![]() |
6 | ![]() |
300 | ![]() |
1000 | ![]() |
50 |
![]() |
1 | ![]() |
0.1 | ![]() |
0.7 | ![]() |
0.02 |
The following table shows the cost, reliability and initial purchase
probability of each link.
link | ![]() |
![]() |
![]() |
link | ![]() |
![]() |
![]() |
link | ![]() |
![]() |
![]() |
1 | 0.26104 | 0.65403 | 0.5 | 6 | 0.25338 | 0.68058 | 0.5 | 11 | 0.29296 | 0.67635 | 0.5 |
2 | 0.28815 | 0.64780 | 0.5 | 7 | 0.20307 | 0.65316 | 0.5 | 12 | 0.28077 | 0.66468 | 0.5 |
3 | 0.20209 | 0.65180 | 0.5 | 8 | 0.23228 | 0.66519 | 0.5 | 13 | 0.20881 | 0.61881 | 0.5 |
4 | 0.20573 | 0.69176 | 0.5 | 9 | 0.24805 | 0.61017 | 0.5 | 14 | 0.26406 | 0.68385 | 0.5 |
5 | 1.30000 | 0.63323 | 0.5 | 10 | 0.22233 | 0.63467 | 0.5 | 15 | 0.26160 | 0.68489 | 0.5 |
All the parameter values and vectors are stored in testproblem1.mat.
The table below presents the results of the CE method based on 10 independent reprications.
Inputs: | ||
Rep | - | replication counter |
![]() |
- | final iteration counter |
![]() |
- | estimated network reliability |
RE | - | relative error |
CPU | - | CPU time in seconds |
pn | - | purchase number |
Rep | ![]() |
![]() |
RE | CPU | pn |
1 | 7 | 0.70106 | 0.02065 | 18.566 | 6147 |
2 | 7 | 0.69498 | 0.02095 | 19.498 | 6147 |
3 | 6 | 0.68634 | 0.02138 | 15.312 | 6147 |
4 | 7 | 0.70094 | 0.02066 | 19.568 | 6147 |
5 | 7 | 0.69642 | 0.02088 | 20.239 | 6147 |
6 | 8 | 0.70142 | 0.02063 | 22.913 | 6147 |
7 | 6 | 0.68194 | 0.02160 | 16.204 | 6147 |
8 | 7 | 0.69536 | 0.02093 | 20.479 | 6147 |
9 | 8 | 0.70546 | 0.02043 | 23.293 | 6147 |
10 | 7 | 0.69894 | 0.02075 | 19.909 | 6147 |
The graphical representation of the network with purchase number 6147 is given in Figure 1.
The table shown below presents the results obtained using the CE method.
Rep | ![]() |
![]() |
RE | CPU | pn |
1 | 11 | 0.99162 | 0.00291 | 33.728 | 6147 |
2 | 9 | 0.99110 | 0.00300 | 26.358 | 6147 |
3 | 8 | 0.98928 | 0.00329 | 23.183 | 6147 |
4 | 7 | 0.98808 | 0.00347 | 18.497 | 6147 |
5 | 6 | 0.98876 | 0.00337 | 18.166 | 6147 |
6 | 7 | 0.98806 | 0.00348 | 18.226 | 6147 |
7 | 8 | 0.98908 | 0.00332 | 25.917 | 6147 |
8 | 9 | 0.98778 | 0.00352 | 29.773 | 6147 |
9 | 9 | 0.98984 | 0.00320 | 27.840 | 6147 |
10 | 8 | 0.98834 | 0.00343 | 24.164 | 6147 |
The true optimal reliabilty is 0.99233. The graphical representation of the optimal network is given in Figure 1.
![]() |
10 | ![]() |
1000 | ![]() |
1000 | ![]() |
50 |
![]() |
2 | ![]() |
0.1 | ![]() |
0.7 | ![]() |
0.02 |
The following table shows the cost and reliability of each link.
link | ![]() |
![]() |
![]() |
link | ![]() |
![]() |
![]() |
link | ![]() |
![]() |
![]() |
1 | 0.22208 | 0.45412 | 0.50 | 16 | 0.20807 | 0.48370 | 0.50 | 31 | 0.25918 | 0.42205 | 0.50 |
2 | 0.27631 | 0.40680 | 0.50 | 17 | 0.19559 | 0.47005 | 0.50 | 32 | 0.22657 | 0.44544 | 0.50 |
3 | 0.10417 | 0.45821 | 0.50 | 18 | 0.20361 | 0.44661 | 0.50 | 33 | 0.20031 | 0.49043 | 0.50 |
4 | 0.11146 | 0.44887 | 0.50 | 19 | 0.28353 | 0.49186 | 0.50 | 34 | 0.29759 | 0.41516 | 0.50 |
5 | 0.25829 | 0.42546 | 0.50 | 20 | 0.16646 | 0.49376 | 0.50 | 35 | 0.20339 | 0.47594 | 0.50 |
6 | 0.20676 | 0.48908 | 0.50 | 21 | 0.26115 | 0.44104 | 0.50 | 36 | 0.28987 | 0.42078 | 0.50 |
7 | 0.10614 | 0.49081 | 0.50 | 22 | 0.20632 | 0.49483 | 0.50 | 37 | 0.13698 | 0.46095 | 0.50 |
8 | 0.16457 | 0.40702 | 0.50 | 23 | 0.23037 | 0.46965 | 0.50 | 38 | 0.16299 | 0.45416 | 0.50 |
9 | 2.30000 | 0.48615 | 0.50 | 24 | 0.12034 | 0.47508 | 0.50 | 39 | 0.11693 | 0.40779 | 0.50 |
10 | 0.14465 | 0.45516 | 0.50 | 25 | 0.16935 | 0.45356 | 0.50 | 40 | 0.10794 | 0.48412 | 0.50 |
11 | 0.28593 | 0.47752 | 0.50 | 26 | 0.25270 | 0.46119 | 0.50 | 41 | 0.10861 | 0.48570 | 0.50 |
12 | 0.26154 | 0.40283 | 0.50 | 27 | 0.22935 | 0.40642 | 0.50 | 42 | 0.14394 | 0.44254 | 0.50 |
13 | 0.11763 | 0.40379 | 0.50 | 28 | 0.13762 | 0.46445 | 0.50 | 43 | 0.12103 | 0.44023 | 0.50 |
14 | 0.22813 | 0.41422 | 0.50 | 29 | 0.26770 | 0.45563 | 0.50 | 44 | 0.23937 | 0.44088 | 0.50 |
15 | 0.22321 | 0.40577 | 0.50 | 30 | 0.26978 | 0.44106 | 0.50 | 45 | 0.28127 | 0.41284 | 0.50 |
The numerical results obtained using the CE method is given in the
table below.
Rep | ![]() |
![]() |
RE | CPU | pn |
1 | 25 | 0.72614 | 0.01942 | 702.906 | 25014158001194 |
2 | 59 | 0.71982 | 0.01973 | 1642.578 | 16217798640682 |
3 | 36 | 0.72638 | 0.01941 | 1022.094 | 25014158001194 |
4 | 21 | 0.72336 | 0.01956 | 599.297 | 25014158001194 |
5 | 30 | 0.71998 | 0.01972 | 853.578 | 16217798640682 |
6 | 28 | 0.72606 | 0.01942 | 789.500 | 25014158001194 |
7 | 29 | 0.71748 | 0.01984 | 819.437 | 16217798640682 |
8 | 94 | 0.72602 | 0.01943 | 2651.719 | 7421703656490 |
9 | 24 | 0.72772 | 0.01934 | 722.172 | 25014158001194 |
10 | 78 | 0.72328 | 0.01956 | 2509.813 | 7421703656490 |
The optimal network reliability is 0.726429. The graphical representation of the optimal network is given in Figure 2.
Call the program from MATLAB, with the following syntax:
ncp('file')
where file is the name of the data file given above. Alternatively, if you wish to
change the parameter values, open ncp.m in command window and make
necessary changes. After changes have been made, call the program
from MATLAB, with the following syntax:
ncp