have the additional property that it is closed.

Definition 2.9 A class C is called closed if pij = 0 for all i ∈ C and j /∈ C. If a closed class

contains a single state i, then i is called an absorbing state.

That is, if the particle jumps into a closed class, it remains in that class for ever.

Corollary 2.3 Every recurrent class is closed.

Corollary 2.4 Every finite closed class is recurrent.

A countably infinite closed class is not necessarily recurrent; it may be transient.

Corollary 2.5 For the special case where S is a finite set, at least one state is recurrent and

all recurrent states are positive-recurrent.

Therefore, if S is finite and irreducible, the chain is positive-recurrent. Finally, we summarise

the difference between finite and countably infinite state spaces by using the following result.

Theorem 2.4 ([35]) The representation S = Q∪C1∪C2∪. . . is a unique partition of the state

space S, where Q is the set of transient states and C1, C2, . . . are closed classes of recurrent

states.

If the chain begins in one of the recurrent classes C1, C2, . . . , then the chain will remain in that

particular class for ever. If the chain begins in the set of transient states Q, then the size of Q

is important: if Q is finite, the chain will eventually transition into one of the recurrent classes,

while if Q is countably infinite, the chain may either transition into a recurrent class or remain

in Q forever.
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2.2.2 Stationary distributions

The previous section defined many of the important concepts associated with discrete-time

Markov chains. Here, and in the following section, we consider some important distributions

of these processes.

We begin by defining the term stationary distribution.

Definition 2.10 Let π = (πj : j ∈ S) be a vector such that πj ≥ 0 for all j and
∑

j∈S πj = 1.

If this vector satisfies π = πP , then π is called a stationary distribution of the chain.

The term ‘stationary’ is used since, if X0 has distribution π, then Xt has distribution π for all

t ≥ 1. For irreducible chains in particular, we have the following result.

Theorem 2.5 An irreducible chain has a stationary distribution π if and only if all the states

are positive-recurrent. Furthermore, the stationary distribution π of an irreducible positive-

recurrent chain is unique and its entries (πj : j ∈ S) are given by πj = 1/µj for all j.

Thus transient chains and null-recurrent chains do not have stationary distributions while a

(unique) stationary distribution π exists for positive-recurrent chains. For the case where an

irreducible chain is aperiodic, the following result describes the limiting (t → ∞) behaviour of

the transition probabilities and provides an important connection with stationary distributions.

Theorem 2.6 For an irreducible aperiodic chain, limt→∞ p
(t)
ij = 1/µj for all i and j.

If state j is transient or null-recurrent, then µj = ∞ and it follows that p
(t)
ij → 0; Theorem 2.6

clearly agrees with Corollary 2.2 and Theorem 2.2. For positive-recurrent and aperiodic chains,

Theorem 2.5 together with Theorem 2.6 tell us that p
(t)
ij → πj = 1/µj, where πj is that given by

the unique stationary distribution. Thus a proper limiting distribution exists in the positive-

recurrent case and it is equal to the unique stationary distribution of the chain.

Remark. A number of irreducible aperiodic chains will be constructed in later chapters,

where some are defined on finite state spaces while others are defined on countably infinite

state spaces. The finite chains are positive-recurrent (Corollary 2.5) and so have a unique

stationary (and limiting) distribution. The countably infinite chains cannot not be classified

so easily because it is not immediately obvious whether the chains are transient, null-recurrent

or positive-recurrent. In chapter 5, we draw upon branching theory (section 2.3) to determine

conditions under which a proper limiting distribution exists for countably infinite chains.
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2.2.3 Quasi-stationary distributions

Consider a discrete-time Markov chain (Xt : t ≥ 0) that takes values in S = {0} ∪ Q, where

state 0 is an absorbing state and Q is a communicating class of transient states from which 0

is accessible. Of course, if the process begins in state 0, it will remain in that state forever.

It is not surprising, then, that there exists a unique stationary distribution π given by π0 = 1

and πj = 0 (j ∈ Q). However, stationary distributions are not particularly useful in the

context of absorbing chains since they do not say anything about the behaviour of the process

before absorption occurs. Instead, it is more useful to study the process conditional on non-

absorption and talk of stationary conditional distributions, or, as we call them, quasi-stationary

distributions.

Suppose that our Markov chain reaches the absorbing state with probability 1. Recalling

that p(t) = (p
(t)
j : j ∈ S) denotes the (unconditional) distribution of the chain at time t, we let

d(t) = (d
(t)
j : j ∈ Q) denote the distribution at time t conditional on non-absorption, that is,

d
(t)
j = Pr(Xt = j|Xt 6= 0) =

Pr(Xt = j, Xt 6= 0)

Pr(Xt 6= 0)
=

p
(t)
j

1 − p
(t)
0

.

We now state the following definition.

Definition 2.11 Let v = (vj : j ∈ Q) be a distribution such that vj ≥ 0 and
∑

j∈Q vj = 1. If

this vector satisfies vPQ = ρv, where PQ is the transition matrix P restricted to Q and ρ is a

real constant, then v is called a quasi-stationary distribution of the chain.

The term ‘quasi-stationary’ is appropriate since, if X0 has conditional distribution v, then Xt

has conditional distribution v for all t ≥ 1. Darroch and Seneta [21] proved the following result

for finite chains.

Theorem 2.7 For the case where Q is finite and aperiodic, the chain has a unique quasi-

stationary distribution v. There also exists a proper limiting conditional distribution in this

case, where limt→∞ d
(t)
j = vj and vj is that given by the quasi-stationary distribution.

Thus the limiting conditional distribution is equal to the (unique) quasi-stationary distribution

in the finite case. Indeed, it follows from the theory of non-negative matrices (see for example

Seneta [86]) that v is the normalised left-eigenvector of PQ corresponding to the maximal real
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eigenvalue of PQ (the ‘Perron-Frobenius’ eigenvalue). The corresponding result for countably

infinite and aperiodic chains was proved by Seneta and Vere-Jones (see Theorem 3.1 of [87]):

assuming that absorption occurs with probability 1, then, if Q is R-positive and R > 1 (the con-

cept of R-positivity will be defined shortly), the chain has a unique quasi-stationary distribution

and there exists a proper limiting conditional distribution which is equal to the quasi-stationary

distribution. Seneta and Vere-Jones also proved a similar result that takes absorption from a

particular initial state into account (see Theorem 3.2 of [87]). For the matrix Q to be R-positive,

one must show that limt→∞ p
(t)
ij Rt > 0, where R is the common radius of convergence of the

generating functions Pij(z) =
∑

t→∞ ztp
(t)
ij (i, j ∈ Q). These conditions hold automatically in

the finite case but are, in general, difficult to establish for infinite matrices. We do not attempt

to perform such calculations in this thesis and instead draw upon branching theory (section 2.3)

to determine conditions under which a proper limiting conditional distribution exists.

Remark. In later chapters, we shall examine a number of chains for which S = {0}∪Q. State

0 will always represent total extinction of a population, however this state will be absorbing

when we assume that immigration from an external source is not possible.

2.2.4 Time-inhomogeneous chains

The discussion so far concerns discrete-time Markov chains that satisfy the property of time-

homogeneity. Here we consider a particular type of inhomogeneous chain and demonstrate how

it can be interpreted as a set of time-homogeneous chains.

Let (Xt : t ≥ 0) be a discrete-time Markov chain on the set S, where S may be either finite

or countably infinite. For each time t, let P (t, t+1) = (pij(t, t+1) : i, j ∈ S) now denote the 1-

step transition matrix and pij(t, t + 1) = Pr(Xt+1 = j|Xt = i) the 1-step transition probability.

If there exists a integer M > 1 such that

pij(t, t + 1) = pij(t + M, t + M + 1) for all i, j ∈ S and for all t ≥ 0,

in which case

P (t, t + 1) = P (t + M, t + M + 1) for all t ≥ 0,

then the chain effectively cycles through M transition matrices over time. If M = 2, for

example, then P (0, 1) = P (2, 3) = P (4, 5) = . . . and P (1, 2) = P (3, 4) = P (5, 6) = . . . , and so
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there are two distinct transition matrices that govern the evolution of the chain. Furthermore,

the sequences (Xt : t = 0, 2, 4, . . . ) and (Xt : t = 1, 3, 5, . . . ) define two time-homogeneous

Markov chains whose transition matrices are given by P = P (0, 1)×P (1, 2) and P = P (1, 2)×
P (0, 1), respectively. An inhomogeneous chain with ‘period’ M may therefore be observed in

a homogeneous manner in any one of M ways, and we can therefore describe the behaviour of

the homogeneous processes by using theory that was presented earlier.

Remark. We shall be using inhomogeneous Markov chains with M = 2 to model metapop-

ulation dynamics with two distinct phases, namely local extinction and colonisation. The

transition matrix of the time-homogeneous chain is either P = EC or P = CE, depending

on the timing of a the population census; E is the transition matrix that governs the local

extinction phase and C is the transition matrix that governs the colonisation phase.

2.2.5 Simulating discrete-time Markov chains

The simulations and figures included in this thesis were produced using MATLAB R© R2008a

(version 7.6.0324). Included here is the algorithm used for simulating discrete-time Markov

chains on a finite state space.

1. Initialise the transition matrix P = (pij : i, j ∈ S), where S is some finite set. Suppose

the states are labelled 1, 2, . . . , |S|.

2. Evaluate the matrix U = (uij : i, j ∈ S), where uij =
∑j

k=1 pik. Let ui be the vector that

denotes the i-th row of U .

3. Set t = 0 and generate the initial value X0.

4. Increment t by 1. Generate the random variable Xt from the uXt−1 distribution.

5. Repeat step 4 up to some time horizon T . The vector (X0, X1, . . . , XT ) is a simulated

realisation of the chain.

For the case where S is countably infinite, steps 1 and 2 of the algorithm were ignored. At

step 4, random variables were generated from binomial and Poisson distributions according to

the structure defined by equation (6.26).
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2.3 Branching processes

A branching process is a stochastic process that evolves in terms of sums of discrete random

variables. These processes may be formulated in continuous time or discrete time, however

we shall be concerned with discrete-time formulations. In particular, we examine the simplest

type of discrete-time branching process, called a Galton-Watson process (so named after F.

Galton’s and H. W. Watson’s famous efforts to calculate the probability of the extinction of

family names [90]), and one of its variants, the Galton-Watson-Immigration process. In this

context, we no longer visualise a notional particle jumping around on a set of states, but an

evolving population of particles whose generations follow a discrete-time structure.

2.3.1 The Galton-Watson process

Imagine a population of particles that evolve between discrete time intervals. During any

given time interval, suppose that the particles do not interact but that each particle splits

into (or is otherwise replaced by) a random number ξ of offspring particles. Each particle in

each generation produces offspring according to the same probability law, called the offspring

distribution, and this distribution is denoted by p = (pj : j = 0, 1, 2, . . . ), where pj = Pr(ξ = j).

We shall henceforth assume that p0 > 0 and 0 < p0+p1 < 1 to avoid trivial cases. If ξ = 0, then

the particle has simply died without producing any offspring. Letting Xt denote the population

size at time t, we have that

Xt+1 = ξ
(t)
1 + ξ

(t)
2 + · · · + ξ

(t)
Xt

(t ≥ 0), (2.3)

where ξ
(t)
1 , ξ

(t)
2 , . . . are independent and identically distributed (iid) random variables with com-

mon law p; the term ξ
(t)
j being the number of offspring produced by the j-th particle of the t-th

generation. The sequence (Xt : t ≥ 0) defined by (2.3) is called a Galton-Watson process. This

process can be modified in various ways to account for interactions between particles, over-

lapping generations and even multi-type populations (for examples see [38]), however we shall

examine one particular modification in section 2.3.2 that accounts for immigrating particles.

The discussion above shows that a Galton-Watson process takes values in S = {0, 1, 2, . . .},
satisfies the Markov Property and is homogeneous in time, and is therefore a particular type
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of discrete-time Markov chain defined on a countably infinite state space. We thus interpret

the transition probability pij as the probability that j offspring particles are produced from

i particles in one time interval, where state 0 represents population extinction. Indeed, state

0 is absorbing, the remaining states are transient and 0 is accessible from the transient class.

However, instead of using the transition matrix P = (pij : i, j ∈ S) to analyse the behaviour of

the process, it is much easier to use probability generating functions. Let

g(z) =
∑

j

zjpj

(

|z| ≤ 1
)

be the probability generating function (pgf) of the offspring distribution. Since the numbers of

offspring on the right-hand side of (2.3) are iid, we can write E
(

zXt+1 |Xt = i
)

=
∑

j zjpij = g(z)i

for all i ≥ 1 and t ≥ 0. Letting gt(z) denote the t-th functional iterate of g, it is a simple matter

to show that

E
(

zXt|X0 = 1
)

=

∞
∑

j=0

zjp
(t)
1j = gt(z)

and

E
(

zXt|X0 = i
)

=

∞
∑

j=0

zjp
(t)
ij = [gt(z)]i,

where p
(t)
ij denotes the t-step transition probability, as before. The last expression shows that

the process is effectively made up of i independent branches, where one branch stems from one

of the i individuals in the 0-th generation. Let µ and σ2 denote the mean and variance of the

offspring distribution, respectively. Again, it is a simple matter to show that E(Xt|X0) = X0µ
t

and

Var(Xt|X0) =











X0σ
2t if µ = 1

X0σ
2(µt − 1)µt−1/(µ − 1) if µ 6= 1.

(2.4)

It follows that E(Xt) = E(X0)µ
t and so, as t → ∞, the average population size decreases to

zero if µ < 1, remains constant if µ = 1 or grows to infinity if µ > 1. The process is called

subcritical, critical or supercritical according to whether µ < 1, µ = 1 or µ > 1, respectively.

An important quantity associated with Galton-Watson processes is η, the probability that

a population starting with one particle ever goes extinct. If the process began with i particles,

then the extinction probability is ηi. We have the following result.



2.3 Branching processes 27

Theorem 2.8 The extinction probability η of a Galton-Watson process is the smallest non-

negative root of the equation z = g(z). We have that η = 1 if µ ≤ 1 and η < 1 if µ > 1.

Thus the population is certain to go extinct if the mean number of offspring produced by each

particle is less than or equal to 1. If the mean of the offspring distribution is greater than 1,

then there is a chance the population will not go extinct. Indeed, the trivial case where η = 0

does not apply here; our assumption that p0 > 0 implies that η > 0. In the subcritical case, we

have Yaglom’s [95] famous result.

Theorem 2.9 (Yaglom’s Theorem) If µ < 1, then limt→∞ Pr(Xt = j|Xt > 0) = bj exists

and b = (bj : j = 1, 2, . . . ) defines a proper distribution (a limiting conditional distribution);

the generating function B(z) =
∑

j zjbj satisfies B(g(z)) = µB(z) + (1 − µ).

The next theorem provides more general results. Note that g ′(z) denotes the derivative of g

with respect to z.

Theorem 2.10 Let T represent the extinction time of a Galton-Watson process.

(a) If µ = 1, then limt→∞ Pr(Xt = j|t < T < ∞) = 0.

(b) If µ 6= 1, then limt→∞ Pr(Xt = j|t < T < ∞) = bj exists and b = (bj : j = 1, 2, . . . )

defines a proper distribution (a limiting conditional distribution). The generating function

B(z) =
∑

j zjbj is the unique solution of

B

(

g(zη)

η

)

= g ′(η)B(z) + 1 − g ′(η). (2.5)

Notice that Theorem 2.10 conditions on the event that absorption ultimately occurs (T < ∞)

and that part (b) applies to both subcritical and supercritical processes. Yaglom’s Theorem only

accounts for the subcritical case, where η = 1 and Pr(Xt = j|Xt > 0) ≡ Pr(Xt = j|t < T < ∞).

Although the limiting conditional distributions exist in the subcritical and supercritical cases,

it is generally a difficult task to solve (2.5) explicitly for this distribution.

2.3.2 The Galton-Watson process with immigration

Consider the population of particles described above and suppose that, for each t, a random

number Yt of immigrant particles join the population during the t-th interval. Further suppose
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that the immigrant population size is independent of the current population size and that the

immigrating particles produce offspring according to the same law p as the resident population.

Let h(z) be the pgf of the immigrant population size and suppose that h(0) < 1, in order to

avoid trivial cases. We have that

Xt+1 = ξ
(t)
1 + ξ

(t)
2 + · · · + ξ

(t)
Xt

+ Yt+1 (t ≥ 1, X0 = Y0), (2.6)

where ξ
(t)
1 , ξ

(t)
2 , . . . are iid with common pgf g(z), as before, and Y0, Y1, . . . are iid with pgf h(z).

The sequence (Xt : t ≥ 0) defined by (2.6) is thus called a Galton-Watson-Immigration process.

Again, we can describe the process in terms of generating functions. Equation (2.6) tells us that

E
(

zXt+1 |Xt = i
)

= g(z)ih(z) for all i ≥ 0 and t ≥ 0 and, upon letting Gt(z) = E
(

zXt |X0 = 1
)

denote the pgf of Xt conditioned on there being one particle initially, we have that

Gt+1(z) = Gt(g(z))h(z) (t ≥ 0)

and, hence, Gt(z) = gt(z)
∏t−1

k=0 h(gk(z)). The following result provides conditions under which

a proper limiting distribution exists.

Theorem 2.11

(a) If µ > 1, or µ = 1 and σ2 < ∞, then limt→∞ Pr(Xt = j) = 0 (0 < j < ∞).

(b) If 0 < h ′(1) < ∞ and µ < 1, then limt→∞ Pr(Xt = j) = dj exists and d = (dj : j ∈ S)

defines a proper distribution (limiting distribution).

Notice how part (b) compares with Yaglom’s Theorem (Theorem 2.9): if µ < 1, then a proper

limiting conditional distribution exists for a Galton-Watson process and a proper limiting dis-

tribution exists for a Galton-Watson-Immigration process. The following more general result

was proved by Foster and Williamson [27].

Theorem 2.12 Consider a Galton-Watson-Immigration process (Xt : t ≥ 0) with µ ≤ 1. Then

a proper limiting distribution exists if and only if

∫ 1

0

1 − h(s)

g(s) − s
ds < ∞ .
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2.4 Gaussian Markov processes

This section concerns a special type of Gaussian process called a Gaussian Markov process.

Gaussian processes take values in continuous state spaces and are formulated in either discrete-

time or continuous-time, however we shall, once again, be completely concerned with discrete-

time formulations. It will soon become clear that Gaussian processes are described in terms

of multivariate normal (Gaussian) distributions and that Gaussian Markov processes have an

autoregressive structure. We therefore begin by defining the term autoregressive process and

then follow with more formal definitions concerning Gaussian processes.

2.4.1 Autoregressive processes

Autoregressive processes are simple stochastic processes widely used to model and analyse time

series data (see for example Chatfield [17]).

Definition 2.12 A stochastic discrete-time process (Xt : t ≥ 0) is called an autoregressive

process of order p, or an AR-p process, if

Xt = a1Xt−1 + a2Xt−2 + · · ·+ apXt−p + Et (t ≥ 1),

where a1, . . . , ap are constants and (Et) are iid random variables with mean 0 and variances σ2.

The definition clearly shows that the current value of an AR-p process is a weighted linear

sum of the previous p values, and we may therefore think of the random variable Xt as being

‘regressed’ on Xt−1, . . . , Xt−p. The random variable Et is commonly referred to as the “error”

and σ2 as the “error variance”, and we shall adopt these conventions.

The simplest autoregressive process is of course the AR-1 process. The following definition

outlines an important extension in this case.

Definition 2.13 Let Xt = (Xt1 , . . . , Xtd)
⊤ be a vector of d random variables indexed by t. The
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discrete-time stochastic process (Xt : t ≥ 0) defined by

Xt1 = a11Xt−11 + · · · + a1dXt−1d
+ Et1

Xt2 = a21Xt−11 + · · · + a2dXt−1d
+ Et2

...

Xtd = ad1Xt−11 + · · · + addXt−1d
+ Etd ,

where (aij) are constants and Et1 , . . . , Etd are iid random variables with zero mean and variance

σ2, is called a d-variate autoregressive process of order 1. In matrix form we write Xt+1 =

AXt + Et, where A = (aij) is the d × d matrix of constants and Et = (Et1 , . . . , Etd)
⊤ is the

vector of errors at time t.

The d-variate AR-1 process is an example of a multivariate autoregressive process. Multivariate

autoregressive processes are commonly used to model several time series which, for example,

may result by measuring several components of a system simultaneously or by measuring a

system with a feedback loop several times. In chapter 6, we will show that multivariate AR-

1 processes arise due to an underlying deterministic process which has a stable limit cycle

(section 2.5).

2.4.2 Gaussian processes

We are now ready to discuss Gaussian processes more formally.

Definition 2.14 A discrete-time stochastic process (Xt : t ≥ 0) is called a Gaussian process if

the finite-dimensional distributions of the process are Gaussian.

That is, (Xt : t ≥ 0) is a Gaussian process if (Xt1 . . .Xtk) ∼ N(µ, Σk) for any finite sequence

of times t1, . . . , tk, where N(µ, Σk) denotes the multivariate Gaussian distribution with mean

vector µ = (EXt1 , . . . , EXtk) and covariance matrix Σk = (σij), σij = Cov(Xti , Xtj ). A

Gaussian process is thus characterised by its mean µt = E(Xt) and covariance structure.

The following result outlines the conditions for which a Gaussian process satisfies the Markov

Property. Note that ρ(Xs, Xt) = Cov(Xs, Xt)
(

VarXs VarXt

)−1/2
denotes the correlation of Xs

and Xt.
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Theorem 2.13 Let (Xt : t ≥ 0) be a Gaussian process. Then the following two conditions are

necessary and sufficient for this process to satisfy the Markov Property.

(i) For any finite sequence of times t1, . . . , tk, E(Xtk |Xt1 . . .Xtk−1
) = E(Xtk |Xtk−1

).

(ii) For s ≤ u ≤ t, the correlations satisfy ρ(Xs, Xt) = ρ(Xs, Xu)ρ(Xu, Xt).

If the two conditions hold, then the process is called a Gaussian Markov process. The following

more general result states that a Gaussian process is a Gaussian Markov Process if and only if

the process is autoregressive.

Theorem 2.14 A Gaussian process (Xt : t ≥ 0) is a Gaussian Markov process if and only if

relations of the form

X0 ∼ N(µ0, v0) and Xt+1 = at + btXt + Et (t ≥ 1) (2.7)

hold, where (at) and (bt) are both sequences of constants and (Et) are independent N(0, σ2
t )

random variables with (σ2
t ) being a sequence of positive constants.

Letting vt = VarXt, a Gaussian Markov process thus satisfies at = µt+1 − btµt, vt+1 = b2
t vt + σ2

t

and, given Xt = x, Xt+1 ∼ N(at + btz, σ
2
t ). If X0 = x is given, then µ0 = x and v0 = 0. The

covariance structure is evaluated by iterating (2.7).

Remark. The Gaussian Markov processes encountered in chapter 6 have X0 = x given and

at = 0 for all t ≥ 0. In this case, we have that

µt = x

t−1
∏

u=0

bu , vt =

t−1
∑

u=0

σ2
u

t−1
∏

v=u+1

b2
v , Cov(Xt, Xt+s) = vt

t+s−1
∏

u=t

bu , (s ≥ 0),

thus explicitly showing the mean and covariance structure of the process. In some cases the

sequences (bt) and (σ2
t ) are independent of the time variable t, and the Gaussian Markov process

is then simply referred to as an AR-1 process (Definition 2.12).

2.5 Difference equations

In the previous chapter, we explained that the difference equation model (1.2) is the natural

discrete-time analogue of Verhulst’s continuous-time population model (1.1). In later chapters,
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we will encounter several more difference equation models because they arise as deterministic

approximations of stochastic discrete-time (Markov chain) population models. Each of these

deterministic models exhibit the form

xt+1 = f(xt) (t = 0, 1, 2, . . . ), (2.8)

where xt represents the state of the system at time t and f is some function of interest. It is

therefore the purpose of this section to present theory as it relates to studying systems described

by first-order difference equations.

First we define the fundamental concepts associated with first-order difference equations.

In the following discussion, f refers to the function that defines (xt : t ≥ 0) through (2.8).

Definition 2.15 A number u is called a fixed point of f if f(u) = u.

Definition 2.16 A number u is called a periodic fixed point of f if there exists an integer d > 1

such that fd(u) = u, where fd is the the d-th functional iterate of f . If such an integer exists,

then u is said to have a period of d and the sequence (u, f(u), f2(u), . . . , fd−1(u)) is called a

d-cycle or, more simply, a limit cycle.

Thus fixed points are constant solutions of (2.8) and periodic solutions of (2.8) are determined

by periodic fixed points. The stability of a fixed point is described as follows.

Definition 2.17 Let u be a fixed point of f .

(a) If there exists a number ǫ such that limt→∞ xt = u when |x0 − u| < ǫ, then u is called

stable.

(b) If there exists a number ǫ such that, when 0 < |x0 − u| < ǫ, |xt − u| > ǫ for some t > 0,

then u is called unstable.

Part (a) defines stability in a local sense since convergence to a stable fixed point u is dependent

on the system (2.8) starting near u (if convergence occurs for every possible initial value then

stability is defined in a global sense). A periodic fixed point of f with period d can also be

described as stable or unstable provided part (a) or (b), respectively, is satisfied under iteration

of fd. The system (2.8) is therefore ‘attracted’ to stable fixed points (stable periodic fixed

points) and ‘repelled’ by unstable fixed points (unstable periodic fixed points).
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Once the fixed points of f have been identified, it is then a simpler matter of using the

following theorem to establish their stability.

Theorem 2.15 Suppose that u is a fixed point of f and that f has a continuous first derivative

at u. Then u is stable if |f ′(u)| < 1 and unstable if |f ′(u)| > 1.

Similarly, a periodic fixed point of f with period d is stable if |(fd)
′(u)| < 1 or unstable if

|(fd)
′(u)| > 1. In addition, a limit cycle is said to be stable (unstable) if each point in the limit

cycle is stable (unstable).

For the case where f ′(u) = 1, we need to look at higher derivatives of f . We present the

following definition.

Definition 2.18 A fixed point u is said to be semi-stable if either (a) or (b) below applies.

(a) If u is stable for xt > u and unstable for xt < u, then u is semi-stable ‘from above’.

(b) If u is stable for xt < u and unstable for xt > u, then u is semi-stable ‘from below’.

We can now state the following result.

Theorem 2.16 ([85]) Suppose that u is a fixed point of f and that f ′(u) = 1.

(a) If f ′′(u) 6= 0, then u is semi-stable: it is semi-stable from above if f ′′(u) < 0 and semi-

stable from below if f ′′(u) > 0.

(b) If f ′′(u) = 0, then u is stable if f ′′′(u) < 0 or unstable if f ′′′(u) > 0.

It may be that a fixed point u is semi-stable from above with f only defined on the interval

[u,∞), say, in which case u is then said to be stable.

2.6 Notation

We adopt the following conventions throughout this document:

• Random variables defined with the Bernoulli, binomial, Poisson and Gaussian distribution

are denoted by Ber(p), Bin(n, p), Poi(λ) and N(µ, σ2), respectively. We will sometimes

write “X follows the Bin(n, p) law”, for example, where the notation instead refers to the

distribution of X.
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• The symbol
D→ denotes convergence in distribution and, similarly,

P→ and
r→ denote

convergence in probability and r-th mean, respectively. The symbol
D
= reads as ‘equal in

distribution’ and := reads as ‘defined as’.

• We adopt the notation f ′(x) for the derivative of f with respect to x, and we shall

sometimes write f = g ◦ h for the composition of g and h instead of the more formal

f(x) = g(h(x)). We also adopt the conventions that ( · )⊤ denotes matrix or vector

transpose and that empty products are to be interpreted as being equal to 1.

• The imaginary unit
√
−1 is denoted by i so as to distinguish it from i, which is used for

other purposes. The exponential function is denoted by exp( · ) instead of, say, e( · ) , in

order to prevent confusion with e, which is used for another purpose.

• Any variable accompanied with superscript N is indexed by the parameter N , not raised

to the power N .



Chapter 3

A Mainland Model

This chapter introduces the simplest chain binomial metapopulation model. The local extinction

and colonisation processes are both defined by binomial distributions, where the event probabil-

ities are constant and independent of the current number of occupied patches. Note that this

model was referred to as a ‘mainland-island’ model in [16, 14], however it is referred to as a

‘mainland’ model here.

3.1 Introduction

The concept of a mainland in metapopulation studies originates from MacArthur and Wilson’s

multi-species studies of a group of oceanic islands situated close to a mainland [55, 56]. A

real island network is the obvious example of a metapopulation network and so the term

‘mainland population’ [12] was naturally adopted by modellers to describe populations con-

nected to the network that were considered to be immune from extinction. Clearly, the move-

ment of individuals is an important consideration in developing models for mainland-island

networks. We divide such models into two groups: mainland models, those which account for

migration from the mainland only, and mainland-island models, which account for migration

from the mainland as well as the island network.

Considering a network of N patches connected to an outside source population (henceforth

called the mainland), the classic mainland model is given by

dx

dt
= c0(1 − x) − ex, (3.1)

where x is the proportion of occupied patches (x = n/N where n is the number of occupied

patches), c0 is the rate at which empty patches are colonised by migrants from the mainland and

35
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e is the rate at which occupied patches go extinct [40, 43]. Indeed, equation (3.1) is the classic

Ehrenfest urn model [25] in a continuous time setting: for N balls placed in two urns, x is the

proportion of balls in the first urn, c0 is the rate at which balls are added to this urn (from the

second urn) and e is the rate that balls are taken from the first urn (and placed in the second

urn). The differential equation has a unique positive equilibrium value at x∗ = c0/(c0 + e)

which, in terms of metapopulations, implies that the metapopulation (island network) never

goes extinct. If one is to account for migration from within the network of patches, the classic

law of motion is given by
dx

dt
= cx(1 − x) + c0(1 − x) − ex, (3.2)

where c is the rate that occupied patches colonise empty patches in unoccupied-occupied patch

pairs [39]. For the case where c0 = 0, (3.2) reduces to Levins’ interpretation of Verhulst’s

model for a network of N patches without a mainland [53]. For models that do not consider a

mainland, these are referred to as island models.

In this chapter, we shall concentrate on a stochastic mainland model. In particular, the

model is formulated in discrete time and exhibits a chain binomial structure that accounts

for seasonal variation. A number of analytical results are presented and I note a connection

with the discrete-time version of the classic mainland model above. The following chapter

concentrates on stochastic island and mainland-island models, which are based on the chain

binomial structure introduced here.

3.2 The chain binomial mainland model

Consider a metapopulation residing in a network of finitely-many, N , habitat patches. The

population is assumed to exhibit a seasonal dynamic whereby local extinction events occur

during a particular seasonal period whilst colonisation events occur during another seasonal

period. These periods, or phases, do not overlap and alternate over time. A census is assumed

to take place either at the end of each colonisation phase (the EC model) or at the end of each

extinction phase (the CE model).

Let nt be the number of occupied patches at census time t ∈ {0, 1, 2, . . .} and further

let (nt : t ≥ 0) be a Markov chain taking values in the set S
N

= {0, 1, . . . , N} with 1-step

transition matrix P = (pij : i, j ∈ S
N

). The transition matrices E = (eij : i, j ∈ S
N

) and
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C = (cij : i, j ∈ S
N

) govern the local extinction and colonisation phases, respectively, where

the transition probabilities are defined below. Depending on the timing of the census, we have

P = EC or P = CE. Notice that the two observation schemes correspond to time-homogeneous

observations of a time-inhomogenenous Markov chain (Section 2.2.4); we consider both schemes

in the model analysis.

The network of patches is assumed to be connected to a mainland and the reason for this

will be made clear below.

Extinction process. Suppose that the local population within each occupied patch goes

extinct with probability e (0 < e < 1) during the extinction phase and suppose that each event

is independent. Thus, given i patches are occupied at the start of this phase, the number that

survive local extinction follows a Bin(i, 1 − e) law. Therefore,

eij =











(

i
j

)

(1 − e)jei−j if j = 0, . . . , i

0 if j > i.

(3.3)

Observe that e0j = δ0j for all j ∈ S
N

.

Colonisation process. Suppose that each empty patch is colonised with probability c0

(0 < c0 ≤ 1) during the colonisation phase and that all colonisation events are independent.

Thus, given i patches are currently occupied (and hence N − i unoccupied), the number of

empty patches that are colonised during the period follows a Bin(N − i, c0) law. Therefore,

cij =











(

N−i
j−i

)

(1 − c0)
N−jcj−i

0 if j = i, i + 1, . . . , N

0 if j < i.

(3.4)

Since c0 does not depend on the current number of occupied patches, we may think of the

empty patches as being colonised by migrants from a population outside the patch network.

This source population is considered to be immune from extinction and will therefore be referred

to as a mainland population.

Transition probabilities. Notice that the matrix E is lower triangular and the matrix C

is upper triangular, however P is dense in both cases. The 1-step transition probabilities are
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therefore given by

EC: pij =

min(i,j)
∑

k=0

eikckj (3.5a)

CE: pij =
N
∑

max(i,j)

cikekj . (3.5b)

Since e00 = 1 and c00 < 1, we have that p00 < 1 and so there is a positive probability that the

Markov chain jumps out of state 0 (the state corresponding to complete extinction of the patch

network). This means that the metapopulation has a chance to recover and this formulation

supports the assumption of a mainland population which, in this case, is thought to provide

migrants that colonise each island with equal probability. Subsequently the set S
N

forms an

irreducible aperiodic class, and the Markov chain has a unique stationary (and hence limiting)

distribution (Section 2.2.2).

Remark. The model outlined above accounts for migration from a mainland population only.

In the ecological literature this model would be said to have a “source-sink” [74] structure, since

the mainland population acts as a “source population” in this case while the island populations

act as “sink populations”.

3.3 Model analysis

The stochastic mainland model admits the following chain binomial structure:

EC: nt+1 = ñt + Bin(N − ñt, c0) ñt = nt − Bin(nt, e) (3.6a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, c0). (3.6b)

I note that the CE case was interpreted by Daley and Gani [20, see equation 4.4.11] as a

chain binomial SIS epidemic model that incorporates immigration-emmigration episodes. The

results stated in this chapter apply equally to their model, with nt interpreted as the number

of susceptible individuals in a closed population with ceiling N .

The model analysis begins by evaluating the 1-step distribution of nt+1. Let G define the

probability generating function (pgf) of nt+1 conditional on nt, that is G(z) = E(znt+1 |nt = i).
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For the EC model, nt+1 = ñt + B̃, where ñt ∼ Bin(i, 1 − e) and B̃ ∼ Bin(N − ñt, c0), and so

G(z) = E(znt+1|nt = i) = E

(

E(zñt+B̃|ñt, nt = i)|nt = i
)

= E

(

zñtE(zB̃ |ñt, nt = i)|nt = i
)

by conditional expectation. By observing the pgf of B̃ and ñt in turn, we simplify the last

expression as follows:

G(z) = E
(

zñt(1 − c0 + c0z)N−ñt |nt = i
)

= (1 − c0 + c0z)N
E
(

(z/(1 − c0 + c0z))ñt|nt = i
)

= (1 − c0 + c0z)N (e + (1 − e)z/(1 − c0 + c0z))i

= (e(1 − c0) + [1 − e(1 − c0)]z)i(1 − c0 + c0z)N−i.

For the CE model, nt+1 ∼ Bin(i + B̃, 1 − e), where B̃ ∼ Bin(N − i, c0), and so

G(z) = E

(

E(znt+1 |B̃, nt = i)|nt = i
)

= E

(

(e + (1 − e)z)i+B̃|nt = i
)

= (e + (1 − e)z)i
E

(

(e + (1 − e)z)B̃ |nt = i
)

= (e + (1 − e)z)i(1 − c0 + c0(e + (1 − e)z))N−i

= (e + (1 − e)z)i(1 − c0(1 − e) + c0(1 − e)z)N−i.

Therefore G(z) = (1 − p + pz)i(1 − q + qz)N−i in both cases where

EC: p = 1 − e(1 − c0) q = c0 (3.7a)

CE: p = 1 − e q = c0(1 − e). (3.7b)

The pgf G is in the form of two binomial pgfs multiplied together and this establishes the

following result.

Lemma 3.1 Given nt = i, nt+1
D
= B1 + B2 where B1 ∼ Bin(i, p) and B2 ∼ Bin(N − i, q) are

independent binomial random variables.

Lemma 3.1 says that each of the currently occupied patches (i of them) behave as if they

remain occupied with probability p and each of the N − i unoccupied patches behave as though
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they become occupied with probability q, all patches being affected independently. The param-

eters p and q may therefore be interpreted as ‘effective’ survival and colonisation probabilities,

respectively.

We now evaluate the distribution of nt conditioned on the initial (t = 0) number of occupied

patches. Suppose that n0 = i and let Gt define the pgf of nt conditional on the initial value,

that is Gt(z) = E(znt |n0 = i). Then, G0(z) = zi and, from Lemma 3.1, we have

Gt+1(z) = E
(

(1 − p + pz)nt(1 − q + qz)N−nt|n0 = i
)

= (1 − q + qz)N
E

((

1 − p + pz

1 − q + qz

)nt

|n0 = i

)

= (1 − q + qz)N Gt

(

1 − p + pz

1 − q + qz

)

, (3.8)

for all t ≥ 0. The pgf G was shown to be in the form of two binomial pgfs multiplied together

and we therefore intuit that

Gt(z) = (1 − pt + ptz)i(1 − qt + qtz)N−i, (3.9)

for all t ≥ 0, where pt and qt are time-dependent binomial parameters. Clearly (3.9) is true for

t = 0 and t = 1 because p0 = 1 and q0 = 0 (since G0(z) = zi), while p1 = p and q1 = q (since

G1 ≡ G). Now suppose that (3.9) is true for some fixed t ≥ 0. Substitution in to (3.8) then

gives

Gt+1(z) = (1 − q + qz)N

(

1 − pt + pt

(

1 − p + pz

1 − q + qz

))i(

1 − qt + qt

(

1 − p + pz

1 − q + qz

))N−i

= (1 − (q + apt) + (q + apt)z)i (1 − (q + aqt) + (q + aqt)z)N−i ,

where we have set a = p− q = (1− e)(1− c0), 0 < a < 1, the same for both EC and CE cases.

By the inductive hypothesis, pt+1 = q + apt and qt+1 = q + aqt, which solve to give

qt = q∗(1 − at) and pt = qt + at (t ≥ 0), (3.10)

where we have set q∗ = q/(1 − a), 0 < q∗ < 1. By Mathematical Induction, equation (3.9) is

proved where the sequences (pt) and (qt) are defined by (3.10). The result below follows.
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Theorem 3.1 Given n0 = i, nt
D
= B

(1)
t +B

(2)
t where B

(1)
t ∼ Bin(i, pt) and B

(2)
t ∼ Bin(N − i, qt)

are independent binomial random variables.

Again, the behaviour of the Markov chain may be re-stated in terms of independent binomial

random variables. It is as if the i initially occupied patches remain occupied with probability

pt and the N − i initially unoccupied patches are occupied with probability qt, all patches being

affected independently. We may conclude that E(nt|n0 = i) = ipt + (N − i)qt and, since B
(1)
t

and B
(2)
t are independent, Var(nt|n0 = i) = ipt(1 − pt) + (N − i)qt(1 − qt).

The equilibrium (t → ∞) behaviour of nt is simple to describe. Notice that limt→∞ at = 0

and therefore the sequences (pt) and (qt) have common limit q∗. Given n0 = i, it is clear from

Theorem 3.1 that B
(1)
t

D→ B(1) ∼ Bin(i, q∗) and B
(2)
t

D→ B(2) ∼ Bin(N−i, q∗), as t → ∞, because

the corresponding sequences of characteristic functions converge point-wise to the appropriate

limits. The random variables B
(1)
t and B

(2)
t are independent (for each t) and hence B(1) and B(2)

are independent also. Moreover, B
(1)
t +B

(2)
t

D→ B(1)+B(2) and, clearly, B(1)+B(2) ∼ Bin(N, q∗).

The following Corollary is thus established.

Corollary 3.1 As t → ∞, nt
D→ Bin(N, q∗).

Thus the equilibrium (and stationary) distribution of the Markov chain is a binomial distri-

bution with parameters N and q∗; it is as if each of the N patches are occupied with probability

q∗. This result is demonstrated in Figure 3.1 for the EC model, along with a simulation of the

random process (the algorithm for simulating a finite chain is provided in Section 2.2.5). Indeed,

the significance of the parameters q∗ and a are now clear: q∗ is the equilibrium proportion of

occupied patches and a (see Theorem 3.1) is the rate of (geoemetric) approach to equilibrium.

Remembering that q∗ = q/(1 − a), where q is given by (3.7) and a = (1 − e)(1 − c0) for both

EC and CE models, the equilibrium proportion of occupied patches is therefore smaller for the

CE case by a factor of 1− e. The long-term proportions fluctuate between high and low values

since the local extinction and colonisation processes are assumed to occur at distinct periods

in time.

Remark. There are obvious connections between our chain binomial mainland model and

the binomial AR-1 model proposed by McKenzie [62] (see also McKenzie [63] and Weiß [92]).

Recall that, given nt = i, nt is equal in distribution to B1 + B2 where B1 ∼ Bin(i, p) and
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Figure 3.1: A single simulation of the EC model with N = 20,
e = 0.01 and c0 = 0.05, starting with n0 = 2 patches occu-
pied. The number nt of occupied patches is plotted at times
t = 0, . . . , 200. The bar graph in green is the Bin(N, q∗) sta-
tionary distribution (q∗ = 0.84034).

B2 ∼ Bin(N − i, q) are independent binomial random variables. Then, if we consider nt+1 =

Bin(nt, p) + Bin(N − nt, q) as a time-series model, the process (nt, t ≥ 0) defined by this model

is a binomial AR-1 process where p and q are known as the ‘binomial thinning’ parameters. In

fact, Weiß proved that the stationary distribution of a binomial AR-1 process follows a single

binomial law [92, Lemma 1.1]. Our result (Corollary 3.1) accords exactly with Weiß’ result,

though note that our proof is more detailed: we observed the limiting behaviour of the t-step

conditional state distribution. Weiß did not evaluate the t-step distribution, though perhaps it

did not occur to him to evaluate such a distribution since he was only concerned with studying

stationary autoregressive processes.

3.3.1 Explaining the rescue effect

The term rescue effect [13, 40] is used to describe a decrease in local extinction rate when

the immigration rate is high. I note a connection between the mainland model above and the

incidence function model of Hanski [42] designed to account for the rescue effect.
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Incidence function models [40, 41, 42] define the incidence (of occupancy) of a single patch

as the stationary probability that the patch is occupied, whereby this probability is determined

from a two-state Markov chain. If patch i is empty, it is defined to be recolonised with proba-

bility Ci and if the patch is occupied, it experiences local extinction with probability Ei. The

incidence Ji of this patch is therefore

Ji =
Ci

Ci + Ei

. (3.11)

In order to account for a rescue effect, Hanski [42] intuits that the local extinction probability

should be replaced with (1−Ci)Ei where Ei now accounts for environmental stochasticity only,

that is, extinction as it occurs in the absence of migration. Hence, the incidence of patch i

becomes

Ji =
Ci

Ci + (1 − Ci)Ei
. (3.12)

If the colonisation and extinction probabilities are defined to be the same for all patches, a

mainland-type model results with Ji = c0/(c0 +(1−c0)e) for all i (using our notation). Assum-

ing seasonal extinction-colonisation dynamics, we established that (1 − c0)e is the ‘effective’

extinction probability in the EC case (Lemma 3.1) and the expected equilibrium proportion of

occupied patches for this case is q∗ = q/(1 − a) = c0/(c0 + (1 − c0)e) (Corollary 3.1), precisely

that given by (3.12) with Ci = c0 and Ei = e. More importantly, Theorem 3.1 establishes

a time-dependent interpretation of the rescue effect. The ‘effective’ extinction probability at

time t is 1− pt = (1− q∗)(1− at), which for the EC model is 1− pt = (1− c0)e(1− at)/(1− a),

being (1 − c0)e when t = 1 and (1 − e)c0/(c0 + (1 − c0)e) in the long term.

A similar investigation of the CE case reveals that this model does not account for a rescue

effect but rather an “inhibiting” effect that decreases the colonisation rate when the local

extinction rate is high. To see this, recall that the ‘effective’ colonisation probability for the

CE model is c0(1− e) and that the expected equilibrium proportion of occupied patches in this

case is c0(1 − e)/(c0(1 − e) + e). If Ci is replaced by Ci(1 − Ei) in equation (3.11), then the

incidence of patch i becomes

Ji =
Ci(1 − Ei)

Ci(1 − Ei) + Ei

.

Therefore Hanski’s incidence function model also accounts for an inhibitive effect under
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the appropriate substitution. Furthermore, our CE model establishes a time-dependent in-

terpretation of the “inhibiting” effect: the ‘effective’ colonisation probability at time t is

qt = q∗(1−at) = c0(1−e)(1−at)/(1−a), being c0(1−e) when t = 1 and c0(1−e)/(c0+(1−c0)e)

in the long term.

Remark. The calculations show, for the stochastic mainland model, the rescue effect and

the inhibitive effect are artefacts of the timing of the population census. If the census is taken

at the end of the colonisation phase, then the population has had a chance to recover from the

preceding phase of local extinction and the result manifests as a rescue effect. Similarly, if the

census is taken at the end of the local extinction phase, the population size may have declined

during that phase and the result manifests as an inhibitive effect.

3.3.2 Large networks

We consider, now, the behaviour of the chain binomial mainland model as the parameter N gets

large. Let XN

t = nt/N , the proportion of occupied patches at time t. The following law of large

numbers gives the deterministic process (xt) that approximates XN

t for large metapopulation

networks.

Theorem 3.2 If XN

0
P→ x0 (a constant) as N → ∞, then, for any t ≥ 1, XN

t
P→ xt as N → ∞,

where

xt = ptx0 + qt(1 − x0) = q∗ + at(x0 − q∗). (3.13)

Proof. From Theorem 3.1, we have XN

t
D
= KN

t + LN

t where KN

t = B
(1)
t /N = XN

0 B
(1)
t /n0 and

LN

t = B
(2)
t /N = (1 − XN

0 )B
(2)
t /(N − n0) are independent random variables. We are told that

XN

0
P→ x0 as N → ∞, and so n0 → ∞ and N − n0 = N(1 − XN

0 ) → ∞. It follows from the

standard Weak Law of Large Numbers that B
(1)
t /n0

P→ pt and B
(2)
t /(N − n0)

P→ qt. Hence,

KN

t
P→ x0pt and LN

t
P→ (1 − x0)qt, and so KN

t + LN

t
P→ ptx0 + qt(1 − x0) (= xt). From (3.10),

notice that ptx0 + qt(1 − x0) = q∗ + at(x0 − q∗) and the result follows. �

From (3.13), it is easy to see that the equilibrium (t → ∞) proportion of occupied patches

for the deterministic process is q∗. From Corollary 3.1, recall that the equilibrium expected

proportion is q∗. Thus, for both EC and CE models, the proportion of occupied patches

converges to the same limit no matter the order in which the limits are taken. However,
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remember that q∗ is different for each model and that this quantity is uniformly larger in the

EC case. Indeed, the deterministic model is uniformly larger in the EC case since

x(EC)

t − x(CE)

t =
c0(1 − eat)

1 − a
> 0

for all t ≥ 1, using an obvious notation. This is not surprising since, even in equilibrium, the

process is still being observed after each period of colonisation.

From Lemma 3.1, we deduce that E(nt+1|nt = i) = ip + (N − i)q. Provided nt/N converges

to xt in accordance with Theorem 3.2, we have that xt+1 = xtp+(1−xt)q, for any t ≥ 1. After

some adjustments we have

xt+1 − xt = q(1 − xt) − (1 − p)xt (3.14)

which is immediately identified as a discrete-time version of the classic mainland model (3.1)

with q and 1 − p as the colonisation and extinction rate parameters, respectively. The unique

positive equilibrium of (3.14) was established to be q∗(≡ x∗) which has obvious connections

with Hanski’s incidence of occupancy given by (3.12).

Remark. The stochastic mainland model defined by equation (3.6) explicitly assumes a

seasonal dynamic. The distribution stated in Lemma 3.1, which is equivalent to the distribution

given by (3.6), is expressed in terms of independent random variables and it is this independence

that effectively allows us to ‘ignore’ the assumed seasonal dynamic in further analysis. It is

not surprising then that the difference equation (3.14) does not assume a seasonal structure.

But, although the difference equation does not strictly exhibit seasonal variation, the seasonal

behaviour inherent in the stochastic formulation is still retained: the equilibrium proportion of

occupied patches is larger for the EC case.

Next, we define ZN

t =
√

N(XN

t − xt) and examine this quantity in the limit as N → ∞.

The following central limit law establishes that the fluctuation ZN

t about the deterministic

trajectory has a normal (Gaussian) distribution in this limit.

Theorem 3.3 In addition to the conditions of Theorem 3.2, suppose that ZN

0
D→ z0 (a constant)

as N → ∞. Then, for any t ≥ 1, ZN

t
D→ N(z0a

t, Vt) as N → ∞, where

Vt = pt(1 − pt)x0 + qt(1 − qt)(1 − x0).
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Proof. From Theorem 3.1 and equation (3.13), observe that

XN

t − xt = B
(1)
t /N + B

(2)
t /N − x0pt − (1 − x0)qt

= XN

0 B
(1)
t /n0 − x0pt + (1 − XN

0 )B
(2)
t /(N − n0) − (1 − x0)qt

= XN

0 (B
(1)
t /n0 − pt) + (1 − XN

0 )
(

B
(2)
t /(N − n0) − qt

)

+ (XN

0 − x0)(pt − qt),

and so, on multiplying by
√

N and noting that pt − qt = at, we have

ZN

t =
√

XN

0

√
n0

(

B
(1)
t /n0 − pt

)

+
√

1 − XN

0

√

N − n0

(

B
(2)
t /(N − n0) − qt

)

+ ZN

0 at, (3.15)

where ZN

0 =
√

N(XN

0 − x0). By the standard Central Limit Theorem
√

n0(B
(1)
t /n0 − pt)

D→
N(0, pt(1 − pt)) and

√
N − n0

(

B
(2)
t /(N − n0) − qt

) D→ N(0, qt(1 − qt)). Therefore, the first

and second terms of (3.15) define independent sequences that converge in distribution to

N(0, x0pt(1 − pt)) and N(0, (1 − x0)qt(1 − qt)) random variables, respectively. But, we are

told that ZN

0
D→ z0 (a constant) as N → ∞. Therefore,

ZN

t
D→ N (0, pt(1 − pt)x0)) + N (0, qt(1 − qt)(1 − x0)) + z0a

t

= N
(

z0a
t, pt(1 − pt)x0 + qt(1 − qt)(1 − x0)

)

and the proof is complete. �

Notice that the approximating variance given in Theorem 3.3 is consistent with the exact

variance given by Theorem 3.1, that is,

Var(ZN

t ) = NVar(XN

t ) = (1/N)Var(nt) = pt(1 − pt)X
N

0 + qt(1 − qt)(1 − XN

0 ) → Vt

as N → ∞. They will be identical if XN

0 = x0 and this is illustrated in Figure 3.2. Furthermore,

the quality of the deterministic approximation may be assessed: the central limit law stated

above implies that, for N sufficiently large, Pr(|XN

t − xt| > ǫt) ≃ 2(1−Φ(ǫt

√

N/Vt)), where Φ

is the standard normal distribution function.

A simpler distributional approximation for ZN

t results when the random process is in equi-

librium. On setting x0 = q∗ in Theorems 3.2 and 3.3, the following corollary is obtained.
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Corollary 3.2 If XN

0
P→ q∗ as N → ∞, then XN

t
P→ q∗ for all t ≥ 1. Let ZN

t =
√

N(XN

t − q∗).

If, in addition, ZN

0
D→ z0 (a constant) as N → ∞, then ZN

t
D→ N(z0a

t, q∗(1 − q∗)).

I note that stronger convergence results have been proved and that these are given later

in Chapter 6. For example, there we show that the scaled process (ZN

t : t ≥ 0) converges in

finite dimensional distribution to the random process (Zt : t ≥ 0) which is a Gaussian Markov

process. Indeed, this type of convergence behaviour is the focus of Chapter 6 where limit

theorems are presented for chain binomial metapopulations models in general.
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Figure 3.2: A single simulation of the EC model with N = 20,
e = 0.01 and c0 = 0.05, starting with n0 = 2 patches occupied
(XN

t = x0 = 0.1). The proportion XN

t of occupied patches is
plotted at times t = 0, . . . , 100. The solid curve joins points on
the limiting deterministic trajectory. The dashed curve is ± 2
standard deviations as predicted by the normal approximation.

3.3.3 Expected first passage time

Given that we have the t-step conditional state distribution for both the EC and CE mainland

models, we can evaluate the mean first passage time to state 0 using Theorem 2.1 in both



48 Chapter 3. A Mainland Model

cases. The expected time at which the metapopulation first goes extinct is an important

quantity because it can be used as a measure of population viability.

Theorem 3.4 Let T = inf{t ≥ 1 : nt = 0} be the first time at which all the patches in the

metapopulation network are empty. Then

E(T |n0 = i) =
N
∑

k=1

(

N

k

)(

q∗

1 − q∗

)k 1

(1 − ak)
−

∑

(k,m)∈A

(

i

k

)(

N − i

m

)(

q∗

1 − q∗

)m (−1)k

(1 − ak+m)

for both EC and CE chain binomial mainland models, where the set A is defined as

A = {(k, m) : k = 0, 1, . . . , i; m = 0, 1, . . . , N − i; (k, m) 6= (0, 0)}.

Proof. Remembering that equation (2.2) defined Pij(z) =
∑∞

t=0 ztp
(t)
ij as the generating func-

tion of the t-step transition probabilities (p
(t)
ij , t ≥ 0), we see that Pi0(z) =

∑∞
t=0 ztp

(t)
i0 and

P00(z) =
∑∞

t=0 ztp
(t)
00 . From equation (3.9), we have p

(t)
i0 = Gt(0) = (1 − pt)

i(1 − qt)
N−i and

therefore p
(t)
00 = (1 − qt)

N . Hence

Pi0(z) =
∞
∑

t=0

zt(1 − pt)
i (1 − qt)

N−i

=

∞
∑

t=0

zt
(

1 − q∗ − (1 − q∗)at
)i (

1 − q∗ + q∗at
)N−i

= (1 − q∗)i

∞
∑

t=0

zt (1 − at)i (1 − q∗ + q∗at)N−i

where we have used qt = q∗(1 − at) and pt = qt + at = q∗ + q∗(1 − at). Using the binomial

theorem we may write (1 − at)i =
∑i

k=0

(

i
k

)

(−1)k(at)k and, similarly, (1 − q∗ + q∗at)N−i =
∑N−i

m=0

(

N−i
m

)

(q∗at)m(1 − q∗)N−i−m. After grouping terms involving t, we have

Pi0(z) = (1 − q∗)N

i
∑

k=0

N−i
∑

m=0

(

i

k

)(

N − i

m

)

(−1)k

(

q∗

1 − q∗

)m
1

(1 − zak+m)
. (3.16)

We know that P00(z) =
∑∞

t=0 zt(1 − qt)
N and, after similar simplifications, we have

P00(z) = (1 − q∗)N
N
∑

k=0

(

N

k

)(

q∗

1 − q∗

)k
1

(1 − zak)
.
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Also remember that equation (2.2) defined Fij(z) =
∑∞

t=0 ztf
(t)
ij as the generating function of

the first passage time probabilities (f
(t)
ij , t ≥ 0). From Theorem 2.1(b), we can write

Fi0(z) =

∞
∑

t=0

ztf
(t)
i0 = Pi0(z)/P00(z).

The sequence
(

f
(t)
i0 , t ≥ 0

)

defines the probability mass function of T and so, by evaluating the

derivative of Fi0(z) with respect to z in the limit as z ↑ 1, we obtain the expected value of T

conditional on the event {n0 = i}. Clearly,

F ′
i0(z) =

P ′
i0(z)P00(z) − Pi0(z)P ′

00(z)

P00(z)2
. (3.17)

After some simplifications,

P ′
i0(z)P00(z) =

(1 − q∗)2N

(1 − z)2

(

1

1 − z
+

N
∑

k=1

(

N

k

)(

q∗

1 − q∗

)k
1

(1 − zak)
+ o(1)

)

,

where o(1) → 0 as z ↑ 1, and

Pi0(z)P ′
00(z) =

(1 − q∗)2N

(1 − z)2

(

1

1 − z
+
∑

A

(

i

k

)(

N − i

m

)(

q∗

1 − q∗

)m
(−1)k

(1 − zak+m)
+ o(1)

)

,

where the set A defines the sum in equation (3.16) without the first term (the term correspond-

ing to k = 0 and m = 0). Also,

P00(z)2 =
(1 − q∗)2N

(1 − z)2
(1 + o(1)) .

Notice that the factor (1 − q∗)2N/(1 − z)2 cancels upon substituting the last three expression

into equation (3.17), and hence

lim
z↑1

F ′
i0(z) =

N
∑

k=1

(

N

k

)(

q∗

1 − q∗

)k
1

(1 − ak)
−
∑

A

(

i

k

)(

N − i

m

)(

q∗

1 − q∗

)m
(−1)k

(1 − ak+m)
,

which equals E(T |n0 = i), and the proof is complete. �



50 Chapter 3. A Mainland Model

3.4 Discussion

The simplicity of the chain binomial mainland model is exemplified by Lemma 3.1 where the

census at time t + 1, conditioned on the previous census at time t, was found to be equal in

distribution to the sum of two independent binomial random variables. The parameters (p, q)

were interpreted as the effective local extinction and colonisation probabilities and furthermore,

by Theorem 3.1, the parameters (pt, qt) were interpreted as the effective time-dependent event

probabilities. The equilibrium proportion of occupied patches was determined to be q∗ for both

time-homogeneous (EC and CE) models, however this quantity is slightly larger for the EC

case since, even in equilibrium, the process is observed after the colonisation period.

The independence exhibited in Lemma 3.1 and Theorem 3.1 allowed a number of quantities

to be evaluated explicitly. These included a law of large numbers (Theorem 3.2) and a central

limit law (Theorem 3.3) for large networks, as well as the mean first passage time to state 0

(Theorem 3.4).

Since the chain binomial mainland model accounts for migration from a mainland population

only, it is the simplest stochastic population model with a chain binomial structure. The

model may be too simplistic for applied studies, however Daley and Gani’s [20] epidemiological

interpretation of the chain binomial mainland model has seen application in Gani and Stals’ [29]

viral plant epidemic. As the following chapters will show, the chain binomial mainland model

can be adapted to account for a wide range of interesting population dynamics.



Chapter 4

Island Models and Mainland-Island Models

The chain binomial structure introduced in Chapter 3 is modified here to account for migration

between local populations only (island models) or for migration between these populations as

well as from a mainland (mainland-island models). This is done by allowing the colonisation

probability to be state dependent.

4.1 Introduction

The previous chapter introduced the classic mainland model (3.1) and the classic mainland-

island model (3.2). It is not surprising then that the classic island model is Verhulst’s

model (1.1) with n interpreted as the number of extant local populations (or more simply,

the number of occupied patches) in a network of N habitat patches. This interpretation was

made by Levins in 1969 [51] and upon rewriting the model in terms of the proportion x = n/N

of occupied patches [53] we have

dx

dt
= cx(1 − x) − ex, (4.1)

where c is the (pairwise) rate at which empty patches are colonised and e is the local extinction

rate. Alternatively, we may express Levins’ model in a slightly different way:

dx

dt
= (c − e)x

(

1 − x

(1 − e/c)

)

.

The second form clearly shows that the model has two equilibrium points, 0 and 1 − e/c, and

the factor c− e is identified as the growth rate at low proportions. If c > e, the point 1− e/c is

stable and the metapopulation is said to persist with equilibrium proportion 1 − e/c. If c ≤ e,

51
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then 0 is stable and the metapopulation goes extinct. More generally, Levins’ model satisfies

the form
dx

dt
= rx

(

1 − x

x∗

)

, (4.2)

where r is called the intrinsic growth rate and x∗( 6= 0) is called the carrying capacity (expressed

here as a proportion of the population ceiling, N). Thus r = c − e and x∗ = 1 − e/c in Levins’

case.

The classic island model tells us that persistence occurs when a particular stability condi-

tion is satisfied whilst extinction occurs when another condition is satisfied. Thus the term

persistence has been introduced in the context of equilibrium stability criteria. For a metapop-

ulation described by the classic mainland model (3.1), the population persists regardless due to

a unique positive equilibrium point. The classic mainland-island model (3.2), given here again

by
dx

dt
= cx(1 − x) + c0(1 − x) − ex,

has a unique positive and stable equilibrium point x∗ provided c ≥ 0 and c0 > 0, this being the

unique positive solution to cx2 − (c − c0 − e)x − ex = 0. The metapopulation persists in this

case with equilibrium proportion x∗.

In a stochastic setting, population persistence is defined in reference to an absorbing or

non-absorbing extinction state. For example, metapopulations described by our chain binomial

mainland model persist because state 0 is non-absorbing; the mainland effectively rescues the

metapopulation from extinction in this case. For population models defined with an absorbing

extinction state, the population eventually goes extinct although it may persist for some time

before this occurs.

In this chapter, I shall modify the chain binomial structure introduced in the previous

chapter and demonstrate how the modifications can be used to construct stochastic island

models and stochastic mainland-island models. The new structure proves to be less tractable

than the stochastic mainland case, however we are still able to determine a number of explicit

results. I also note connections with discrete-time versions of classic metapopulation models.
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4.2 The model

Let (nt : t ≥ 0) be a discrete-time Markov chain taking values in the set S
N

= {0, 1, 2, . . . , N}
where nt models the number of occupied patches in a metapopulation network with N patches.

We assume the same seasonal dynamic as that outlined in the previous chapter and so P = EC

or P = CE, as before. The local extinction process and the colonisation process are defined as

follows.

Local extinction process. The assumptions about this process remain unchanged: the

parameter e ∈ (0, 1) is the local extinction probability and the transition probabilities for this

phase are given by (3.3).

Colonisation process. Given that i patches are occupied at the beginning of the colonisa-

tion phase, we assume that each of the N − i empty patches are colonised independently with

probability c(i) during that phase. Hence, the number of empty patches colonised during this

phase follows the Bin(N − i, c(i)) law and so

cij =











(

N−i
j−i

)

(1 − c(i))N−j c(i)j−i if j = i, i + 1, . . . , N

0 if j < i.

(4.3)

We assume that the function c is continuous, increasing and concave, with c(0) ≥ 0 and

c(N) ≤ 1. This means that c increases as i increases and does so as a ‘law of decreasing

returns’ (where the colonisation probability increases by less and less with each additional

occupied patch). Note that if c(0) = 0, then c0j = δ0j .

Transition probabilities. The transition probabilities that define the matrices P = EC

and P = CE are given by (3.5a) and (3.5b), respectively, but with cij as defined by (4.3).

Stationary and quasi-stationary distributions. If c(0) > 0, then c00 < 1 and, hence,

p00 < 1 for both models. In this case, S
N

forms an irreducible aperiodic class and the Markov

chain has a unique stationary, and limiting, distribution (Section 2.2.2). If c(0) = 0 instead, then

e0j = c0j = δ0j and, hence, p0j = δ0j for both models. State 0 is absorbing and SN = {0}∪EN ,

where EN = {1, 2, . . . , N} is an irreducible transient class from which state 0 is accessible. In

this case, the Markov chain has a unique quasi-stationary distribution (Section 2.2.3).

Chain binomial structure. The Markov chain (nt, t ≥ 0) admits the following structure:
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EC: nt+1 = ñt + Bin(N − ñt, c(ñt)) ñt = nt − Bin(nt, e) (4.4a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, c(nt)). (4.4b)

Thus, the colonisation process is clearly state dependent. The state-independent case corre-

sponds to c(i) = c0 ∈ (0, 1], which was investigated separately in the previous chapter.

4.3 The colonisation probability

It was defined above that colonisation events occur with probability c(i) where i is the current

number of occupied patches. What form, then, should this probability take? Here I explore a

few examples.

If the colonisation probability is assumed to increase linearly with i then

c(i) =
ci

N
(0 < c ≤ 1), (4.5)

for example, where the constant c is set to lie in the interval (0, 1] so that c(i) obeys the

conditions stated in the previous section. Notice that c(1) = c/N and c(N) = c. Hence each

occupied patch contributes c/N to the colonisation probability and the constant c may be

thought of as the (hypothetical) probability that a fully occupied network colonises a single

empty patch.

If propagules are assumed to arrive at each empty patch according to a homogeneous Poisson

process with rate βi/N , where i is the current number of occupied patches, then

c(i) = 1 − exp

(

−βi

N

)

(β > 0), (4.6)

where c(i) is equal to the probability that at least one propagule arrives at an empty patch

(see [46, 50]). In other words, colonising individuals are assumed to propagate from each

occupied patch at rate β.

Another ‘law of decreasing returns’ is given by

c(i) = c∗
(

1 −
(

1 − c1

c∗

)i
)

(0 < c1 ≤ c∗ ≤ 1), (4.7)
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similar to that used in [73]. Notice that c1 is the colonisation probability given that only one

patch is currently occupied and c∗ is the limiting colonisation probability since c(N) → c∗ as

N → ∞.
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Figure 4.1: A plot of the colonisation functions given
by (4.5), (4.6), (4.7) and (4.8) for N = 20: the linear case (–)
with c = 0.4; the Poisson case (· · · ) with β = 2; the third law
of decreasing returns ( · - · -) with c1 = 0.2, c∗ = 0.7; and the
mainland-island case (- -) with c = 0.4, c0 = 0.2.

The examples given so far satisfy c(0) = 0. Given this property, the chain binomial models

defined by (4.4) have a sole absorbing state (state 0) and are examples of island models. In this

case, there is no mainland to rescue the patch network from total extinction and so migrants

originate from established populations (occupied patches) only. If one wishes to account for a

mainland and therefore construct a mainland-island model, then the colonisation probability

c(i) can simply be a combination of a state-dependent case with the state-independent case.

For example,

c(i) =
ci

N
+ c0 (c ≥ 0, c0 > 0, c + c0 ≤ 1), (4.8)

is a probability that describes colonisation in a mainland-island network where ci/N is the

component due to the islands (care of equation (4.5)) and c0 is the component due to the

mainland. Hence, mainland-island models satisfy the condition c(0) > 0. Figure 4.1 illustrates
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the four different colonisation probabilities outlined above.

4.4 Model analysis

First, we determine the 1-step distribution of nt+1 as done in Section 3.3. Let G be the

probability generating function of nt+1 conditional on nt = i, as before. For the EC model,

nt+1 = ñt + B̃, where ñt ∼ Bin(i, 1 − e) and B̃ ∼ Bin(N − ñt, c(ñt)), and so

G(z) = E(znt+1 |nt = i) = E

(

zñt E(zB̃ |ñt, nt = i)|nt = i
)

= E

(

zñt (1 − c(ñt) + c(ñt)z)N−ñt |nt = i
)

. (4.9)

For the CE model, nt+1 ∼ Bin(i + B̃, 1 − e) where B̃ ∼ Bin(N − i, c(i)), and so

G(z) = E

(

E(znt+1 |B̃, nt = i)|nt = i
)

= E

(

(e + (1 − e)z)i+B̃|nt = i
)

=
(

e + (1 − e)z
)i

E

(

(e + (1 − e)z)B̃|nt = i
)

(4.10)

=
(

e + (1 − e)z
)i(

1 − c(i)(1 − e) + c(i)(1 − e)z
)N−i

.

The expectation inside expression (4.9) cannot be evaluated any further and so the conditional

distribution of nt+1 remains unknown in the EC case. Fortunately, the expectation inside (4.10)

could be evaluated and the end result is in the form of two binomial pgfs multiplied together.

This gives rise to the following proposition.

Proposition 4.1 Given nt = i, then, for the CE case only, the distribution of nt+1 is equal to

the sum of two independent binomial random variables B1 and B2 where B1 ∼ Bin(i, 1−e) and

B2 ∼ Bin(N − i, c(i)(1 − e)).

We may describe the CE model in the following way: each of the i occupied patches behave

as though they survive independently of one another while the N − i empty patches behave as

though they are colonised independently and each with probability c(i)(1−e). We may think of

c(i)(1−e) as the ‘effective’ state-dependent colonisation probability. Of course, Proposition 4.1

remains true for CE models with a state-independent colonisation probability (see Lemma 3.1).

Remark. Thus the 1-step conditional state distribution for both the EC and CE mainland

models (Lemma 3.1) as well as the state-dependent CE model (Proposition 4.1) are equal to
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the sum of two independent binomial random variables. Indeed, in all three cases, the inde-

pendent binomial random variables are expressed in such a way that we may view extinction

events and colonisation events as though they occur independently of one another and without

abiding by a seasonal dynamic (hence the terms effective local extinction probability and effec-

tive colonisation probability). It is unfortunate that we could not obtain the 1-step conditional

state distribution for the state-dependent EC model as well since this prevents us from making

a thorough analytical comparison between state-independent and state-dependent metapopu-

lation models.

Numerical calculations show that the 1-step conditional state distribution for the EC model

is similar in shape to that for the CE model (see Figure 4.2 for example), however these

calculations do not tell us whether or not the distribution in the EC case is equal to a sum

of independent random variables. We can draw other conclusions though, such as we should

expect to observe more occupied patches when the census is taken after each colonisation phase

because the mode is generally larger in the EC case.
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Figure 4.2: The distribution at time t + 1 conditional on
nt = 20 for the chain binomial EC model (solid line) and
CE model (dotted line) with c(i) = ci/N ; e = 0.2, c = 0.8
and N = 50.

Since we have evaluated the 1-step conditional state distribution for the CE model, we can

write

Gt+1(z) = E
(

(e + (1 − e)z)nt(1 − c(nt)(1 − e)(1 − z))N−nt |n0 = i
)

(4.11)
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in a bid to solve for Gt, the pgf of nt conditional on n0 = i, explicitly. The state-independent

case was solved successfully in the previous chapter (see equation (3.8)), however the same

calculations cannot be performed here since the state-dependent case requires the factor c(nt)

to be subject to the expectation on the right-hand side of equation (4.11). This means that

we cannot determine the t-step conditional state distribution or prove limit theorems by way

of observing the limiting behaviour of the t-step conditional state distribution (like that done

for Theorems 3.2 and 3.3). Instead, we shall use the 1-step conditional state distribution and

Mathematical Induction to prove limit theorems for the state-dependent CE model.

4.4.1 Limit theorems for the CE model

From Proposition 4.1 we deduce that E(nt+1|nt) = (1− e)nt + c(nt)(1− e)(N − nt), and hence

E(XN

t+1|XN

t ) = (1 − e)XN

t + c(nt)(1 − e)(1 − XN

t ),

where XN

t = nt/N is the proportion of occupied patches at time t, as before. If the function c

was such that

c(nt) = ĉ(nt/N),

where the function ĉ is assumed to be continuous, increasing and concave, with ĉ(0) ≥ 0 and

ĉ(x) ≤ 1, then one might expect E(XN

t+1|XN

t ) to converge to (1− e)xt + ĉ(xt)(1− e)(1− xt) as

N → ∞, where xt represents the value of XN

t in this limit. The following theorem establishes

a law of large numbers for the CE model.

Theorem 4.1 Consider the CE model with parameters e and c(nt) and further suppose that

c(nt) = ĉ(nt/N), with ĉ as defined above. If XN

0
P→ x0 (a constant) as N → ∞ then, for any

t ≥ 1, XN

t
P→ xt in this limit where x

.
is determined by xt+1 = f(xt) with f given by

f(x) = (1 − e)(x + (1 − x)ĉ(x)). (4.12)

Proof. We will use Mathematical Induction. By assumption, XN

0
P→ x0. Now, suppose that

XN

t
P→ xt as N → ∞ for some t ≥ 0. From Proposition 4.1, we know that XN

t+1
D
= KN + LN ,

where KN = B1/N = XN

t B1/nt and LN = B2/N = (1 − XN

t )B2/(N − nt) are independent

random variables. Since XN

t
P→ xt, in which case nt → ∞, it follows from the standard Weak
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Law of Large Numbers that B1/nt
P→ 1−e, and hence KN P→ xt(1−e). We shall prove a similar

result for LN but with the use of characteristic functions. Let αN be the characteristic function

(cf) of LN and let βN be the cf of B2, that is, αN(ω) = E exp(iωLN ) and βN(ω) = E exp(iωB2).

Then

αN(ω) = E exp(iωB2/N) = βN(ω/N)

=
(

1 − ĉ(XN

t )(1 − e) + ĉ(XN

t )(1 − e) exp(iω/N)
)N(1−XN

t )

and, since exp(iω/N) = 1 + iω/N + o(1/N) as N → ∞ by Taylor’s Theorem, we may thus

write

αN(ω) =

(

1 + ĉ(XN

t )(1 − e)
iω

N
+ o(1/N)

)N(1−XN
t )

.

We are told that ĉ is continuous, but we also know that ĉ(XN

t ) is almost surely uniformly

bounded because 0 ≤ XN

t ≤ 1 and ĉ(x) ≤ 1. Therefore ĉ(XN

t )
P→ ĉ(xt) (a constant) as N → ∞,

in which case αN(ω) → exp
(

(1−xt)ĉ(xt)(1−e)iω
)

and it follows that LN D→ (1−xt)ĉ(xt)(1−e).

Since the limiting value is a constant, we may then write LN P→ (1 − xt)ĉ(xt)(1 − e). Hence

KN + LN P→ xt(1 − e) + (1 − xt)ĉ(xt)(1 − e), implying that XN

t+1
P→ xt+1 where xt+1 = f(xt)

with f as given by (4.12). This completes the proof. �

Notice that Theorem 4.1 applies to CE models with colonisation probabilities given

by (4.5), (4.6) or (4.8), for example, because all three can be expressed in terms of the pro-

portion of occupied patches and satisfy the condition c( · ) = ĉ( · /N). The probability defined

by (4.7) cannot be expressed in this way and so the limiting behaviour of the resulting CE

model cannot be determined in the format used here. In Section 4.5, we examine a number of

chain binomial models with colonisation probabilities of the form ĉ(x).

Now that we have identified the deterministic process (xt), we wish to examine the scaled

fluctuation ZN

t about this trajectory: ZN

t =
√

N(XN

t − xt). From Proposition 4.1, we write

XN

t+1 − xt+1 = (B1 + B2)/N − (1 − e)(xt − (1 − xt)ĉ(xt))

= XN

t

B1

nt

+ (1 − XN

t )
B2

N − nt

− (1 − e)(xt − (1 − xt)ĉ(xt))

= XN

t

(

B1

nt
− (1 − e)

)

+ (1 − XN

t )

(

B2

N − nt
− ĉ(XN

t )(1 − e)

)

+ f(XN

t ) − f(xt),
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where B1 ∼ Bin(nt, 1 − e) and B2 ∼ Bin(N − nt, ĉ(nt/N)(1 − e)). On multiplying the last

expression by
√

N , we have

ZN

t+1 = WN

t +
√

N
(

f(XN

t ) − f(xt)
)

(4.13)

where

WN

t =
√

XN

t

√
nt

(

B1

nt
− (1 − e)

)

+
√

1 − XN

t

√

N − nt

(

B2

N − nt
− ĉ(XN

t )(1 − e)

)

. (4.14)

In preparation for the next central limit law, we present the following result.

Lemma 4.1 If XN

t
P→ x (a constant) as N → ∞, then WN

t
D→ N(0, v(x)) where

v(x) = (1 − e)
[

ex + ĉ(x)
(

1 − ĉ(x)(1 − e)
)

(1 − x)
]

. (4.15)

Proof. We are told that, for fixed t and x, XN

t
P→ x as N → ∞, and so nt → ∞. Consider

the first term in equation (4.14). It follows from the standard Central Limit Theorem that
√

nt(B1/nt − (1− e))
D→ N(0, e(1− e)) and hence

√

XN

t

√
nt(B1/nt − (1− e))

D→ N(0, xe(1− e)).

For the second term in equation (4.14), we shall use characteristic functions to show that

this term converges in distribution to a normal random variable with mean 0 and variance

(1 − x)ĉ(x)(1 − e)(1 − ĉ(x)(1 − e)). Letting αN be the cf of the second term, that is

αN(ω) = E exp
(

iω
√

1 − XN

t

√

N − nt

(

B2/(N − nt) − ĉ(XN

t )(1 − e)
)

)

,

and letting βN be the cf of B2, we have

αN(ω) = exp
(

−ĉ(XN

t )(1 − e)iω
√

N(1 − XN

t )
)

βN
(

ω/
√

N
)

= exp
(

−ĉ(XN

t )(1 − e)iω
√

N(1 − XN

t )
)(

1 − ĉ(XN

t )(1 − e) + ĉ(XN

t )(1 − e) exp(iω/
√

N)
)N−nt

=
(

exp
(

− ĉ(XN

t )(1 − e)iω/
√

N
)

(

1 − ĉ(XN

t )(1 − e) + ĉ(XN

t )(1 − e) exp
(

iω/
√

N
)

))N(1−XN
t )

.

By Taylor’s Theorem, exp(iω/
√

N) = 1 + iω/
√

N − ω2/N + o(1/N) and

exp
(

−ĉ(XN

t )(1 − e)iω/
√

N
)

= 1 − ĉ(XN

t )(1 − e)iω/
√

N + ĉ(XN

t )2(1 − e)2ω2/N + o(1/N),
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both as N → ∞, and we may thus write

αN(ω) =

(

1 − ĉ(XN

t )(1 − e)
(

1 − ĉ(XN

t )(1 − e)
) ω2

2N
+ o(1/N)

)N(1−XN
t )

.

From the proof for Theorem 4.1, we know that ĉ(XN

t )
P→ ĉ(x) as N → ∞ and so

αN(ω) → exp
(

−(1 − x)ĉ(x)(1 − e)(1 − ĉ(x)(1 − e))ω2/2
)

,

from which we deduce that

√

1 − XN

t

√

N − nt (B2/(N − nt) − (1 − e))
D→ N (0, ĉ(x)(1 − e)(1 − ĉ(x)(1 − e))(1 − x)) ,

as desired. Therefore, the first and second terms in equation (4.14) define independent random

variables that converge in distribution to normal random variables, both with zero mean but

with variance xe(1 − e) in the former case and variance c(x)(1 − e)(1 − c(x)(1 − e))(1 − x) in

the latter case. Therefore, for fixed t and x, it has been shown that WN

t
D→ N(0, v(x)), where

v is that given by (4.15). �

We now present a central limit law for the CE model. Recall that empty products are to

be interpreted as being equal to 1.

Theorem 4.2 For the CE model with parameters e and ĉ(x), suppose that ĉ is twice continu-

ously differentiable and that, for t ≥ 0, XN

t
P→ xt as N → ∞ where x

.
satisfies xt+1 = f(xt)

with f as given by (4.12). If ZN

0
D→ z0 (a constant) as N → ∞, then ZN

t
D→ N(µt, Vt) for any

t ≥ 1, where

µt = z0

t−1
∏

s=0

f ′(xs) (4.16)

and

Vt =
t−1
∑

s=0

v(xs)
t−1
∏

u=s+1

f ′(xu)
2, (4.17)

with v as given by equation (4.15).

Proof. Recall that ZN

t+1 admits the representation ZN

t+1 =
√

N
(

f(XN

t )− f(xt)
)

+WN

t . We are

told that ĉ(x) is twice continuously differentiable in x and so f(x) is also twice continuously
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differentiable in x. By Taylor’s Theorem, we have that

f(XN

t ) = f(xt) + f ′(xt)(X
N

t − xt) + f ′′(θN

t )(XN

t − xt)
2/2

for some θN

t between XN

t and xt. On multiplying by
√

N , the last expression becomes

√
N
(

f(XN

t ) − f(xt)
)

= f ′(xt)Z
N

t +
f ′′(θN

t )(ZN

t )2

2
√

N
.

But f ′′(x) is bounded in x (since 0 ≤ XN

t ≤ 1 and ĉ(x) ≤ 1) and we may thus write

√
N
(

f(XN

t ) − f(xt)
)

= f ′(xt)Z
N

t + oN

t (1),

where oN

t (1)
P→ 0 (t ≥ 0) as N → ∞. Hence

ZN

t+1 = f ′(xt)Z
N

t + WN

t + oN

t (1). (4.18)

We shall now use Mathematical Induction to show that ZN

t
D→ N(µt, Vt) for all t ≥ 1, where the

parameters µt and Vt are given by (4.16) and (4.17), respectively. We are told that XN

0
P→ x0

and ZN

0
D→ z0 (a constant) and so, for the t = 1 case, we have ZN

1 = f ′(x0)Z
N

0 + WN

0 + oN

0(1)

from equation (4.18). Therefore, as N → ∞,

ZN

1
D→ f ′(x0)z0 + N(0, v(x0)) = µ1 + N(0, V1) = N(µ1, V1),

since WN

0
D→ N(0, v(x0)) by Lemma 4.1 and oN

0(1)
P→ 0. Now suppose that ZN

t
D→ N(µt, Vt) for

some t ≥ 1 (noting that XN

t
P→ xt by assumption). It then follows from (4.18) that

ZN

t+1
D→ f ′(xt)N(µt, Vt) + N(0, v(xt))

= N(f ′(xt)µt, f
′(xt)

2Vt) + N(0, v(xt))

= N(µt+1, Vt+1),

since, for fixed t and xt, WN

t
D→ N(0, v(xt)) by Lemma 4.1 and oN

t (1)
P→ 0. This completes the

proof. �
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Once again, we may assess the quality of the deterministic approximation xt from a central

limit law. That is, for N sufficiently large, the central limit law for the CE model implies that

Pr(|XN

t −xt| > ǫt) ≃ 2(1−Φ(ǫt

√

N/Vt)), where Φ is the standard normal distribution function

and Vt is that given by (4.17).

4.4.2 Long-term behaviour of the CE model

The long-term behaviour of the stochastic process (nt, t ≥ 0) is examined by way of the long-

term behaviour of the deterministic CE model. First, we present stability criteria for the

fixed points of the deterministic process and then use the criteria to describe the stationary or

quasi-stationary behaviour of the stochastic process.

From Theorem 4.1, recall that the deterministic model (xt) is defined by xt+1 = f(xt) with

x0 given and the map f defined by f(x) = (1 − e)(x + (1 − x)ĉ(x)). Notice that x∗ is a fixed

point of f if and only if

ĉ(x∗) =

(

e

1 − e

)

x∗

1 − x∗

but we shall write ĉ(x∗) = r(x∗) for convenience where r(x) = ρx/(1 − x) and ρ = e/(1 − e).

Notice, also, that the function r has slope ρ at x = 0 and increases strictly from 0 to ∞ whilst

the function ĉ is strictly increasing from ĉ(0) ≥ 0 and concave with ĉ(1) ≤ 1. Therefore, we

always have precisely one stable fixed point and xt approaches this point monotonically. The

value of ĉ(x) at x = 0, as well as the slope at this point, determines the number of fixed points

in the interval [0, 1]. Using theorems from Section 2.5, we describe the stability of these fixed

points as follows.

• If c(0) = 0 and ĉ ′(0) > ρ, then there are two fixed points in the interval [0, 1], namely 0

and x∗ ∈ (0, 1). We have f ′(0) = (1 − e)(1 + ĉ ′(0)) > 1 and so 0 is unstable. The slope

evaluated at x∗ clearly satisfies ĉ ′(x∗) < r ′(x∗) and we find that f ′(x∗) < 1. Hence x∗ is

stable.

• If c(0) = 0 and ĉ ′(0) ≤ ρ, then 0 is the unique fixed point in the interval [0, 1]. For the

case where ĉ ′(0) < ρ, we have f ′(0) < 1. For the case where ĉ ′(0) = ρ, we have f ′(0) = 1

but f ′′(0) = (1 − e)(ĉ ′′(0) − 2ĉ ′(0)) < 0. Hence 0 is stable in both cases.



64 Chapter 4. Island Models and Mainland-Island Models

• Lastly, if c(0) > 0, there is a unique fixed point x∗ in the interval [0, 1] and this satisfies

x∗ ∈ (0, 1). We know that x∗ is stable because ĉ ′(x∗) < r ′(x∗) and so f ′(x∗) < 1.

We can now describe the long-term behaviour of the stochastic process (nt, t ≥ 0). Recall

that if ĉ(0) = 0, then the stochastic process has an absorbing state (state 0) and there exists

a unique quasi-stationary distribution. If, in addition, ĉ′(0) ≤ ρ, we expect the process to

be absorbed quickly (even for N quite large), while, if ĉ′(0) > ρ, then the process may reach

a ‘quasi equilibrium’ before absorption occurs, where we expect the unique quasi-stationary

distribution to be centered near Nx∗. Hence, the metapopulation dies out quickly in the

former case or persists for some time before eventually going extinct in the latter case. The

two sets of conditions define what we shall call evanescence and quasi stationarity, respectively.

If, instead, ĉ(0) > 0, then the stochastic process has a unique stationary distribution and we

expect this distribution to be centred near Nx∗. The metapopulation persists in this case and

so the third condition outlines what we shall refer to as stationarity.

Indeed, we may describe the asymptotic (N → ∞) behaviour of stochastic processes that are

in equilibrium. On setting x0 = x∗ in Theorems 4.1 and 4.2, the following corollary establishes

a law of large numbers as well as a central limit law for CE models that have a positive stable

deterministic equilibrium x∗.

Corollary 4.1 Consider the CE model with parameters e and ĉ(x). Suppose that ĉ is twice

continuously differentiable and that either (i) ĉ(0) > 0 or (ii) ĉ(0) = 0 and ĉ ′(0) > e/(1 − e).

Let x∗ be a positive stable fixed point of f where f is as given in Theorem 4.1. If XN

0
P→ x∗ as

N → ∞, then XN

t
P→ x∗ for all t ≥ 1. Let ZN

t =
√

N(XN

t − x∗). If ZN

0
D→ Z0 as N → ∞, in

addition to XN

t
P→ x∗ (t ≥ 1), then ZN

t
D→ f ′(x∗)tZ0 + Et for any t ≥ 1, where Et ∼ N(0, Vt)

with Vt = v(x∗)(1 − f ′(x∗)2t)/(1 − f ′(x∗)2) and v as given in Lemma 4.1.

4.5 Examples

Here we apply our limit theorems to a number of chain binomial CE models. The models

differ in terms of the function ĉ used to describe the colonisation process and their long-term

behaviour is described by using the stability criteria outlined in the previous section.
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Figure 4.3: Simulations of the CE model with N = 30, n0 = 20,
e = 0.2 and ĉ(x) = cx: examples of (a) quasi stationarity, where
c = 0.4 and Nx∗ = 30 × 0.375 = 11.25, with Nx∗ marked by the
solid line, and (b) evanescence, where c = 0.2.
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Example 4.1 Consider the chain binomial CE model with ĉ(x) = cx (0 < c ≤ 1). Theorem 4.1

tells us that the deterministic trajectory is defined by xt+1 = (1−e)(1+c−cxt)xt but before we

examine the fixed points of this difference equation, notice that the equation may be written

as

xt+1 − xt = c(1 − e)xt(1 − xt) − ext, (4.19)

which is immediately identified as a discrete-time version of Levins’ model (4.1) with c(1−e) as

the ‘effective’ colonisation rate parameter and e as the extinction rate parameter. Indeed, (4.19)

satisfies the discrete-time logistic growth model, namely

xt+1 − xt = rxt

(

1 − xt

x∗

)

(see Section 3.2 of [75], for example), with r = c(1 − e) − e and x∗ = r/
(

c(1 − e)
)

. Hence,

there are two fixed points, 0 and x∗, which are subject to the conditions ĉ(0) = 0 and ĉ ′(0) = c.

If c > ρ (that is, r > 0), then 0 is unstable and x∗ is stable. If c ≤ ρ (that is, r ≤ 0), 0

is the unique stable fixed point in [0, 1]. Although the discrete-time logistic growth model is

known to exhibit a wide range of dynamic behaviour, note that the deterministic model given

by (4.19) does not exhibit any chaotic or periodic behaviour since 0 < 1+r = (1−e)(1+c) < 2

(for example, see [59]). Hence, we have quasi stationarity if c > e/(1 − e) (see Figure 4.3(a))

and evanescence if c ≤ e/1 − e (see Figure 4.3(b)). From Theorem 4.2, the function v is given

by v(x) = (1 − e)x[e + c(1 − x)(1 − c(1 − e)x)] and from Corollary 4.1, if ZN

0
D→ Z0, then

ZN

t
D→ (1 − r)tZ0 + N(0, er(2 − e − r)/(e + r)) for the quasi-equilibrium case (r > 0).

Example 4.2 For the case where ĉ(x) = cx + c0 (c ≥ 0, c0 > 0, c + c0 ≤ 0), Theorem 4.1 tells

us that the deterministic trajectory is defined by xt+1 = (1 − e)xt + (1 − e)(cxt + c0)(1 − xt).

We have that

xt+1 − xt = c(1 − e)xt(1 − xt) + c0(1 − e)(1 − xt) − ext

which, unsurprisingly, is a discrete-time version of the classic mainland-island model (3.2) with

c(1 − e) and c0(1 − e) as the ‘effective’ colonisation rate parameters due to the island network

and the mainland, respectively, and e as the extinction rate parameter. Since ĉ(0) = c0 > 0,

the stochastic process has a unique stationary distribution and we expect this distribution to
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be centred near Nx∗ where x∗ is the unique positive solution to

c(1 − e)x2 − ((c − c0)(1 − e) − e)x − c0(1 − e) = 0.

Similarly, the function v is determined from Theorem 4.2 and is given by

v(x) = (1 − e)[ex + (1 − x)(c0 + cx)(1 − (1 − e)(c0 + cx))].

Example 4.3 Consider the chain binomial CE model with ĉ(x) = 1 − exp(−βx) (β > 0).

Since ĉ(0) = 0 and ĉ ′(0) = β > 0, the stochastic process is absorbed quickly if β ≤ e/1 − e,

or it reaches quasi equilibirium if β > e/1 − e. In the latter case, we expect the quasi-

stationary distribution to be centred near Nx∗ where x∗ is found by iterating the map f(x) =

(1 − e)(1 − (1 − x) exp(−βx)) numerically. The function v is given by

v(x) = (1 − e)[ex + (1 − x)(1 − exp(−βx)(e + (1 − e) exp(−βx))].

Example 4.4 Of course, the limit theorems remain true for CE models with ĉ(x) = c0 > 0.

We have that xt+1 = (1 − e)(xt + c0(1 − xt)) and x∗ = c0(1 − e)/(1 − (1 − e)(1 − c0)) in this

case, which is in complete agreement with the CE case of the chain binomial mainland model

examined in Chapter 3. From Lemma 4.1, we have that

v(x) = (1 − e)
(

ex + c0(1 − c0(1 − e))(1 − x)
)

= p(1 − p)x + q(1 − q)(1 − x)

where p = 1 − e and q = c0(1 − e) from equation (3.7b). Recall that we evaluated the t-step

conditional state distribution for the both the EC and CE chain binomial mainland models and

that we used this distribution to establish xt = q∗+(x0−q∗)at, where a = p−q and q∗ = q/(1−a),

and that ZN

t
D→ atZ0 +N(0, Vt) whenever ZN

0
D→ Z0, where Vt = pt(1−pt)x0 + qt(1−qt)(1−x0))

with pt = qt + at and qt = q∗(1 − at). These results agree with Theorem 4.2 because, for the

CE case, f ′(xt) = (1− e)(1− c0) = a for all t ≥ 1 and hence µt = at. From equation (4.17), we
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see that

Vt =

t−1
∑

s=0

[

p(1 − p)xs + q(1 − q)(1 − xs)
]

a2(t−s−1)

= a2(t−1)
t−1
∑

s=0

[

(p(1 − p) − q(1 − q))(q∗ + (x0 − q∗)as) + q(1 − q)
]

a−2s

from which we group terms involving s and solve the resulting geometric progressions. Observ-

ing that p(1− p)− q(1− q) = a(1− a)(1− 2q∗) and using the identity q∗ = q/(1− a), we then

have

Vt =
q(1 − a2t)

(1 − a2)

(

a(1 − 2q∗) + (1 − q)
)

+ at(1 − at)(1 − 2q∗)(x0 − q∗)

and so

Vt =
q∗(1 − at)

(1 + a)

[

q(1 + at)(a(1 − 2q∗) + 1 − q) − at(1 + a)(1 − 2q∗)
]

+ at(1 − at)(1 − 2q∗)x0.

The term in the square brackets reduces to (1 + a)(1 − q∗(1 − at)). Upon using the identity

qt = q∗(1−at) and observing that the coefficient of x0 is equal to pt(1−pt)− qt(1− qt), we have

Vt = qt(1 − qt) +
(

pt(1 − pt) − qt(1 − qt)
)

x0

= pt(1 − pt)x0 + qt(1 − qt)(1 − x0),

which agrees with the expression for Vt as stated in Theorem 3.3.

4.6 Discussion

This chapter was concerned with chain binomial metapopulation models defined with state-

dependent colonisation processes. We attempted to evaluate the 1-step conditional state dis-

tribution for both EC and CE models but found the EC case to be intractable. For the CE

model, the 1-step conditional state distribution was found to be equal to the sum of two in-

dependent binomial random variables and so, by using Mathematical Induction, we proved a

law of large numbers and a central limit law for models that depend on the current state of

the system through the proportion of occupied patches. The law of large numbers identified

a deterministic trajectory and, by analysing this trajectory, we determined explicit conditions
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that describe the stationarity of chain binomial mainland-island models as well as the quasi

stationarity and evanescence of chain binomial island models.

A number of examples were investigated in this chapter, including several island models

and one mainland-island model. Recall that the island model with ĉ(x) = 1 − exp(−βx)

(β > 0) is the metapopulation model proposed by Hill and Caswell [46]. Thus, in the CE case,

all of the results presented in this chapter apply to Hill and Caswell’s model. The model with

c(i) = c∗(1−(1−(c1/c
∗))i) (0 < c1 ≤ c∗ ≤ 1), similar to that used by Possingham [73], is another

example of an island model though, since it does not exhibit a form in terms of the proportion

x(= i/N) of occupied patches, the CE limit theorems do not apply in this particular instance.

Mainland-island models appear to be less popular in the applied metapopulation literature

however future applications might lie in modelling endangered species that are supplemented

with individuals from a captive breeding population. In such situations, a captive population

would effectively act as a mainland population.
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Figure 4.4: A simulation of the EC model (solid circles) and CE
model (open circles) with ĉ(x) = cx; N = 30, e = 0.2 and c = 0.6.

Although we could not determine similar results for the EC model, simulation studies showed

that this model appears to respond to the same stability criteria as that outlined above for the
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CE model. For example, Figure 4.4 provides simulations for the quasi-stationary case with

ĉ(x) = cx. However, the similarity is not surprising since the seasonal dynamic is not altered

by the timing of the population census. Notice that the EC simulation appears to exhibit a

slightly larger equilibrium value than the CE model, which is not surprising either since the

EC process is observed immediately after the colonisation phase. This suggests that if one

could prove limit theorems for EC models, then these theorems must be similar to those for

the corresponding CE models and that the resulting limiting deterministic EC model exhibits

similar stability criteria. Indeed, we revisit the chain binomial metapopulation structure in

Chapter 6 where we prove limit theorems for both EC and CE models in a general framework

and without the need for conditional state distributions.



Chapter 5

Infinite-patch Models

This chapter presents stochastic models for metapopulation networks with infinitely-many

patches. These models, which may be viewed as infinite-patch analogues of our finite-patch

chain binomial models, are shown to be equivalent to branching processes.

5.1 Introduction

The metapopulation models examined in Chapters 3 and 4 account for a seasonal dynamic

where occupied patches experience local extinction during a particular seasonal phase whilst

empty patches are colonised during another seasonal phase, the number of events that occur

during each phase being governed by a binomial law. For these chain binomial models, the

parameter N defines the total number of patches in the metapopulation network. A number of

conditional state distributions were evaluated and then used to examine the models in the limit

as N → ∞, where, in particular, a deterministic trajectory was identified and used to obtain

persistence criteria that describe the long-term behaviour of the stochastic process. How, then,

would these results compare with stochastic models that describe metapopulation networks

with infinitely-many habitat patches? In this chapter, we develop three different infinite-patch

models (an island model, a mainland-island model and a mainland model, in that order) and

compare their behaviour with that of their finite-patch counterparts.

5.2 An infinite-patch island model

Let nt be the number of occupied patches at time t but now suppose that (nt : t ≥ 0) is a

discrete-time Markov chain taking values in S = {0, 1, 2, . . .}. We assume that local extinction

71
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events and colonisation events occur in separate seasonal phases and we assume that the popu-

lation census takes place either at the end of each colonisation phase (the EC model) or at the

end of each extinction phase (the CE model). The 1-step transition matrix P = (pij : i, j ∈ S)

is given by P = EC or P = CE, depending on the timing of the census, where the transition

matrices E = (eij : i, j ∈ S) and C = (cij : i, j ∈ S) that govern the local extinction and

colonisation processes, respectively, are defined as follows.

Extinction process. We continue to assume that the extinction process is governed by

the Bin(i, 1 − e) law, where i is the number of patches occupied at the beginning of the local

extinction phase and e ∈ (0, 1). The transition probabilities are given by (3.3) although E is

now an infinite matrix.

Colonisation process. Given that there are i patches occupied at the beginning of the

colonisation phase, we assume that the number of empty patches colonised during that phase

is governed by the Poi(mi) law where m > 0. Therefore,

cij =











exp(mi) (mi)j−i/(j − i)! if j = i, i + 1, i + 2, . . .

0 if j < i,

(5.1)

where we note that c0j = δ0j . Hence m may be interpreted as the expected number of empty

patches colonised by any one occupied patch.

Transition probabilities. For the EC model, the 1-step transition probabilities are given

by p0j = δ0j and pi0 = ei and

pij =

min{i,j}
∑

k=1

(

i

k

)

(1 − e)kei−k exp(−mk)
(mk)j−k

(j − k)!
(i, j ≥ 1).

For the CE model, p0j = δ0j and

pij =
∞
∑

k=max{i,j}
exp(−mi)

(mi)k−i

(k − i)!

(

k

j

)

(1 − e)jek−j (i ≥ 1, j ≥ 0).

In both cases, state 0 is absorbing and so S = {0}∪{1, 2, . . .} where {1, 2, . . .} is an irreducible

aperiodic class from which 0 is accessible. We think of these infinite-patch models as island

models because there is no ‘mainland’ to rescue the patch network from total extinction.
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Remark. Note that the class {1, 2, . . .} is countably infinite and, hence, the chain may or

may not reach the absorption state (Section 2.2.1). It will soon become apparent that branching

theory can be used to determine conditions under which absorption (i.e. total extinction) takes

place and conditions under which a proper limiting conditional distribution exists.

Seasonal dynamic. The infinite-patch island models admit the following seasonal dynamic:

EC: nt+1 = ñt + Poi(mñt) ñt = nt − Bin(nt, e) (5.2a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(mnt). (5.2b)

Remark. The infinite-patch models derived above are natural analogues of the finite-patch

(N -patch) chain binomial island models examined in Chapter 4 where, in particular, the coloni-

sation process is defined by the Bin(N − i, ĉ(i/N)) law with ĉ(0) = 0. To see this, first consider

the binomial random variable Xn ∼ Bin(n, p). If p → 0 as n → ∞ in such a way that EXn = np

approaches a constant λ(> 0), then we have the well-known Poisson limit of the binomial dis-

tribution: as n → ∞, Xn
D→ X where X ∼ Poi(λ). Now, if ĉ(0) = 0 and ĉ has a continuous

second derivative near 0, then, for fixed i, Bin(N − i, ĉ(i/N))
D→ Poi(mi) as N → ∞, where

m = ĉ ′(0). Note that one need only assume the function ĉ has a continuous second derivative

near 0 and satisfy ĉ(0) = 0 in order that the desired asymptotic (N → ∞) behaviour occurs;

it is not necessary to assume that ĉ also be continuous, increasing and concave (as done in

Chapter 4). Our infinite-patch island models are therefore natural analogues of a wider class

of N -patch island models than that previously investigated.

We remind the reader that the parameter m is interpreted as the expected number of empty

patches colonised by any one occupied patch, and so we may take m to be any positive number

(m > 0) in the following analysis. Of course, if one specifically wishes to study the infinite-

patch limit of, say, the N -patch model with ĉ(x) = cx (0 < c ≤ 1), then m = ĉ ′(0) = c which

is therefore restricted to (0, 1].

5.2.1 Model analysis

From equations (5.2a) and (5.2b), notice that nt+1 = ñt + P̃ for the EC model, where ñt ∼
Bin(i, 1 − e) and P̃ ∼ Poi(mñt), while nt+1 ∼ Bin(i + P̃ , 1 − e) for the CE model, where
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P̃ ∼ Poi(mi). Therefore, the pgf G(z) = E(znt+1 |nt = i) is given by

G(z) = E
(

zñtE(zP̃ |ñt, nt = i)|nt = i
)

= E
(

zñt exp(−mñt(1 − z))|nt = i
)

=
(

e + (1 − e)z exp(−m(1 − z))
)i

in the EC case and

G(z) = E
(

E(znt+1 |P̃ , nt = i)|nt = i
)

= E
(

(e + (1 − e)z)i+P̃ |nt = i
)

= (e + (1 − e)z)i exp(−mi(1 − e)(1 − z))

in the CE case. We find that, for each i ≥ 1, G(z) = (g(z))i where the pgf g(z) is given by

EC: g(z) = e + (1 − e)z exp(−m(1 − z)) (5.3a)

CE: g(z) = (e + (1 − e)z) exp(−m(1 − e)(1 − z)). (5.3b)

We may thus write

nt+1
D
= ξ

(t)
1 + ξ

(t)
2 + · · · + ξ(t)

nt
(t ≥ 0), (5.4)

for both models, where ξ
(t)
1 , ξ

(t)
2 , . . . are iid random variables with common pgf g(z). Further-

more, g(z) is a mixture of Bernoulli and Poisson pgfs and so, for a random variable ξ with pgf

g(z), we have that ξ = B(1 + P1) for the EC model and ξ = B + P2 for the CE model where

B ∼ Ber(1 − e), P1 ∼ Poi(m) and P2 ∼ Poi(m(1 − e)) are independent Bernoulli and Poisson

random variables, respectively. Therefore, our infinite-patch network behaves as if each occu-

pied patch becomes extinct with probability e, or each occupied patch survives with probability

1 − e and colonises Poi(m) patches (the EC case), or, instead, each occupied patch behaves as

if it goes extinct with probability e independently of colonising Poi(m(1 − e)) patches (the CE

case).

Indeed, equation (5.4) shows that both infinite-patch island models are equivalent to branch-

ing processes (Galton-Watson processes) with g being the pgf of the offspring distribution. The

“particles” are the occupied patches and so we may think of each occupied patch at time t

as being replaced by a random number of occupied patches (their “offspring”) at time t + 1.

The census times mark the generations of the branching process and, since the analysis above
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tells us that the number of “offspring” ξ produced by each occupied patch can be written in

terms of Bernoulli and Poisson random variables, we can write down the offspring distribution

(pj : j ≥ 0), where pj = Pr(ξ = j). We have that p0 = e and

pj = (1 − e) exp(−m)
mj−1

(j − 1)!
(j ≥ 1),

for the EC case, showing that the particle dies with probability e or survives and gives birth

to a number of offspring that follows a Poisson distribution with mean m. For the CE model,

p0 = e exp(−m(1 − e)) and

pj = (1 − e) exp(−m(1 − e))
(m(1 − e))j−1

(j − 1)!
+ e exp(−m(1 − e))

(m(1 − e))j

j!
(j ≥ 1),

and so the particle gives birth to a number of offspring that follows a Poisson distribution with

mean m(1 − e) and dies with probability e.

We now invoke the theory of branching processes (Section 2.3.1) to answer questions about

the long-term behaviour of the infinite-patch island models. Let µ be the mean of the offspring

distribution. We have that µ = (1−e)(1+m), the same for both models, and so E(nt|n0) = n0µ
t

(t ≥ 1). Both branching processes are therefore subcritical, critical or supercritical according

to whether µ is less than, equal to or greater than 1 or, rather, according to whether the

parameter m is less than, equal to or greater than the critical value ρ = e/(1− e). We state the

following result and then remark on an obvious connection with our N -patch chain binomial

island models.

Theorem 5.1 For both infinite-patch island models, total extinction occurs with probability 1

if and only if m ≤ ρ; otherwise total extinction occurs with probability ηn0 where η is the unique

solution of z = g(z) on the interval (0, 1), with g as given by (5.3), and n0 is the initial number

of occupied patches.

The extinction probability η cannot be exhibited explicitly, but can of course be obtained

numerically by iterating the map g.

Remark. The extinction criteria for the infinite-patch island models accord immaculately

with the criteria for evanescence (ĉ ′(0) ≤ e/(1 − e)) and quasi stationarity (ĉ ′(0) > e/(1 − e))

derived in the previous chapter for N -patch CE models with ĉ(0) = 0 (Section 4.4.2). We have
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that

(i) if m = ĉ ′(0) ≤ e/(1 − e), then extinction is certain for both infinite-patch island models

while extinction is expected to occur quickly for the N -patch CE model with N large,

and

(ii) if m = ĉ ′(0) > e/(1−e), then extinction is no longer certain for both infinite-patch island

models while quasi equilibrium may ensue for the N -patch CE model with N large.

In Section 4.6, we mentioned that simulations of the N -patch EC model respond to the same

stability criteria as that outlined above for the N -patch CE model. Since both infinite-patch

models respond to the same criteria, then this is further evidence to support our comment that

both finite-patch models do so as well.

We can also invoke the theory of branching processes to evaluate the variance of nt

conditional on n0. Letting σ2 be the variance of the offspring distribution, then Var(nt|n0) is

that given by equation (2.4) with σ2 = (1−e)(c+e(1+c2)) in the EC case, σ2 = (1−e)(c+e) in

the CE case and µ = (1− e)(1+m) in both cases. Also, a proper limiting conditional distribu-

tion exists in the case where m < e/(1− e) (Yaglom’s Theorem, Theorem 2.9) and, conditional

on absorption occurring with probability 1, in the case where m > e/(1 − e) (Theorem 2.10).

5.3 An infinite-patch mainland-island model

A simple extension of the infinite-patch island model is obtained by making the following

modification to the colonisation process. Given i patches are occupied at the beginning of the

colonisation phase, suppose that the number of empty patches colonised during that phase

follows the Poi(mi + m0) law where m ≥ 0 and m0 > 0. The parameter m may once again

be interpreted as the expected number of newly colonised patches by any one occupied patch,

while the parameter m0 may be interpreted as the expected number of empty patches colonised

by an external source (i.e. a mainland). The local extinction process remains unchanged and

so the natural infinite-patch mainland-island analogues are given by

EC: nt+1 = ñt + Poi(mñt + m0) ñt = nt − Bin(nt, e) (5.5a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(mnt + m0). (5.5b)
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The colonisation transition probabilities are therefore given by

cij =











exp(mi + m0) (mi + m0)
j−i/(j − i)! if j = i, i + 1, i + 2, . . .

0 if j < i,

where c00 < 1 and, subsequently, p00 < 1 for both the EC and CE cases. Hence, state 0 is

non-absorbing and the set S forms a single irreducible and aperiodic class, thus supporting our

interpretation of an infinite-patch network connected to a mainland population.

Remarks. (i) Although the Markov chain (nt : t ≥ 0) is now irreducible and aperiodic,

the state space remains countably infinite and so the chain does not necessarily have a unique

stationary distribution (Section 2.2.2). We shall, however, provide conditions under which this

distribution exists.

(ii) The infinite-patch mainland-island models may be derived from N -patch mainland-

island models by replacing the colonisation probability ĉ(i/N) with ĉ(i/N)+m0/N ; the second

component (attributed to the mainland) is apportioned equally among all N patches. Hence,

if ĉ(0) = 0 and ĉ has a continuous second derivative near 0, then, for fixed i, we have that

Bin(N − i, ĉ(i/N) + c(0)/N)
D→ Poi(mi + m0) as N → ∞, where m = ĉ ′(0). The parameters m

and m0 need not be restricted to the interval [0, 1] for the infinite-patch models and so we take

m ≥ 0 and m0 > 0 in the following analysis.

5.3.1 Model analysis

Recall that the function G could be written in the form G(z) = (g(z))i (i ≥ 1) for both infinite-

patch island models. For both infinite-patch mainland-island models, we find that G exhibits

the form

G(z) = (g(z))ih(z) (5.6)

for each i ≥ 0, where g is that given in Theorem 5.1 and h is defined by

EC: h(z) = exp(−m0(1 − z)) (5.7a)

CE: h(z) = exp(−m0(1 − e)(1 − z)). (5.7b)
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We may thus write

nt+1
D
= ξ

(t)
1 + ξ

(t)
2 + · · ·+ ξ(t)

nt
+ ζt+1 (t ≥ 1, n0 = ζ0), (5.8)

in both cases, where ξ
(t)
1 , ξ

(t)
2 , . . . are iid with pgf g(z) and ζ0, ζ1, . . . are iid with pgf h(z).

Equation (5.7) tells us that ζ0, ζ1, . . . are iid Poi(d) random variables where d = m0 in the EC

case and d = m0(1 − e) in the CE case. We conclude that the infinite-patch mainland-island

models are equivalent to the Galton-Watson processes identified in Section 5.2.1 but modified

so that there are Poi(d) immigrant particles in each generation (indeed, these processes are

Galton-Watson-Immigration processes where µ = (1−e)(1+m) is the mean number of offspring

produced by one particle and d is the mean number of immigrant particles). We may think of

the mainland population as the source of “immigrant particles”.

Again we can invoke the theory of branching processes. From Theorem 2.12 we see that the

Markov chain (nt : t ≥ 0) has a unique stationary distribution if and only if m < e/(1 − e).

We shall now examine a special case of the infinite-patch mainland-island model: the infinite-

patch mainland model.

5.4 The infinite-patch mainland model

An important special case of the infinite-patch mainland-island model is obtained by setting m

(the parameter attributed to the islands) equal to 0 in equation (5.5). Hence

EC: nt+1 = ñt + Poi(m0) ñt = nt − Bin(nt, e) (5.9a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m0), (5.9b)

where m0 > 0, as before. State 0 is clearly non-absorbing and so the set S remains a single,

irreducible and aperiodic class. The special case given by (5.9) is therefore the natural infinite-

patch mainland analogue of our N -patch mainland model examined in Chapter 3.

The 1-step conditional distribution for the infinite-patch mainland model follows immedi-

ately from (5.8), however we will show that the mainland model is highly tractable and thus

show that other quantities of interest can be evaluated explicitly.
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5.4.1 Model analysis

By setting m equal to 0 in equation (5.3) and substituting the result into (5.6), we see that

G(z) = (e + (1 − e)z)ih(z) (t ≥ 0),

for both infinite-patch mainland models, where h(z) is given by (5.7). The distribution of

nt+1 conditional on nt = i is therefore given by (5.8) but now ξ
(t)
1 , ξ

(t)
2 , . . . are independent

Ber(1 − e) random variables and ζ0, ζ1, . . . are independent Poi(d) random variables; d = m0

in the EC case and d = m0(1 − e) in the CE case. Hence, the infinite-patch mainland models

are equivalent to Galton-Watson-Immigration processes where each particle (occupied patch)

produces either 0 or 1 offspring according to the Ber(1− e) distribution and each generation is

joined by a random number of immigrant particles that follow a Poisson distribution with mean

d. As before, the mainland may be interpreted as the source of “immigrant particles”. Though

instead of analysing the infinite-patch mainland models in terms of branching processes, we

may re-express the 1-step conditional state distribution by

nt+1
D
= B + P, (5.10)

where B ∼ Bin(i, 1 − e) and P ∼ Poi(d). Due to the simple nature of (5.10), we can evaluate

the distribution of nt conditioned on the initial (t = 0) number of occupied patches using the

same procedure as that outlined in Chapter 3 (see Theorem 3.1). The t-step conditional state

distribution is as follows.

Theorem 5.2 Define sequences (rt) and (st) by rt = (1−e)t and st = (d/e)(1−(1−e)t) (t ≥ 0).

Then, given n0 = i, nt
D
= Bt + Pt for both infinite-patch mainland models where Bt ∼ Bin(i, rt)

and Pt ∼ Poi(st) are independent binomial and Poisson random variables, respectively.

Proof. Suppose that n0 = i and recall that the function Gt(z) = E(znt |n0 = i) defines the pgf

of nt conditional on the initial observation. Then, G0(z) = zi and, from (5.10), we have that

Gt+1(z) = E
(

(e + (1 − e)z)nt exp(−d(1 − z))|n0 = i
)

= exp(−d(1 − z)) E
(

(e + (1 − e)z)nt|n0 = i
)

= exp(−d(1 − z)) Gt(e + (1 − e)z) (5.11)
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for all t ≥ 0. The proof will be complete if we can show that

Gt(z) = (1 − rt + rtz)i exp(−st(1 − z)) (5.12)

for all t ≥ 0, where (rt) and (st) are the given sequences. We will use Mathematical Induction.

First, it is easy to see that (5.12) is true for t = 0 and t = 1 because r0 = 1 and s0 = 0 (since

G0(z) = zi) while r1 = 1 − e and s1 = d (since G1 ≡ G). Now, suppose that (5.12) is true for

some fixed t ≥ 0. Then, substitution into (5.11) gives

Gt+1(z) = exp(−d(1 − z))
(

1 − rt + rt(e + (1 − e)z)
)i

exp
(

− st(1 − (e + (1 − e)z))
)

=
(

1 − (1 − e)rt + (1 − e)rtz
)i

exp
(

− (d + (1 − e)st)(1 − z)
)

.

By the inductive hypothesis, we have rt+1 = (1 − e)rt and st+1 = d + (1 − e)st. The difference

equations solve to give rt = (1 − e)t and st = (d/e)(1 − (1 − e)t) (t ≥ 0), which are the given

sequences. Hence, equation (5.12) is proved by induction and the result follows. �

Therefore, for each t ≥ 1, the metapopulation network behaves as if the i initially occupied

patches remain occupied with probability rt whilst the mainland colonises a Poi(st) number of

empty patches, all patches being affected independently.

It is now a simple matter to establish the limiting (t → ∞) distribution of nt. Since

limt→∞ rt = 0 and limt→∞ st = d/e, we have that, as t → ∞, Bin(i, rt)
P→ 0 and Poi(st)

D→
Poi(d/e). The following result is established.

Corollary 5.1 As t → ∞, nt
D→ Poi(d/e).

Hence, in equilibrium, it is as if the mainland colonises a random number of patches that

follows a Poisson distribution with mean d/e. The limiting mean number of occupied patches

is larger for the EC case (since d = m0 for the EC model and d = m0(1− e) for the CE model),

though this is not surprising since, even in equilibrium, the EC model still corresponds to

observing the metapopulation after successive colonisation phases. Branching theory establishes

that the Markov chain always has a proper limiting distribution (see Theorem 2.12, noting that

µ = 1 − e is always strictly less than 1), however Corollary 5.1 establishes a stronger result

since it states this limiting distribution explicitly.
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5.5 Discussion

This chapter was concerned with a number of metapopulation models that describe networks

with infinitely-many patches (N = ∞). The models were designed to exhibit a seasonal dynamic

and do so in such a way that they are viewed as natural infinite-patch analogues of our finite-

patch chain binomial models examined in Chapters 3 and 4. The local extinction process was

modelled in the same way for each infinite-patch model, however we considered three different

ways in which empty patches are colonised: by migration from occupied patches (Section 5.2),

by migration from occupied patches as well as an external source (Section 5.3) and by migration

from an external source only (section 5.4).

Apart from the seasonal dynamic, the characteristic common to all three infinite-patch

models is branching. We found that the 1-step conditional state distribution could be written

as a sum of independent random variables and, due to the particular form of this sum, we

deduced that occupied patches could be re-interpreted as “particles” of a branching process.

We then invoked branching theory to prove results for the infinite-patch models, though, in

one particular case (i.e. the mainland model), we obtained the t-step conditional state dis-

tribution and the limiting distribution explicitly without using branching theory. Indeed, our

infinite-patch branching processes have an obvious epidemiological interpretation: given an as-

sumed seasonal dynamic consisting of infectious periods and recovery (or death) periods, the

“particles” may be thought of as infected individuals in a population with no ceiling.

One last remark should be made regarding the connection between our chain binomial

models and the infinite-patch models above. We have already stated that the infinite-patch

models may be derived as finite-patch limits of our chain binomial models, however observe

that results pertaining to infinite-patch models turn out to be limits of results for finite-patch

models as well. For example, consider the N -patch mainland model (equation (3.6)) but with

c0 replaced by m0/N . Given nt = i for this N -patch model, Lemma 3.1 tells us that

nt+1
D
= Bin(i, p) + Bin(N − i, q)

= Bin(i, 1 − e(1 − m0/N)) + Bin(N − i, m0/N)

D→ Bin(i, r1) + Poi(s1)
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as N → ∞. Given n0 = i now, Theorem 3.1 tells us that

nt
D
= Bin(i, pt) + Bin(N − i, qt)

D→ Bin(i, rt) + Poi(st)

as N → ∞. Hence, the conditional state distributions evaluated for the infinite-patch main-

land models turn out to be equal to the asymptotic (N → ∞) limits of the conditional

state distributions of the corresponding N -patch mainland models. Of course, the same

can be said for N -patch CE models by comparing Proposition 4.1 with the infinite-patch

CE models above. Recall that ξ ∼ B + P2 for the infinite-patch island and mainland-

island models in the CE case, where B ∼ Ber(1 − e) and P2 ∼ Poi(m(1 − e)). This al-

lows us to write nt+1
D
= Bin(i, 1 − e) + Poi(m(1 − e)i) for the infinite-patch island case and

nt+1
D
= Bin(i, 1 − e) + Poi(m(1 − e)i + m0(1 − e)) for the infinite-patch mainland-island case.

Comparing these distributions to that in Proposition 4.1, it is easy to see that the 1-step con-

ditional state distributions for the infinite-patch (CE) models are the asymptotic limits of the

finite-patch (CE) counterparts.

Remark. Recall that ξ ∼ B(1+P1) for the infinite-patch island and mainland-island models

in the EC case. The fact that ξ cannot be written as a simple sum of individual, independent

random variables is perhaps one clue that explains why the 1-step conditional state distribution

continues to remain elusive for the general finite-patch EC model.



Chapter 6

Limit Theorems for Discrete-time

Metapopulation Models

Here we prove limit theorems for a general class of inhomogeneous Markov chains that exhibit

the particular property of density dependence. We demonstrate how these theorems can be

used to evaluate the limiting behaviour of any of our discrete-time metapopulation models (both

finite-patch and infinite-patch) defined with density-dependent phases.

6.1 Introduction

The investigations carried out in Chapters 3, 4 and 5 established a number of analytical results

for our stochastic discrete-time metapopulation models. In particular, recall that two types of

limit theorems were proved for the N -patch mainland model (Section 3.3.2): the first, a law

of large numbers, identified an approximating discrete-time deterministic trajectory and the

second, a central limit law, showed that the fluctuations about this trajectory are approximately

normally distributed. Indeed, we proved such laws for the N -patch CE model (Section 4.4.1)

where the colonisation process depended on the current number i of occupied patches through

the proportion, or density, i/N of occupied patches. In this chapter we revisit these types of

limit laws. We show that it is possible to evaluate the limiting behaviour of both (EC and CE)

N -patch models and that similar laws may also be found for infinite-patch models.

We begin this chapter by introducing a general class of time-inhomogeneous Markov chains

that exhibit the particular property of density dependence. For this class of chains we prove a

law of large numbers, which identifies a (time-inhomogeneous) discrete-time deterministic tra-

jectory, and a central limit law, which shows that the random fluctuations about this trajectory

83
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have an approximating autoregressive structure. These results will then be used to determine

limit theorems for our finite-patch (Section 6.3) and infinite-patch (Section 6.4) metapopulation

models. The parameter N serves as an arbitrary index in the general setting, though it will

soon become clear that N represents the total number of patches in the finite-patch setting

and marks a particular threshold in the infinite-patch setting. The results are illustrated with

examples.

6.2 General structure: density dependence

Let (nN

t : t ≥ 0) be a family of discrete-time Markov chains indexed by N , each taking values

in a set S
N

which is a subset of Z+. Suppose that the family is density dependent in that there

are sequences of non-negative functions (ft) and (vt) such that

E(nN

t+1|nN

t ) = Nft(n
N

t /N) and Var(nN

t+1|nN

t ) = Nvt(n
N

t /N). (6.1)

The “density process” (XN

t : t ≥ 0) obtained by setting XN

t = nN

t /N will have

E(XN

t+1|XN

t ) = ft(X
N

t ) and N Var(XN

t+1|XN

t ) = vt(X
N

t ).

The following result is a law of large numbers that establishes convergence of the density process

to a deterministic trajectory. Here, and henceforth, convergence is established in the limit as

N → ∞.

Theorem 6.1 Suppose that, for all t ≥ 0, ft(x) and vt(x) are continuous in x and such that

ft(X
N

t ) and vt(X
N

t ) are a.s. uniformly bounded. Then, if XN

0
P→ x0 (a constant), XN

t
P→ xt for

all t ≥ 1, where x
.

is determined by xt+1 = ft(xt) (t ≥ 0).

Proof. We will use Mathematical Induction. By assumption, XN

0
P→ x0. Now, suppose that

XN

t
P→ xt for some t ≥ 0. Then, since ft is continuous, E(XN

t+1|XN

t ) = ft(X
N

t )
P→ ft(xt). We

are also told that ft(X
N

t ) is a.s. uniformly bounded and so, by Theorem 7.4(b) of Grimmett

and Stirzaker [35], ft(X
N

t )
r→ ft(xt) for all r ≥ 1, which entails, in particular, that

EXN

t+1 = E
(

E(XN

t+1|XN

t )
)

= Eft(X
N

t ) → ft(xt) and Varft(X
N

t ) → 0.
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Since vt is continuous and vt(X
N

t ) is a.s. uniformly bounded, we also have that Evt(X
N

t ) →
vt(xt). Therefore,

VarXN

t+1 = EVar(XN

t+1|XN

t ) + Var E(XN

t+1|XN

t )

=
1

N
Evt(X

N

t ) + Varft(X
N

t ) → 0.

But, by Chebyshev’s inequality (see for example Section 7.3 of [35]), we have

Pr(|XN

t+1 − ft(xt)| ≥ ǫ) ≤ 1

ǫ2
E(XN

t+1 − ft(xt))
2

=
1

ǫ2

(

VarXN

t+1 + (EXN

t+1 − ft(xt))
2
)

→ 0

for all ǫ > 0. That is, XN

t+1
P→ xt+1, and the proof is complete. �

Theorem 6.1 will be applied in the context of our N -patch models (Section 6.3 to follow),

with XN

t being interpreted as a proportion and is itself bounded. To accommodate cases where

XN

t is unbounded (as in Section 6.4 where we treat our infinite-patch models), we relax uniform

boundedness in favour of a Lipschitz condition, but at the expense of requiring a more stringent

initial condition, that XN

0 converges to x0 in mean square.

Theorem 6.2 Suppose that, for all t ≥ 0, ft(x) and vt(x) are Lipschitz continuous in x. If

XN

0
2→ x0 (a constant), then XN

t
2→ xt (and hence XN

t
P→ xt) for all t ≥ 1, where x

.
is

determined by xt+1 = ft(xt) (t ≥ 0).

Proof. We will again use Mathematical Induction. Suppose XN

t
2→ xt for some t ≥ 0 (noting

that XN

0
P→ x0 by assumption). Since ft(x) is Lipschitz continuous, then

|ft(X
N

t ) − ft(xt)| ≤ κt|XN

t − xt|,

and hence

(ft(X
N

t ) − ft(xt))
2 ≤ κ2

t (X
N

t − xt)
2, (6.2)

for some positive constant κt. On taking the expectation of (6.2), we see that ft(X
N

t )
2→ ft(xt).

This implies, in particular, that (i) Varft(X
N

t ) → 0 and (ii) Eft(X
N

t ) → ft(xt), which means

that EXN

t+1 → xt+1. Similarly, since vt(x) is Lipschitz continuous, Evt(X
N

t ) → vt(xt). We
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know that VarXN

t+1 = Evt(X
N

t )/N + Varft(X
N

t ) (from the previous proof) and so we see that

VarXN

t+1 → 0. But, E(XN

t+1 − xt+1)
2 = VarXN

t+1 + (EXN

t+1 − xt+1)
2, and so XN

t+1
2→ xt+1. This

completes the proof. �

Having established convergence in probability to a limiting deterministic trajectory x
.
, we

now consider the “fluctuations process” (ZN

t : t ≥ 0) obtained by setting ZN

t =
√

N(XN

t − xt).

The following additional structure dictates the conditions under which we determine a central

limit law for ZN

t . Suppose that

nN

t+1 = gN

t +
∑rN

t

j=1 ξN

jt (t ≥ 0), (6.3)

where

rN

t = Nrt(nN

t /N) and gN

t = Ngt(nN

t /N)

with rt(x) and gt(x) being continuous in x, and ξN

jt (j = 1, . . . , rN

t ) are iid random variables

having a distribution that depends only on t and on nN

t /N , and which have bounded third

moment. In particular, we assume that there are functions mt(x) and σ2
t (x) such that

E ξN

jt = mt(n
N

t /N) and Var(ξN

jt ) = σ2
t (n

N

t /N),

and a function bt(x) such that

E(ξN

jt − mt(x))3 = bt(n
N

t /N),

which is bounded in x. Of course, these functions must be such that rN

t and gN

t are positive

integers and, then, that nN

t+1 ∈ S
N

. By the representation of (6.3), we see that (nN

t : t ≥ 0)

satisfies the properties of density dependence with sequences (ft) and (vt) given by

ft(x) = gt(x) + rt(x)mt(x) and vt(x) = rt(x)σ2
t (x). (6.4)

Remark. The structure outlined above is very similar to that of Klebaner and Nerman [49]

(see also Klebaner [48]) who studied a generalisation of the Galton-Watson process where the

offspring distribution was allowed to depend on the current population size measured as a

proportion of some threshold N . They had gt ≡ 0 and rt(x) = x and so their model is time-
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homogeneous with nt+1 =
∑Nx

j=1 ξN

jt defining the size of a Galton-Watson process at time t + 1.

We note that many of their results (Section 3 of [49]) carry over to the present setting with

only minor changes, however we content ourselves with proving two general results for our

time-inhomogeneous setup (Lemma 6.1 and Theorem 6.3 below).

Observe that we may rewrite equation (6.3) as

XN

t+1 = ft(X
N

t ) +
1√
N

ηN

t (XN

t ), (6.5)

where

ηN

t (x) =
1√
N

Nrt(x)
∑

j=1

(ξN

jt − mt(x)). (6.6)

Note that, for fixed x, ηN
t (x) is independent of XN

t . We present the following result in antici-

pation of proving a central limit law for ZN

t .

Lemma 6.1 If XN

t
P→ x (a constant), then ηN

t (XN

t )
D→ N(0, vt(x)).

Proof. Let Y
Nj

= ξN

jt − mt(X
N

t ) and consider the triangular array (Y
Nj

: j = 1, . . . , r
N
) where

r
N

= [Nrt(X
N

t )], noting that the sequence Y
N1

, . . . , Y
N,r

N
is independent for each N . It is clear

that, for any j, E(Y
Nj

) = 0 and E(Y 2
Nj

) = Var(ξN

jt ) = σ2
t (X

N

t ). Hence s2
N

:=
∑r

N

j=1 E(Y 2
Nj

) =

r
N
σ2

t (X
N

t ) and Y
N

:=
∑r

N

j=1 Y
Nj

=
√

NηN

t (XN

t ). Provided XN

t
P→ x for fixed t, the Feller-

Lindeberg Theorem (see for example Theorems 27.2 and 27.3 of Billingsley [11]) tells us that

Y
N
/s

N

D→ N(0, 1). But, first, we require Lyapounov’s condition,

lim
N→∞

r
N
∑

j=1

1

s2+δ
N

E

[

|Y
Nj
|2+δ
]

= 0 (for some δ > 0),

to hold, since it is a sufficient condition for the Feller-Lindeberg Theorem. We will show that

Lyapounov’s condition is satisfied for δ = 1. Now, for j = 1, we have

E
[

|Y
N1
|3
]

s3
N

=
E
[

|ξN

1t − mt(X
N

t )|3
]

σ3
t (X

N

t )
[

Nrt(X
N

t )
]3/2

→ 0

because E(|ξN

1t − mt(x)|3) ≤ bt(x) and bt(x) is bounded in x. Indeed, we draw the same

conclusion for any value of j and Lyapounov’s condition is satisfied as a result. Therefore, if
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XN

t
P→ x, then, by the Feller-Lindeberg Theorem, Y

N
/s

N

D→ N(0, 1) and we deduce that

√
NηN

t (XN

t )

σt(X
N

t )
√

Nrt(X
N

t )

D→ N(0, 1),

from which we see that ηN

t (XN

t )
D→ N(0, σ2

t (x)rt(x)). This completes the proof. �

We now present a central limit law for the fluctuations process. This law will be applied

in both the N -patch and infinite-patch contexts, though the index N will take on a different

meaning in each case.

Theorem 6.3 Suppose that, for all t ≥ 0, ft(x) is twice continuously differentiable in x with

bounded second derivative and that XN

t
P→ xt, where x

.
satisfies xt+1 = ft(xt) (t ≥ 0). If

ZN

0
D→ z0 (a constant), then ZN

.

converges weakly to the Gaussian Markov process Z
.

defined

by

Zt+1 = f ′
t (xt)Zt + Et, (6.7)

where (Et) are independent with Et ∼ N(0, vt(xt)).

Proof. Recall that XN

t+1 = ft(X
N

t )+
(

1/
√

N
)

ηN

t (XN

t ) where ηN

t (XN

t ) is given by (6.6). We are

told that XN

t
P→ xt for all t ≥ 1, where x

.
is determined by xt+1 = ft(xt) (t ≥ 0), and so

XN

t+1 − xt+1 = ft(X
N

t ) − ft(xt) +
(

1/
√

N
)

ηN

t (XN

t )

where, upon multiplying by
√

N , we have ZN

t+1 =
√

N (ft(X
N

t ) − ft(xt)) + ηN

t (XN

t ). We are

also told that ft(x) is twice continuously differentiable in x (for all t ≥ 0) so that, by Taylor’s

Theorem, ft(X
N

t ) = ft(xt)+f ′
t (xt)(X

N

t −xt)+
1
2
f ′′

t (θN

t )(XN

t −xt)
2 for some θN

t between XN

t and

xt, and therefore ZN

t+1 = f ′
t (xt)Z

N

t + ηN

t (XN

t ) + 1
2
√

N
f ′′

t (θN

t )(ZN

t )2. But, since f ′′
t (x) is bounded

in x, we may thus write

ZN

t+1 = f ′
t (xt)Z

N

t + ηN

t (XN

t ) + oN

t (1), (6.8)

where oN

t (1)
P→ 0 as N → ∞. Now, to establish weak convergence of ZN

.

to Z
.

it is suffi-

cient to establish convergence of the finite-dimensional distributions. To this end, consider the

characteristic function

φN

t (ωt, . . . , ω0) = E exp
(

i
(

ωtZ
N

t + · · · + ω0Z
N

0

))
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of the sequence (ZN

0 , . . . , ZN

t ). Then, from (6.8), the cf of (ZN

0 , . . . , ZN

t+1) is given by

φN

t+1(ωt+1, ωt, . . . , ω0) = E exp
(

iωt+1ηN
t (XN

t ) + i (ωt + ωt+1f
′

t (xt))Z
N

t

+ i
(

ωt−1Z
N

t−1 + · · ·+ ω0Z
N

0

)

+ oN

t (1)
)

.

We have assumed that, for fixed t and xt, XN

t
P→ xt and so ηN

t (XN

t )
D→ N(0, vt(xt)) by

Lemma 6.1. Then, from the Markov Property and our premise ZN

0
D→ z0, it follows that

limN→∞ φN

t = φt exists for all t ≥ 1 and satisfies

φt+1(ωt+1, ωt, . . . ω0) = exp(−1
2
ω2

t+1vt(xt))φt

(

ωt + ωt+1f
′
t (xt), ωt−1, . . . ω0

)

,

with φ0(ω0) = exp(iω0z0) being the cf of Z0 = z0. But, this iteration defines the cf of

(Z0, . . . , Zt), where Z
.

is the proposed limiting Gaussian process. This completes the proof. �

Hence, our central limit law establishes that the fluctuations converge in the sense of finite-

dimensional distributions. This is to say that, for a finite sequence of times t1, . . . , tk, the se-

quence (ZN

t1 , . . . , Z
N

tk
) converges in distribution to the random sequence (Zt1 , . . . , Ztk), where Z

.

is defined by (6.7). Indeed, the limiting process is ‘Gaussian’ because Zt+1 ∼ N
(

f ′
t (xt)z, vt(xt)

)

given Zt = zt for all t ≥ 0, and the representation of (6.7) clearly shows that this process is

Markovian (Theorem 2.14). The mean and covariance function of Z
.

are easy to evaluate by

iterating (6.7):

µt := EZt = z0 Π0, t (t ≥ 1) (6.9)

and

ct, s := Cov(Zt, Zs) = Vt Πt, s (s ≥ t ≥ 1), (6.10)

where

Πu, v :=
v−1
∏

w=u

f ′
w(xw) (v > u) (6.11)

and

Vt := Var(Zt) =

t−1
∑

s=0

vs(xs)Π
2
s+1, t (t ≥ 1). (6.12)

Notice that the sequence of means satisfy µt+1 = f ′
t (xt)µt and the sequence of variances satisfy

Vt+1 = (f ′
t (xt))

2Vt−1 + vt(xt), from which it is clear that the Gaussian Markov process is



90 Chapter 6. Limit Theorems for Discrete-time Metapopulation Models

time-inhomogeneous. Also notice that, for any t ≥ 1, ZN

t
D→ Zt, where Zt ∼ N(µt, Vt), and so

we can use these formulae to approximate the mean and covariance function of nN
.

. Indeed, for

any finite set of times t1, . . . , tk, the joint distribution of nN
t1 , . . . , n

N
tk

can be approximated by a

k-dimensional Gaussian distribution with EnN

ti ≃ Nxti +
√

Nµti and Cov(nN

ti , n
N

tj ) ≃ Ncti, tj .

Remark. Each of our discrete-time metapopulation models were studied in terms of two

time-homogeneous Markov chains, corresponding to the EC and CE observation schemes. It

will soon become clear that some of our time-homogeneous Markov chains do not exhibit the

required property of density dependence, however the level of generality incorporated in the

limit theorems proved above allow us to establish the required limiting (N → ∞) behaviour

for time-inhomogeneous Markov chains with density-dependent seasonal phases.

We now demonstrate how the time-inhomogeneous limit theorems apply to our time-

homogeneous metapopulation models.

6.3 N-patch metapopulation models

Here we explain how the results of Section 6.2 can be applied to our N -patch metapopulation

models. First, we define (nt : t ≥ 0) as a discrete-time Markov chain that takes values in the

set S
N

= {0, 1, 2, . . . , N} and evolves as follows:

EC: nt+1 = ñt + Bin(N − ñt, ĉ(ñt/N)) ñt = nt − Bin(nt, e) (6.13a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, ĉ(nt/N)), (6.13b)

where nt is the number of occupied patches at time t in a group of N patches, e is the local

extinction probability (0 < e < 1) and ĉ(x) is the colonisation probability expressed as a

function of the proportion x of occupied patches. The function ĉ : [0, 1] → [0, 1] is assumed to

be continuous, increasing and concave, with ĉ(0) ≥ 0 and ĉ(x) ≤ 1. The set S
N

is irreducible

unless ĉ(0) = 0, in which case there is a single absorbing state (state 0, corresponding to total

extinction of the population) with the remaining states forming an irreducible transient class

E
N

= {1, 2, . . . , N} from which 0 is accessible.
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6.3.1 Limit theorems

Given the structure outlined in (6.13), let us now consider the time-inhomogeneous Markov

chain (nN

t : t ≥ 0) obtained by setting nN

2t = nt and nN

2t+1 = ñt. It is important to note that the

chain (nN

t : t ≥ 0) corresponds to taking a metapopulation census after each seasonal phase,

whilst the chain (nt : t ≥ 0) corresponds to taking a census after each second phase. With

XN

t = nN

t /N , the sequences (ft) and (vt) satisfy

f2t(x) = f0(x) = (1 − e)x f2t+1(x) = f1(x) = x + (1 − x)ĉ(x) (6.14)

v2t(x) = v0(x) = e(1 − e)x v2t+1(x) = v1(x) = (1 − x)ĉ(x)(1 − ĉ(x)) (6.15)

for the EC model and

f2t(x) = f0(x) = x + (1 − x)ĉ(x) f2t+1(x) = f1(x) = (1 − e)x (6.16)

v2t(x) = v0(x) = (1 − x)ĉ(x)(1 − ĉ(x)) v2t+1(x) = v1(x) = e(1 − e)x (6.17)

for the CE model. Notice that the roles of f0 and f1, as well as v0 and v1, are reversed.

All of these functions are continuous, and ft(X
N

t ) and vt(X
N

t ) are uniformly bounded because

0 ≤ XN

t ≤ 1 and ĉ(x) ≤ 1. Hence, by Theorem 6.1, the inhomogeneous density process

(XN

t : t ≥ 0) is approximated by a deterministic process (xt : t ≥ 0) that satisfies, in particular,

x2(t+1) = f(x2t) where f = f1 ◦ f0.

Thus we have the following law of large numbers (LLN) for the time-homogeneous density

process.

Theorem 6.4 (LLN for N-patch models) For the N-patch metapopulation models with pa-

rameters e and ĉ(x), let XN

t = nt/N be the proportion of occupied patches at census t. If

XN

0
P→ x0, then XN

t
P→ xt for all t ≥ 1, where x

.
is determined by xt+1 = f(xt) (t ≥ 0) with

f(x) = (1 − e)x + (1 − (1 − e)x)ĉ((1 − e)x), (EC model)

f(x) = (1 − e)(x + (1 − x)ĉ(x)). (CE model)
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Thus, Theorem 6.4 provides a new result for the EC model and reiterates the result for the

CE model as given by Theorem 4.1.

Remark. In fact, Theorem 6.1 can be applied directly to the CE model (6.13b) because

E(nt+1|nt) and Var(nt+1|nt) can be evaluated explicitly. That is,

E(nt+1|nt) = E
(

E(nt+1|ñt, nt)|nt

)

= E
(

E(nt+1|ñt)|nt

)

= (1 − e)E
(

ñt|nt

)

= (1 − e)(nt + (N − nt)ĉ(nt/N)),

implying that ft(x) = f(x) = (1 − e)(x + (1 − x)ĉ(x)), and

Var(nt+1|nt) = E
(

Var(nt+1|ñt, nt)|nt

)

+ Var
(

E(nt+1|ñt, nt)|nt

)

= E
(

Var(nt+1|ñt)|nt

)

+ Var
(

E(nt+1|ñt)|nt

)

= e(1 − e)E(ñt|nt) + (1 − e)2 Var(ñt|nt)

= eE(nt+1|nt) + (1 − e)2(N − nt)ĉ(nt/N)(1 − ĉ(nt/N)),

implying that

vt(x) = v(x) = ef(x) + (1 − e)2(1 − x)ĉ(x)(1 − ĉ(x))

= (1 − e) (ex + (1 − x)ĉ(x)(1 − (1 − e)ĉ(x))) .

Both f and v are continuous, and f(XN

t ) and v(XN

t ) are bounded because 0 ≤ XN

t (= nt/N) ≤ 1

and ĉ(x) ≤ 1. For the N -patch EC model (6.13a), similar calculations reveal that we cannot

evaluate the conditional mean and variance explicitly. Unless we impose further restrictions

on ĉ, we cannot show that the time-homogeneous EC model exhibits the required density

dependence properties and so we are unable to apply Theorem 6.1 directly in this case.

To obtain the corresponding central limit law for the time-homogeneous fluctuations process

(ZN

t : t ≥ 0), where ZN

t =
√

N(XN

t − xt) with XN

t = nt/N , first observe that our N -patch

models can be represented as

nt+1 = ñt +
∑N−ñt

j=1 Berj(ĉ(ñt/N)) ñt = nt −
∑nt

j=1Berj(e) (EC model)

nt+1 = ñt −
∑ñt

j=1Berj(e) ñt = nt +
∑N−nt

j=1 Berj(ĉ(nt/N)), (CE model)
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where the (Berj(p)) are collections of iid Bernoulli random variables with success probability p.

Thus, we may apply Theorem 6.3 to the time-inhomogeneous Markov chain (nN

t : t ≥ 0)

obtained by setting nN

2t = nt and nN

2t+1 = ñt (as above) because this chain will have the form

exhibited by equation (6.3) with the (± ξN

jt ) being appropriate sequences of iid Bernoulli random

variables. For both inhomogeneous models, we have g2t(x) = g2t+1(x) = x. For the EC case,

r2t(x) = x r2t+1(x) = 1 − x

m2t(x) = −e m2t+1(x) = ĉ(x)

σ2
2t(x) = e(1 − e) σ2

2t+1(x) = ĉ(x)(1 − ĉ(x)),

which lead to the same sequences (ft) and (vt) as that given by (6.14) and (6.15), respectively.

We also have b2t(x) = e(1− e)(1−2e) and b2t+1(x) = ĉ(x)(1− ĉ(x))(1−2ĉ(x)) in this case. For

the CE case,

r2t(x) = 1 − x r2t+1(x) = x

m2t(x) = ĉ(x) m2t+1(x) = −e

σ2
2t(x) = ĉ(x)(1 − ĉ(x)) σ2

2t+1(x) = e(1 − e),

which then lead to the same sequences (ft) and (vt) as that given by (6.16) and (6.17). Also,

b2t(x) = ĉ(x)(1− ĉ(x))(1− 2ĉ(x)) and b2t+1(x) = e(1− e)(1− 2e). If we assume that ĉ is twice

continuously differentiable (in addition to the conditions we have already imposed on ĉ), then

ft(x) will be twice continuously differentiable in x with bounded second derivative, vt(x) will

be continuous in x, and bt(x) will be bounded in x. We already know that the deterministic

trajectory for both inhomogeneous Markov chains satisfy x2(t+1) = f(x2t) where f = f1 ◦ f0,

and so, by Theorem 6.3, the limiting Gaussian Markov process Z
.

must satisfy

Z2(t+1) = f ′(x2t)Z2t + Ê2t, with Ê2t ∼ N(0, v(x2t)),

where v = v1 ◦ f0 + (f ′
1 ◦ f0)

2v0, with f ′
1(x) = 1 − ĉ(x) + (1 − x)ĉ ′(x) in the EC case and

f ′
1(x) = (1− e) in the CE case. Thus we arrive at the following central limit law (CLL) for our

time-homogeneous metapopulation models.
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Theorem 6.5 (CLL for N-patch models) For the N-patch metapopulation models with pa-

rameters e and ĉ(x), suppose that ĉ is twice continuously differentiable. Let ZN

t =
√

N(XN

t −xt),

where XN

t = nt/N is the proportion of occupied patches at census t and where x
.

is determined

by xt+1 = f(xt) (t ≥ 0) with f given as in Theorem 6.4. Then, if ZN

0
D→ z0, ZN

.

converges

weakly to the Gaussian Markov process Z
.

defined by

Zt+1 = f ′(xt)Zt + Et,

with (Et) independent and Et ∼ N(0, v(xt)), where

v(x) = (1 − (1 − e)x)ĉ((1 − e)x)(1 − ĉ((1 − e)x))

+ e(1 − e)x
[

1 − ĉ((1 − e)x) + (1 − (1 − e)x)ĉ ′((1 − e)x)
]2

, (EC model)

v(x) = (1 − e)
[

ex + (1 − x)ĉ(x)
(

1 − (1 − e)ĉ(x)
)]

. (CE model)

An immediate consequence of Theorem 6.5 is that the time-homogeneous fluctuations pro-

cess satisfies ZN

t
D→ N(µt, Vt) for any t ≥ 1, where

µt = z0

t−1
∏

s=0

f ′(xs) and Vt =
t−1
∑

s=0

v(xs)
t−1
∏

u=s+1

f ′(xu)
2. (6.19)

The central limit law that was presented earlier for the N -patch CE model (Theorem 4.2),

gives the same expression for the mean and variance of Z
.
, however notice that the central

limit law as stated by Theorem 6.5 is more detailed: not only can we write down the mean

and variance of the limiting Gaussian random variables, we can also write down the covariance

function of the limiting Gaussian process. Hence, the joint distribution of nt1 , . . . , ntk , observed

at census times t1, . . . , tk, can be approximated by a k-dimensional Gaussian distribution with

Enti ≃ Nxti +
√

Nµti and Cov(nti , ntj ) ≃ Ncti, tj , where ct, s := Cov(Zt, Zs) = Vt

∏s−1
u=t f ′(xu)

(s ≥ t); µt and Vt are given by (6.19). Of course, Theorem 6.5 demonstrates that these results

apply to the EC case as well (a new result) where f and v are chosen appropriately.

Remark. These limit theorems were proved without using any of the conditional state distri-

butions provided by Lemma 3.1, Theorem 3.1 or Proposition 4.1. Thus, instead of evaluating

such distributions and observing their behaviour as N → ∞, the limiting behaviour of any
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of our N -patch models with density-dependent seasonal phases can be determined by simply

observing the conditional means and variances of those phases. It should be clear, then, that

this programme extends to models with more than two density-dependent phases. For exam-

ple, our methods can easily accommodate an extinction-reproduction-settlement dynamic like

that described by Klok and De Roos [50] (although note that their particular model does not

directly translate into our setting, since their reproduction and settlement transition matrices

are non-square).

6.3.2 Long-term behaviour

We start by investigating the long-term (t → ∞) behaviour of the deterministic process (xt :

t ≥ 0), where, in an obvious notation, we use subscripts ‘EC’ and ‘CE’ to distinguish between

the same quantities for the respective models. The LLN for N -patch models tells us that

fCE((1 − e)x) = (1 − e)fEC(x), (6.20)

and so, letting x∗ denote a fixed point, the fixed points of fCE and fEC are related by

x∗
CE

= (1 − e)x∗
EC

. (6.21)

From (6.20), it is easy to see that f ′
CE

((1−e)x) = f ′
EC

(x) and (1−e)f ′′
CE

((1−e)x) = f ′′
EC

(x), and

so (6.21) tells us that f ′
CE

(x∗
CE

) = f ′
EC

(x∗
EC

) and (1− e)f ′′
CE

(x∗
CE

) = f ′′
EC

(x∗
EC

). Hence, x∗
CE

and x∗
EC

share the same stability properties. It is now a simple matter of recalling results presented in

Section 4.4.2 where the stability properties were evaluated for the deterministic CE model in

terms of the parameter ρ = e/(1− e). Remember that x∗
CE is a fixed point of fEC if and only if

ĉ(x∗
CE

) = r(x∗
CE

), where r(x) = ρx/(1− x), and that, since ĉ is strictly increasing from ĉ(0) ≥ 0

and concave with ĉ(x) ≤ 1, there is always precisely one unique stable fixed point in [0, 1]. We

may summarise the long-term behaviour of both the EC and CE models as follows.

(i) Stationarity : ĉ(0) > 0. There is a unique fixed point x∗ in [0, 1], which is stable and

satisfies 0 < x∗ < 1. The Markov chain has a unique stationary distribution in this case

and we expect this distribution to be centred near Nx∗.
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(ii) Evanescence: ĉ(0) = 0 and ĉ ′(0) ≤ ρ. The unique fixed point in [0, 1] is 0 and it is stable.

The Markov chain has an absorbing state (state 0) in this case, which it reaches in finite

time, however, under the condition that ĉ ′(0) ≤ ρ, we expect the stochastic process to be

absorbed quickly (even for large N).

(iii) Quasi stationarity : ĉ(0) = 0 and ĉ ′(0) > ρ. There are two fixed points in [0, 1], namely

0 and x∗ ∈ (0, 1); 0 is unstable and x∗ is stable. The Markov chain reaches its ab-

sorbing state (state 0) in finite time, however, under the condition that ĉ ′(0) > ρ, quasi-

equilibrium will be reached and we expect the unique quasi-stationary distribution (being

the limiting conditional state probabilities, conditional on non-extinction) of the chain to

be centred near Nx∗.

These results are in complete agreement with our comments made in Section 4.6, where

we suggested that the same stability criteria describes both deterministic models and that the

equilibrium proportion of occupied patches is larger in the EC case. Indeed, we now know that

the equilibrium value for the CE model is smaller by a factor of 1−e and that the deterministic

trajectory is uniformly smaller for the CE model (since fCE(x) < fEC(x)). These remarks

are supported by illustrations in plots (a), (b) and (c) of Figure 6.1, where simulations are

depicted for both the EC and CE models with ĉ(x) = cx (see Example 6.1 below), as well as

the corresponding deterministic trajectories and quantities relating to the limiting Gaussian

processes. Figure 6.1(d) depicts the quasi-stationary distribution, pN = (pN

i , i ∈ E
N

), of n
.

in the EC case (where, from Section 2.2.3, this distribution was evaluated as the normalized

left eigenvector of the transition matrix restricted to E
N

corresponding to its Perron-Frobenius

eigenvalue), and this was compared with the approximating Gaussian pdf with mean Nx∗ and

variance NV ∗, where V ∗ = v(x∗)/(1 − f ′(x∗)2) (see Corollary 6.1 below).

Our next result shows that in the stationary and quasi-stationary cases, where there is a

positive stable deterministic equilibrium x∗, the fluctuations ZN

t =
√

N(XN

t −x∗) of XN

.

about

x∗ can be approximated by an AR-1 process whose parameters can be exhibited explicitly. It

follows from Theorems 6.4 and 6.5 by setting x0 = x∗.

Corollary 6.1 For the N-patch metapopulation models with parameters e and ĉ(x), let ZN

t =
√

N(XN

t − x∗) where XN

t = nt/N . In addition to ĉ being twice continuously differentiable,

suppose that (i) ĉ(0) > 0 or (ii) ĉ(0) = 0 and ĉ ′(0) > e/(1−e). Further let x∗ be the stable fixed
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point of f where f is given as in Theorem 6.4. Then, XN

0
P→ x∗ implies that XN

t
P→ x∗ for all

t ≥ 1, in which case if ZN

0
D→ z0, then ZN

.

converges weakly to the AR-1 process Z
.

defined by

Zt+1 = f ′(x∗)Zt + Et, where (Et) are iid with Et ∼ N(0, v(x∗)) and v as given in Theorem 6.5.

One consequence of the corollary is that ZN

t
D→ N(z0a

t, Vt) for all t ≥ 1, where a = f ′(x∗)

is the decay rate and now

Vt = v(x∗)(1 − a2t)/(1 − a2). (6.22)

Another is that there will be a sequence of times (tN) such that ZN

tN

D→ N(0, V ∗), where

V ∗ = v(x∗)/(1 − a2), (6.23)

which is to say that, as N → ∞ and t → ∞, we expect ZN

.

to converge weakly to a stationary

AR-1 process with variance V ∗. Also, we expect that if the process has reached equilibri-

um/quasi equilibrium then the joint distribution of the numbers of occupied patches, observed

at census times t1, . . . , tk, can be approximated by an k-dimensional Gaussian distribution with

means Nxti +
√

Nµti and covariances Ncti, tj , where µti = z0a
t, ct, s := Cov(Zt, Zs) = Vt a

|s−t|

(s ≥ t) and Vt is given by (6.22).

We have already noted the simple relationship between the deterministic equilibria of our

two models, x∗
CE = (1− e)x∗

EC, and that the decay rates are the same: a = f ′
CE(x

∗
CE) = f ′

EC(x∗
EC).

The stationary variances of the approximating AR-1 processes are also related. First, because

ĉ(x∗) = r(x∗), it is easy to prove that

vCE(x∗
CE) = ex∗

CE (2 − e/(1 − x∗
CE)) . (6.24)

And, since it can also be shown that

(1 − e)2vEC(x) = vCE((1 − e)x) + e
(

(1 − e)x(f ′
CE((1 − e)x))2 − fCE((1 − e)x)

)

,

we have

(1 − e)2vEC(x∗
EC

) = vCE(x
∗
CE

) − ex∗
CE

(1 − a2), (6.25)

and therefore (1 − e)2V ∗
EC = V ∗

CE − ex∗
CE.
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6.3.3 Examples

We shall illustrate these results by revisiting the four particular instances of ĉ(x) examined in

Section 4.5, noting that we are now able to explore both the EC and CE models in each case.

Example 6.1 Suppose that ĉ(x) = cx (0 < c ≤ 1). In this case we may write

f(x) = x(1 + r(1 − x/x∗)),

0 10 20 30
0

5

10

15

20

25

30
(a)

t

n
t

0 10 20 30
0

5

10

15

20

25

30
(b)

t

n
t

0 10 20 30
0

5

10

15

20

25

30
(c)

t

n
t

EC

CE

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12
(d)

n

P
ro

b
a
b
il
it
y

/
d
en

si
ty

Figure 6.1: N -patch metapopulation model with N = 30, e = 0.2 and
ĉ(x) = cx. Simulation (solid circles) of the EC model with (a) c = 0.2
(evanescence) and (b) c = 0.6 (quasi stationarity); deterministic trajectories
are shown (solid), together with ±2 standard deviations of the Gaussian ap-
proximation (dotted). (c) Simulation of the EC (solid circles) and CE (open
circles) models with c = 0.6; both deterministic trajectories shown (solid).
(d) Quasi-stationary distribution (bars) of the EC model with c = 0.6 and the
stationary Gaussian pdf (dotted).
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where r = c(1 − e) − e for both models and x∗ is the appropriate equilibrium value: x∗
EC

=

r/(c(1− e)2) or x∗
CE = r/(c(1− e)) (both being strictly positive, and then stable, if and only if

c > e/(1 − e)). Thus, in both cases, the limiting deterministic trajectory follows the discrete-

time logistic growth model (again, see Section 3.2 of Renshaw [75]), where r is the intrinsic

growth rate and x∗ is the carrying capacity expressed as a proportion of the ceiling N , although

note that neither of the deterministic models exhibit any chaotic or periodic behaviour since

0 < 1 + r = (1 − e)(1 + c) < 2. Our limiting Gaussian Markov chain has error variance

v(x) = (1 − e)x
[

c(1 − (1 − e)x)(1 − c(1 − e)x) + e
(

1 + c − 2c(1 − e)x
)2]

(EC model)

v(x) = (1 − e)x
[

e + c(1 − x)(1 − c(1 − e)x)
]

. (CE model)

In the quasi-equilibrium case (r > 0), the limiting AR-1 process is defined by Zt+1 = aZt + Et,

where a = 1 − r (0 < a < 1), with Et ∼ N(0, v(x∗)), where, from (6.24) and (6.25), vCE(x
∗
CE) =

er(1 − e + a)/(e + r) and (1 − e)2vEC(x∗
EC

) = er(a(1 + a) − e)/(e + r). Since a ∈ (0, 1), the

stationary variance V ∗ = v(x∗)/(1 − a2) of Z
.

decreases with a and so the faster the decay in

the mean, the smaller the stationary variance.

Example 6.2 Suppose that ĉ(x) = c0 + cx (c0 > 0, c > 0 and c0 + c ≤ 1). Now we may write

f(x) = ν + x(1 + r(1 − x/K)),

where ν = c0(1−e) and r = (c−c0)(1−e)−e for both models, and K depends on which model:

KEC = r/(c(1−e)2) or KCE = r/(c(1−e)). Since ĉ(0) = c0 > 0, we have unique stable equilibria

x∗
EC = x∗

CE/(1− e) with x∗
CE being the unique positive solution to c(1 − e)x2 − rx− ν = 0. The

error variance is given by

v(x) = (1 − (1 − e)x)(c0 + c(1 − e)x)(1 − c + 0 − c(1 − e)x)

+ e(1 − e)x
[

1 − c0 − 2c(1 − e)x + c
]2

, (EC model)

v(x) = (1 − e)
[

ex + (1 − x)(c0 + cx)
(

1 − (1 − e)(c0 + cx)
)]

. (CE model)

The limiting AR-1 process is again defined by Zt+1 = aZt + Et, but now a = 1+ r(1− 2x∗/K),

where Et ∼ N(0, v(x∗)) with v(x∗) given by (6.24) or (6.25). The stationary variance is given
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by (6.23).

Example 6.3 Suppose that ĉ(x) = 1 − exp(−βx) (β > 0). Since ĉ(0) = 0 and ĉ ′(0) = β > 0,

we have evanescence if β ≤ e/(1−e) and quasi stationarity if β > e/(1−e). The error variance

is given by

v(x) = exp(−β(1 − e)x)
(

(1 − (1 − e)x)(1 − exp(−β(1 − e)x))

+ e(1 − e)x
[

1 + (1 − (1 − e)x)β
]2

exp(−β(1 − e)x)
)

, (EC model)

v(x) = (1 − e)
[

ex + (1 − x)(1 − exp(−βx))
(

e + (1 − e) exp(−βx)
)]

. (CE model)

In the quasi-stationary case the deterministic equilibria cannot be exhibited explicitly, but

can be evaluated numerically by iterating the map fCE(x) = (1 − e)(1 − (1 − x) exp(−βx)),

remembering that x∗
EC = x∗

CE/(1 − e). The limiting AR-1 process has stationary variance

v(x∗)/(1 − a2), where v(x∗) is evaluated using (6.24) or (6.25). A simple calculation reveals

that

a =
(1 + β(1 − x∗

CE
))(1 − e − x∗

CE
)

(1 − e)(1 − x∗
CE)

.

Example 6.4 Suppose that ĉ(x) = c0 (0 < c0 ≤ 1). From Chapter 3, we know that the

metapopulation behaves as if, at every census, each occupied patch remains occupied with

probability p, and, independently , each unoccupied patch is colonised with probability q, where

p = 1 − e(1 − c0) q = c0 (EC model)

p = 1 − e q = (1 − e)c0. (CE model)

We proved that, for all t ≥ 1, nN

t has the same distribution as the sum of two independent

random variables, Bin(nN

0 , pt) and Bin(N − nN

0 , qt), with success probabilities qt = q∗(1 − at)

and pt = qt + at (t ≥ 0), where a = p− q = (1− e)(1− c0) (the same for both EC and CE) and

q∗ = q/(1− a). The proportion XN

t of occupied patches at time t has mean and variance given

by EXN

t = xt(X
N

0 ) and NVar(XN

t ) = Vt(X
N

0 ), where

xt(x0) = x0pt + (1 − x0)qt and Vt(x0) = x0pt(1 − pt) + (1 − x0)qt(1 − qt).
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So, on the one hand, as t → ∞, EXN

t converges to q∗ at geometric rate a (note that 0 < a <

1) and NVar(XN

t ) → q∗(1 − q∗) (indeed, nN
.

has a Bin(N, q∗) stationary distribution). On

the other, letting N → ∞ with t fixed, EXN

t → xt(x0) and NVar(XN

t ) → Vt(x0) whenever

XN

0
P→ x0. Furthermore, because nN

t is the sum of two independent binomial random variables,

it is clear that ZN

t :=
√

N(XN

t − xt) and Y N

t :=
√

N(XN

t − q∗) will converge in distribution

to Gaussian random variables if their initial values converge. Theorem 6.5 and Corollary 6.1

provide more detailed information. Since f(x) = px + q(1 − x), and hence f ′(x) = a, and

v(x) = p(1 − p)x + q(1 − q)(1 − x), we deduce that if ZN

0
D→ z0, then ZN

.

converges weakly

to a Gaussian Markov chain Z
.

with EZt = atz0 and Cov(Zt, Zs) = Vt(x0) a|s−t|, while if

Y N

0
D→ y0 (a constant), then Y N

.

converges weakly to an AR-1 process Y
.

with EYt = aty0 and

Cov(Yt, Ys) = q∗(1 − q∗)a|s−t|(1 − a2t); the error variance here is v(q∗) = q∗(1 − q∗)(1 − a2).

Next we explain how the inhomogeneous Markov chain approach may be applied to our

infinite-patch metapopulation models.

6.4 Infinite-patch metapopulation models

As before, let nt be the number of occupied patches at time t, but now suppose that (nt : t ≥ 0)

is a discrete-time Markov chain taking values in S = {0, 1, 2, . . .}. We shall be concerned with

chains that evolve as follows:

EC: nt+1 = ñt + Poi(m(ñt)) ñt = nt − Bin(nt, e) (6.26a)

CE: nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m(nt)), (6.26b)

where m(n) ≥ 0. The local extinction and colonisation phases alternate over time in the usual

way, where each occupied patch goes extinct independently with probability e (0 < e < 1),

but now the colonisation phase follows a Poisson law where m(n) is the mean number of

empty patches colonised during that phase; the mean m(n) is a function of the number n of

occupied patches. Even though there is no ceiling on the number of occupied patches (indeed,

we interpret the metapopulation network as having infinitely-many habitat patches in this

setting), the dependence of m on nt allows us to account for a range of colonising behaviours.

For example, we have already seen three special cases of (6.26) that correspond to island,
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mainland-island and mainland models in Chapter 5 (where, of course, we showed that these

special cases can be interpreted as Galton-Watson processes).

The following section considers what happens when the initial number of occupied patches

becomes large. We will suppose that there is an index N such that m(n) = Nµ(n/N), where

the function µ is continuous with bounded first derivative. We may take N to be simply n0 or,

more generally, following Klebaner [48], we may interpret N as being a “threshold” with the

property that n0/N → x0 as N → ∞. By choosing µ appropriately, we can still allow for a

degree of regulation in the colonisation process. Apart from the three examples in Chapter 5

(where, clearly, we may take µ(x) = mx, µ(x) = mx + m0 and µ(x) = m0, respectively) µ(x)

might be of the form

µ(x) = rx(a − x) (0 ≤ x ≤ a) (logistic growth)

µ(x) = x exp(r(1 − x)) (x ≥ 0) (Ricker growth)

µ(x) = λx/(1 + ax)b (x ≥ 0) (Hassell growth)

(see Sections 3.2 and 4.5 of Renshaw [75], for example).

6.4.1 Limit theorems

We shall consider the time-inhomogeneous Markov chain (nN

t : t ≥ 0) obtained by setting

nN

2t = nt and nN

2t+1 = ñt with n
.

and ñ
.

as given by (6.26). With XN

t = nN

t /N , the number

of occupied patches at census t measured relative to the threshold, the sequences (ft) and (vt)

satisfy

f2t(x) = f0(x) = (1 − e)x f2t+1(x) = f1(x) = x + µ(x) (6.27)

v2t(x) = v0(x) = e(1 − e)x v2t+1(x) = v1(x) = µ(x) (6.28)

for the EC case and

f2t(x) = f0(x) = x + µ(x) f2t+1(x) = f1(x) = (1 − e)x (6.29)

v2t(x) = v0(x) = µ(x) v2t+1(x) = v1(x) = e(1 − e)x (6.30)
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for the CE case. Again, the roles of f0 and f1 as well as v0 and v1 simply reverse depending

on the model of interest. All of these functions are Lipschitz continuous and, given that XN

t is

unbounded, we can apply Theorem 6.2 to the inhomogeneous density process: given XN

0
2→ x0

as N → ∞, then XN

.

converges in probability to a limiting deterministic trajectory x
.

that

satisfies, in particular, x2(t+1) = f(x2t) with f = f1 ◦ f0. We thus have the following result for

the time-homogeneous density process.

Theorem 6.6 (LLN for infinite-patch models) For the infinite-patch metapopulation

models with parameters e and µ(x), let XN

t = nt/N be the number of occupied patches at

census t relative to the threshold N . Suppose that µ is continuous with bounded first derivative.

If XN

0
2→ x0 as N → ∞, then XN

t
2→ xt (and hence XN

t
P→ xt) for all t ≥ 1, where x

.
is

determined by xt+1 = f(xt) (t ≥ 0) with

f(x) = (1 − e)x + µ((1 − e)x) (EC model)

f(x) = (1 − e)(x + µ(x)). (CE model)

Remark. Indeed, the CE model is always density-dependent because

E(nt+1|nt) = (1 − e)(nt + m(nt)) = (1 − e)(nt + Nµ(nt/N)),

implying that ft(x) = f(x) = (1 − e)(x + µ(x)), and

Var(nt+1|nt) = e(1 − e)E(ñt|nt) + (1 − e)2 Var(ñt|nt)

= e(1 − e)(nt + m(nt)) + (1 − e)2m(nt)

= e(1 − e)(nt + Nµ(nt/N)) + (1 − e)2Nµ(nt/N),

implying that vt(x) = v(x) = (1 − e)(ex + µ(x)). Both f and v are Lipschitz continuous in x,

since µ is continuous with bounded first derivative, and so we could have applied Theorem 6.2

directly in this case. It was necessary to work with the phases separately in the EC case because

this model is not always density-dependent.

Having established that XN

t
P→ xt for all t ≥ 0, we can also prove a central limit law for the

scaled fluctuations ZN

t =
√

N(XN

t − xt). First observe that our infinite-patch models can be
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represented as

nt+1 = ñt +
∑N

j=1Poij(µ(ñt/N)) ñt = nt −
∑nt

j=1Berj(e) (EC model)

nt+1 = ñt −
∑ñt

j=1Berj(e) ñt = nt +
∑N

j=1Poij(µ(nt/N)), (CE model)

where the (Poij( · )) are collections of iid Poisson random variables with mean µ(nt/N). Thus,

we may apply Theorem 6.3 to the time-inhomogeneous Markov chain (nN

t : t ≥ 0) obtained by

setting nN

2t = nt and nN

2t+1 = ñt with n
.

and ñ
.

as given directly above. This inhomogeneous

chain exhibits the form (6.3), but now (± ξN

jt ) alternates between appropriate sequences of

iid Poisson random variables and iid Bernoulli random variables. For both cases, g2t(x) =

g2t+1(x) = x. For the EC case,

r2t(x) = x r2t+1(x) = 1

m2t(x) = −e m2t+1(x) = µ(x)

σ2
2t(x) = e(1 − e) σ2

2t+1(x) = µ(x),

which lead to the same sequences (ft) and (vt) as given by (6.27) and (6.28), and b2t(x) =

e(1 − e)(1 − 2e) and b2t+1(x) = µ(x). For the CE case,

r2t(x) = 1 r2t+1(x) = x

m2t(x) = µ(x) m2t+1(x) = −e,

σ2
2t(x) = µ(x) σ2

2t+1(x) = e(1 − e),

which lead to (ft) and (vt) as given by (6.29) and (6.30), and b2t(x) = µ(x) and b2t+1(x) =

e(1−e)(1−2e). Hence, the roles f0 and f1 as well as v0 and v1 are reversed (again). If the model

satisfies the stronger condition that µ be twice continuously differentiable with bounded second

derivative, then, in both cases, ft(x) will be twice continuously differentiable in x with bounded

second derivative, vt(x) will be continuous in x, and bt(x) will be bounded in x. We already

know that the limiting deterministic trajectory satisfies x2(t+1) = f(x2t), where f = f1 ◦ f0, and

so from Theorem 6.3 it is clear that our limiting Gaussian Markov process Z
.

should take the

form Z2(t+1) = f ′(x2t)Z2t + Ê2t, with Ê2t ∼ N(0, v(x2t)), where v = v1 ◦ f0 + (f ′
1 ◦ f0)

2v0, with
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f ′
1(x) = 1 + µ ′(x) in the EC case and f ′

1(x) = 1 − e in the CE case. Thus we arrive at the

following result.

Theorem 6.7 (CLL for infinite-patch models) For the infinite-patch metapopulation

models with parameters e and µ(x), suppose that µ is twice continuously differentiable with

bounded second derivative. Let XN

t = nt/N be the proportion of occupied patches at census t,

and suppose that XN

0
2→ x0, so that XN

t
P→ xt for all t ≥ 0, where x

.
is determined by

xt+1 = f(xt) (t ≥ 0) with f given as in Theorem 6.6. Let ZN

t =
√

N(XN

t − xt) and suppose

that ZN

0
D→ z0. Then, ZN

.

converges weakly to the Gaussian Markov process Z
.

defined by

Zt+1 = f ′(xt)Zt + Et,

with (Et) independent and Et ∼ N(0, v(xt)), where

v(x) = µ((1 − e)x) + e(1 − e)x (1 + µ ′((1 − e)x)) (EC model)

v(x) = (1 − e)(ex + µ(x)). (CE model)

The central limit law for the infinite-patch models tell us that ZN

t
D→ Zt ∼ N(µt, Vt) for

any t ≥ 1, where µt and Vt are given by (6.19) (same as for the N -patch models but with f

as given in Theorem 6.6 and v as given in Theorem 6.7). The covariance function is given by

ct, s := Cov(Zt, Zs) = Vt

∏s−1
u=t f ′(xu) (s ≥ t).

6.4.2 Long-term behaviour

Using the notation adopted in Section 6.3.2, notice that the infinite-patch deterministic models

are related by fCE((1 − e)x) = (1 − e)fEC(x) and so the fixed points of fCE and fEC are related

by x∗
CE

= (1− e)x∗
EC

. As before, f ′
CE

(x∗
CE

) = f ′
EC

(x∗
EC

) and (1− e)f ′′
CE

(x∗
CE

) = f ′′
EC

(x∗
EC

), implying

that x∗
CE and x∗

EC have the same stability properties. Notice also that x∗
CE will be a fixed point

of fCE if and only if

µ(x∗
CE) = ρx∗

CE

where ρ = e/(1−e). So, if µ(0) = 0 then 0 is a fixed point; it is stable if µ ′(0) < 1 and unstable

if µ ′(0) > 1 (if µ ′(0) = 1 its stability is determined by higher derivatives of µ near x = 0).
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However, even when µ(0) = 0, there might be other (conceivably many) fixed points since our

conditions on µ do not preclude this.

We cannot be as precise in classifying the equilibrium behaviour as we were earlier for the

N -patch models, however we can still present two results concerning the fluctuations of XN

t

about a positive stable equilibrium point (Corollary 6.2) or a stable limit cycle (Corollary 6.3).

First, if there is a unique positive fixed point x∗, it will be stable if µ ′(x∗) < 1 and unstable

if µ ′(x∗) > 1 (again we need to consider higher derivatives when µ ′(x∗) = 1). The next result

follows by setting x0 = x∗ in Theorem 6.7.

Corollary 6.2 Suppose that f given in Theorem 6.6 admits a unique positive fixed point x∗

satisfying µ ′(x∗) < 1. Then, if XN

0
2→ x∗, xt = x∗ for all t and, assuming ZN

0
D→ z0, the limiting

process Z
.

determined by Theorem 6.7 is an AR-1 process Z
.

defined by Zt+1 = aZt +Et, where

a = (1− e)(1+µ ′(x∗
CE)) (being the same for both models), and (Et) are idd where Et ∼ N(0, v),

with v = e(1 + a)x∗ (EC model) or v = e(2 − e)x∗ (CE model).

Second, notice that the d-th iterates of our maps are also related by

f
(d)
CE ((1 − e)x) = (1 − e)f

(d)
EC (x),

which means that if x∗
0, x

∗
1, . . . , x

∗
d−1 is a stable limit cycle for the deterministic EC model, then

(1− e)x∗
0, (1− e)x∗

1, . . . , (1− e)x∗
d−1 is a stable limit cycle for the deterministic CE model. The

next corollary follows by setting x0 = x∗
0 in Theorem 6.7, where we see that the deterministic

trajectory x
.

tracks the limit cycle, xtd+j = x∗
j (t ≥ 0, j = 0, . . . , d − 1), and the limiting

process Z
.

is a d-variate AR-1 process Y
.

(Definition 2.13). The representation of Y
.
, as well

as the particular form of the coefficient matrix A and the error covariance matrix Σd, follow

by iterating Zt+1 = f ′(xt)Zt + Et, with (Et) independent N(0, v(xt)) random variables: using

expressions (6.9) to (6.12) with ft = f and vt = v, noting that

Πi, j =

j−1
∏

k=i

f ′(x∗
k) = aj/ai (1 ≤ i ≤ j ≤ d),

we obtain a representation of Ztd+j (j = 1, . . . , d) in terms of Ztd (t ≥ 0), as well as the

stationary covariance matrix V . Note that here and henceforth the subscript td represents the

time variable t as being multiplied by the index d.
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Corollary 6.3 Suppose that f given in Theorem 6.6 admits a stable limit cycle x∗
0, x

∗
1, . . . , x

∗
d−1

with XN

0
2→ x∗

0. Then, xtd+j = x∗
j (t ≥ 0, j = 0, . . . , d−1) and, assuming ZN

0
D→ z0, the limiting

process Z
.

determined by Theorem 6.7 has the following representation: (Yt : t ≥ 0), where

Yt = (Ztd, Ztd+1, . . . , Z(t+1)d−1)
⊤ is a d-variate AR-1 process of the form Yt+1 = AYt + Et,

where (Et) are independent and Et ∼ N(0, Σd); here A is the d × d matrix

A =

















0 0 · · · a1

0 0 · · · a2

...
...

. . .
...

0 0 · · · ad

















,

where aj =
∏j−1

i=0 f ′(x∗
i ), Σd = (σij) is the d × d symmetric matrix with entries

σij = aiaj

i−1
∑

k=0

v(x∗
k)/a

2
k+1 (1 ≤ i ≤ j ≤ d),

where v is given as in Theorem 6.7, and the random entries, (Z1, . . . , Zd−1), of Y0 have a

Gaussian N(az0, Σd−1) distribution, where a = (a1, . . . , ad−1). Furthermore, Y
.

has a Gaussian

N(0, V ) stationary distribution, where V = (vij) has entries given by

vij =
aiaj

1 − a2
d

d−1
∑

k=0

v(x∗
k)/a

2
k+1 (1 ≤ i ≤ j ≤ d).

Remark. We established that there is always precisely one stable fixed point for the de-

terministic N -patch models (Section 6.3.2) and so we did not have to concern ourselves with

results like that outlined in Corollary 6.3. We note that such results would be necessary if, for

example, ĉ was no longer assumed to be concave, since then the deterministic N -patch model

could possibly have more than one stable fixed point or have a stable limit cycle. If this were

the case, then an N -patch analogue of Corollary 6.3 is simply determined by following the same

method outlined above but applied to the autoregressive process in Theorem 6.5.

To illustrate the results for infinite-patch models, we look at the case where the colonisation

probability obeys a Ricker law.
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6.4.3 An example

Suppose that µ(x) = x exp(r(1 − x)), where r > 0. The colonisation probability is greatest

when the number of occupied patches is close to N/r and so we may interpret the parameter r

as the intrinsic growth rate and N as the carrying capacity of the metapopulation in the absence

of extinction. The fixed points of fCE are 0 and x∗
CE = 1 − r0/r, where r0 = log(ρ). Notice

that f ′
CE

(x) = (1− e)(1 + (1− rx) exp(r(1− x))) and f ′′
CE

(x) = −(1− e)(2− rx)r exp(r(1− x)),

implying that f ′
CE

(0) = (1−e)(1+exp(r)) and f ′′
CE

(0) = −2(1−e)r exp(r). Therefore, if r ≤ r0,

0 is the unique non-negative fixed point, and it is stable. If r > r0, then x∗
CE is an additional

positive fixed point; it is stable because f ′
CE

(x∗
CE

) = 1 − e(r − r0) < 1 (and 0 is unstable).

However, if r is sufficiently large, we get limiting cycles with period doubling towards chaos, as

illustrated in Figure 6.2.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

r

x

Figure 6.2: Bifurcation diagram for the infinite-patch de-
terministic CE model with Ricker growth dynamics: xt+1 =
(1−e)xt(1+exp(r(1−xt))). Here e = 0.7 and r ranges from
0 to 7.2. The vertical axis plots the possible equilibrium val-
ues x of the difference equation.

Figure 6.3 illustrates some of the range of behaviour exhibited by the stochastic CE model

with Ricker growth dynamics. The cases depicted in plots (a)-(d) are described below.
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(a) Evanescence: 0 < r < r0 (r0 ≃ 0.8473). The unique stable fixed point is 0, and the

process dies out quickly.

(b) Quasi stationarity : r0 < r < r1 (r1 ≃ 3.7). Here x∗
CE

(≃ 1−0.8473/r) is the unique stable

fixed point, and the process exhibits quasi-equilibrium behaviour. The parameter r1 is

the point of first period-doubling, which we have not been able to determine analytically.

(c) Oscillation: r > r1, with period 2. The process ‘tracks’ the limit cycles of the determin-

istic model.

(d) Oscillation: same as for (c) but with period 4.
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Figure 6.3: Simulation (open circles) of the infinite-patch CE model with Ricker
growth dynamics, together with the corresponding limiting deterministic trajectories
(small solid circles). Here e = 0.7 and N = 200, and, (a) r = 0.84, (b) r = 1
(c) r = 4 and (d) r = 5. In (a), (b) and (c), the dotted lines indicate ±2 standard
deviations of the Gaussian approximation (in (c) every second point is joined to
indicate variation about each of the two limit cycle values).
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Plots (a)-(d) include the limiting deterministic trajectories while plots (a)-(c) also include ±2

standard deviations as determined by the appropriate Gaussian approximation.

6.5 Discussion

In this chapter, we proved limit theorems for a class of time-inhomogeneous Markov chains that

exhibit the particular property of density dependence. From these results we established limit

theorems, a law of large numbers and a central limit law, for our finite-patch and infinite-patch

metapopulation models defined with density-dependent phases. Indeed, the central limit laws

exhibit a stronger form of convergence than that displayed by central limit laws in Sections 3.3.2

and 4.4.1; here we proved convergence for a finite sequence of times instead of point-wise

convergence at a particular time t. This type of convergence enables us to look at the limiting

process over time and calculate such quantities as a covariance function. Also, in each of

the finite-patch and infinite-patch settings, we successfully treated both of the EC and CE

monitoring schemes.

The particular method we used to establish these limit theorems for our discrete-time

metapopulation models was to work with the density-dependent phases separately. Although

this is not necessary in all situations (such as the CE models, for example), the method does

not require the use of time-homogeneous conditional state distributions and therefore easily

accommodates seasonal population models with more than two density-dependent phases.
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Conclusion

I have presented several stochastic metapopulation models that describe the number of occu-

pied patches in a discrete-time setting. In particular, these models are based on the discrete-

time Markov chain approach first used by Akçakaya and Ginzburg [2], and so account for a

dynamic where local extinction events and colonisation events occur in distinct seasonal phases.

Extensive analytical treatments of these models were provided. For example, I showed that

some models are highly tractable and that the limiting behaviour of any discrete-time Markov

chain with density-dependent phases can be exhibited explicitly. This chapter summarises the

results of these treatments, discusses some applications of the work and looks at possible future

directions.

In Chapters 3 and 4, I investigated a class of chain binomial metapopulation models, so called

because the number of events that occur during each of the local extinction and colonisation

phases follow binomial laws. The simplest chain binomial model, the mainland model, was

analysed in Chapter 3. Many quantities of interest were evaluated explicitly in this special case,

including the 1-step and t-step conditional state distributions, the equilibrium distribution and

the expected first passage time to state 0. Also, a time-dependent interpretation of the rescue

effect was given and limit theorems that describe large networks were proved. In Chapter 4, the

chain binomial model was examined in a more general setting where the colonisation probability

was allowed to depend on the current number of occupied patches. There, I demonstrated how

to construct an island model or a mainland-island model by choosing an appropriate form for

the colonisation probability. In the general setting, only the 1-step conditional state distribution

for the CE case was evaluated and so, for the particular case where the colonisation probability

depends on the number of occupied patches through the proportion of occupied patches, limit

theorems that describe large networks were proved.

111
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In Chapter 5, three different models that describe metapopulation networks with infinitely-

many habitat patches were presented. These models also accounted for a two-phase dynamic:

the local extinction process followed a binomial law and the colonisation process followed a

Poisson law, where the mean of the Poisson law depended on the current number of occupied

patches in such a way that the three configurations—mainland, island and mainland-island—

were accommodated. In this way, these models may be viewed as infinite-patch analogues of the

chain binomial (finite-patch) models. The 1-step conditional state distribution was evaluated

in each case and it was shown that all three infinite-patch models could be reinterpreted as

branching processes. Standard branching theory was used to answer questions about the long-

term behaviour of these models. The infinite-patch mainland model proved to be particularly

tractable, since the t-step conditional state distribution and the equilibrium distribution were

also evaluated.

Finally, in Chapter 6, limit theorems were proved for finite-patch and infinite-patch models

defined with density-dependent phases. These theorems established convergence in the limit

as N → ∞, where N represented the total number of patches in the finite-patch setting and

marked a certain threshold in the infinite-patch setting. I included a law of large numbers, that

identified an approximating deterministic trajectory, and a central limit law, which showed that

the scaled fluctuations about this trajectory have an approximating autoregressive structure,

where both EC and CE monitoring schemes were treated. These results were made possi-

ble by using limit theorems that were proved for a particular class of time-inhomogeneous

density-dependent Markov chains. The results for these chains allowed us to work with the

density-dependent phases separately and effectively by-passed the need for evaluating time-

homogeneous conditional state distributions. This method provides greater scope for model

analysis because it easily accommodates models with any number of density-dependent phases.

My research thus provides (i) a range of tractable discrete-time Markov chain models that

account for a two-phase dynamic and (ii) methods that allow practitioners to approximate any

discrete-time Markov chain model defined with density-dependent phases. In particular, the

approximating models are Gaussian Markov processes whose structures are exhibited explicitly.

There is plenty of scope for practitioners to account for other colonisation behaviours of interest,

to develop new models that account for dynamics with more than two density-dependent phases

and, indeed, to adapt any of these models to a range of seasonal dynamics outside of the
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metapopulation context (including epidemics, stock market fluctuations, climate patterns, to

name a few). Although these types of Markov chain models are not spatially explicit, I have

demonstrated that spatial information can be incorporated implicitly by allowing the seasonal

phases to depend on the current state of the system.

In terms of applying these results to real metapopulations, practitioners need to be able to

estimate model parameters from observed data. Practitioners can apply standard maximum

likelihood techniques to the tractable models, since the 1-step and t-step conditional state

distributions that have been provided can be used to construct likelihood functions. For the

intractable models, as well as the tractable models, practitioners can use time-series methods

to estimate parameters of the approximating autoregressive process. Indeed, there is even a

third option for the N -patch mainland model and that is to estimate parameters by way of

McKenzie’s binomial AR-1 process [62] (see Section 2 of [92] for further details). It may be that

a general framework can be developed for estimating parameters of density-dependent Markov

chain models via an approximating autoregressive model. A possible avenue for future work

would therefore be to develop this framework.

In terms of broadening the range of stochastic models that account for seasonal dynamics,

future projects might focus on developing models in a continuous-time Markov chain setting. In

Section 6 of our most recent paper [15], we looked at a number of well known continuous-time

Markov chain population models as analogues of our finite-patch and infinite-patch models,

however these analogues assume that local extinction events and colonisation events occur in

random order over time. This is an assumption that holds in many continuous-time Markov

chain metapopulation models [3, 5, 6, 7, 9, 82, 83, 72]. Of course, in order to account for seasonal

phases, the transition rates of the continuous-time Markov chain must be time-dependent. For

example, the formulation outlined in a recent paper by Ross [81] achieves this by predefining

the time-length of each phase and then assigning a different set of transition rates to each phase.

In this way, direct comparisons could then be made with our discrete-time models.
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