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When examining a rock mass, joint sets and their orientations can play a signi� cant role with regard to how the rock mass will behave.
To identify joint sets present in the rock mass, the orientation of individual fracture planes can be measured on exposed rock faces
and the resulting data can be examined for heterogeneity. In this article, the expectation–maximization algorithm is used to � t mixtures
of Kent component distributions to the fracture data to aid in the identi� cation of joint sets. An additional uniform component is also
included in the model to accommodate the noise present in the data.
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1. INTRODUCTION

In nature, a rock mass is almost never a single block of
uniform solid rock. Instead, it usually contains many fracture
or discontinuity planes. Because these fracture planes arise
from a force acting on the rock mass, they generally form in
a nearly parallel fashion. These families of parallel fracture
planes are called joint sets. Figure 1 shows a hypothetical
cross section of a rock mass with a single joint set.

Because, over time, forces from more than one direction
often act on a rock mass, a number of joint sets may be present
(see Fig. 2). How the rock mass reacts to new external forces is
greatly affected by the orientation of these joint sets, because
the rock mass will most likely separate at its weakest point—
the fracture planes.

In the mining industry it is advantageous to be able to pre-
dict how a rock mass will react. Obviously, when modeling
a mine tunnel, the rock structure of the roof of a tunnel is
extremely important. Other applications are in the design of
ore extraction systems and the stability of open pit walls.

When more than one joint set is present, blocks are formed
(see Fig. 3). The shape and location of these blocks is very
signi� cant. With certain con� gurations, the roof will be very
unstable, and the blocks will fall and cause a cave in. This is
the case in the block caving method of mining, where the roof
is purposely caved in and the collapsed rock is progressively
removed. In other cases, this situation can be very dangerous;
at worst, costing lives; at best, costing extra time and resources
to clear the debris. In both situations, it is vital to be able to
predict the rock mass structure with some con� dence.

To determine the joint sets that are present, measurements
are taken on site of fracture planes evident on an exposed rock
face, by taking one or more lines across an exposed rock sur-
face. Any fracture planes that intersect this line are described
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Figure 1. Hypothetical Cross Section of Rock Mass With a Single
Joint Set.

by two angles, dip direction and dip angle (as shown in Fig. 4),
which correspond to the direction of the normal to the fracture
plane. Other measurements are also taken, such as distance
along the measurement line and the nature of the fracture.

In essence, a sample is being taken of the fracture planes
present internally in the rock structure, which can have two
major biases. First, only the fracture planes that are visible on
the rock face are sampled and, second, only the fracture planes
that intersect the horizontal line are sampled. In the � rst case,
the probabilities of fracture planes being visible on the rock
face are not equal; for example, fracture planes nearly parallel
to the rock face will not be exposed. The second bias occurs

Figure 2. Hypothetical Cross Section of Rock Mass With Two Joint
Sets.
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Figure 3. Hypothetical Cross Section of Rock Mass With Two Joint
Sets That Form Blocks.

because a line is used for sampling and not all fracture planes
are equally likely to be measured; that is, fracture planes that
are nearly parallel to the horizontal will be unlikely to intersect
with the horizontal measurement line. The bias of the sam-
pling may need to be considered when interpreting the results,
because it can result in gaps or holes in the data.

The � rst problem cannot easily be addressed, although if
several rock faces are available for examination, this will not
be as great a problem. The second problem is often reduced in
practice by taking additional measurement lines perpendicular
to the original line used to measure the data.

The fracture measurements are used to discern clusters of
fractures that correspond to joint sets. Interpretation of joint
set data is normally done with the aid of a projection of the
joint normals from a hemisphere onto a plane. These are typ-
ically contoured (e.g., Palmstrom 1985; Priest 1993; Sullivan,
Duran, and Eggers 1992; Webber and Gowans 1996) manually
or by an automatic density contouring program (see Fig. 5).
Interpretation of the density contours is then made manually,
and thus subject to the biases of the person making the inter-
pretation. Priest (1993) suggested a clustering method based
on a search cone of a user-speci� ed size, and then using a
Fisher distribution if statistical properties of the distribution
are required. He noted that that the Fisher distribution is not
suitable if the cluster is not symmetric. Other methods for
the cluster analysis of joint set data are discussed in Pal Roy
(1995), Aler, Du Mouza, and Arnould (1996), and Hammah
and Curran (1998).
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Figure 4. Representation of Dip Angle and Dip Direction.

Figure 5. Example of a Polar Contour Plot of the Dip Direction and
Dip Angle.

The aim of the method described in this article is to use
clustering techniques to provide an automated tool to identify
joint sets.

2. DIRECTIONAL DATA

The dip direction and dip angle measured are directional
vectors, so the measured samples are two-dimensional direc-
tional data. A two-dimensional directional sample can simply
be thought of as a sample of points that lie on the surface of
a unit sphere. Hence the sample points can be represented in
either polar or Cartesian coordinates. Denoting the polar coor-
dinates by 4ƒ11ƒ25 (0 ƒ1 2� , 0 ƒ2 � =2), where ƒ1

indicates the dip angle and ƒ2 is the dip direction, as described
previously, the Cartesian coordinates of a point are given by
the directional cosines

x1 = cos4ƒ251

x2 = sin4ƒ25 cos4ƒ151

x3 = sin4ƒ25 sin4ƒ151

where we have followed the notation of Kent (1982) in
using x1, x2, and x3 to refer to the z1 y, and x coordinates,
respectively.

The polar coordinates 4ƒ11 ƒ25 can be obtained from the
directional cosines by

ƒ1 = tanƒ14x3=x251 ƒ2 = cosƒ14x150

It is also useful to note that the angle, ˆ, between two vectors
x and y with directional cosines 4x11 x21 x35 and 4y11 y21 y35,
respectively, is given by the inverse cosine of the dot product
of the two vectors; that is,

ˆ = cosƒ14x1y1 + x2y2 + x3y350

In the sequel, both polar and Cartesian representations will be
used.
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3. MIXTURE MODEL APPROACH USING KENT AND
UNIFORM COMPONENT DISTRIBUTIONS

Finite mixtures provide a sound statistical based approach
to cluster analysis as advocated in McLachlan and Basford
(1988); see also Ban� eld and Raftery (1993) and Fraley
and Raftery (1998). Let y11 : : : 1 yn denote an observed
p-dimensional random sample of size n drawn from a hetero-
geneous population of g groups. The mixture model approach
assumes each data point is a realization of the random
p-dimensional vector Y, which has probability density func-
tion

f 4y3ë 5 =
gX

i=1

� ici4y3ˆ i51 (1)

where the mixing proportions � i are nonnegative and sum
to 1, ci denotes the probability density function of the ith
component, and ë = 4� 11 : : : 1 � gƒ11ˆT 5T , where ˆ consists
of the elements of ˆ11 : : : 1ˆg known a priori to be distinct.

Under the assumption that y11 : : : 1yn are independent real-
izations of the feature vector Y, the log-likelihood function
for ë is given by

logL4ë 5 =
nX

j=1

log
gX

i=1

� ici4y3 ˆi50 (2)

With the maximum likelihood approach to the estimation
of ë , an estimate is provided by an appropriate root of the
likelihood equation

¡ logL4ë 5=¡ë = 00 (3)

A common choice for the component probability density
functions ci in (1) is the multivariate normal due to its compu-
tational tractability. In the case of directional data, an obvious
choice for the component distributions ci is the Fisher dis-
tribution (due to R. A. Fisher), which can be thought of as
an extension of the von Mises distribution from a circle to a
sphere.

The Fisher distribution is analogous to a circular bivari-
ate normal, which corresponds to a normal distribution with
a diagonal covariance matrix with equal eigenvalues. This
allows for distributions of circular shape of varying size on
the surface of the sphere.

However, in this article, Kent distributions (Kent 1982) are
used rather than Fisher distributions, so as to provide greater
� exibility. The Kent distribution can be thought of as a gener-
alization of the Fisher distribution or as a special case of the
more general eight-parameter family of distributions known as
Fisher–Bingham distributions; see Kent (1982). In the same
way that the Fisher distribution is comparable to a bivariate
normal with a constrained covariance matrix, the Kent distri-
bution is comparable to a bivariate normal where the covari-
ance matrices are unconstrained. This allows for distributions
of any elliptical shape, size, and orientation on the surface
of the sphere. Hence the use of Kent distributions provides a
more � exible alternative to model the data.

The Kent density is given in terms of the directional cosines
y = 4y11 y21 y35

T and is given by

fK4y3 ˆ5 = CK exp8Š4yT �15 + ‚4yT �25
2 ƒ ‚4yT �35

291 (4)

where for large Š

CK

exp 4ƒŠ5
p

Š2 ƒ 4‚2

2�

and ˆ = 4Š1‚1 �T
1 1 �T

2 1 �T
3 5T is the parameter vector. The

parameter �1 is the vector of the directional cosines that de� ne
the mean or center of the distribution. The parameters �2 and
�3 relate to the orientation of the distribution.

For a mixture of g Kent distributions, the probability density
function is given by

f 4y3 ë 5 =
gX

i=1

� ifK 4y3 ˆ i51 (5)

where fK 4y1ˆ i5 is the Kent density with parameter vector ˆi =
4Ši1 ‚i1 �T

i11 �T
i21 �T

i35
T 4i = 11 : : : 1 g5.

The data collected in the actual application contain a sig-
ni� cant amount of noise. To model this, an extra component
is included in the mixture model, corresponding to Poisson
noise, as proposed in Ban� eld and Raftery (1993); see also
Campbell, Fraley, Murtagh, and Raftery (1997). In the present
context, a uniform distribution on the unit sphere was used,
which is de� ned by

f04y5 =
1

4�
1 y 2 ¹1 (6)

where ¹ denotes the surface on the unit sphere. We let � 0 be
the mixing proportion associated with the noise component so
that now

Pg
i=0 � i = 1. The mixture model can now be written

as

f4y3 ë 5 =
gX

i=1

� ifK 4y3 ˆi5 + � 0f04y50 (7)

This formulation allows the data to determine the amount of
noise present via the mixing proportion � 0, rather than the
user setting the level in some ad hoc manner.

4. APPLICATION OF THE
EXPECTATION–MAXIMIZATION ALGORITHM

Solutions of (3) can be found via the expectation–
maximization (EM) algorithm of Dempster, Laird, and Rubin
(1977); see also McLachlan and Krishnan (1997). On the
4k + 15th iteration of the EM algorithm in the present con-
text, the E step is equivalent to replacing the unobservable
component-label indicators by their current conditional expec-
tations, which are the current posterior probabilities of com-
ponent membership of the data, ’

4k5

ij , given by

’
4k5
ij =

�
4k5

i fK4yj3 ˆ
4k5

i 5
Pg

h=1 �
4k5

h fK 4yj3 ˆ
4k5

h 5 + � 0f04yj5

for i = 11 : : : 1 g3 j = 11 : : : 1 n.
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The M step requires � nding the value of ë , ë 4k+ 15 that
globally maximizes the objective function Q4ë 3 ë 4k55, which
is de� ned to be the conditional expectation of the complete-
data log-likelihood given the observed data, computed using
ë 4k5 for ë . It effectively requires the calculation of the maxi-
mum likelihood estimates of the parameters of the component
Kent distributions considered separately. On the 4k+ 15th iter-
ation of the EM algorithm, it follows that the updated estimate
ˆ

4k+ 15
i for ˆi is obtained by solving

nX

j=1

’
4k5

ij ¡ logfK4yj 3 ˆi5=¡ˆi = 0 (8)

for each i 4i = 11 : : : 1 g5. However, this solution does not
exist in closed form, and so has to be computed iteratively.
A more convenient approach, as outlined by Kent (1982), is to
use the moment estimates. Hence, the moment estimates were
used here in place of the maximum likelihood estimates (see
the Appendix). If ë 4k+ 15 denotes the updated estimate of ë

so obtained on the 4k + 15th iteration, it does not follow now
that the objective function Q4ë 3 ë 4k55 is globally maximized
at ë = ë 4k+ 15, because the moment rather than the maximum
likelihood estimates of the component parameters ˆi are being
used. However, the use of the moment estimates here should
make little difference, because Kent (1982) noted that if the
eccentricity 2‚=Š is small or if Š is large, the moment esti-
mates are close to the maximum likelihood estimates. Indeed,
in our work, it was found that the (incomplete-data) likelihood
function was not decreased after each such EM iteration.

Of course, we could check whether the inequality

Q4ë 4k+ 153 ë 4k55 Q4ë 4k53 ë 4k55 (9)

holds for each ë 4k+ 15. This inequality is suf� cient to ensure
that the likelihood is not decreased. Choosing ë 4k+ 15 so
that (9) holds corresponds to using a generalized EM
algorithm to compute the maximum likelihood (ML) esti-
mate of ë .

The algorithm was initialized by � tting a mixture without
the noise component and allocating all points beyond a spec-
i� ed threshold from all group means to the noise component
and re� tting the mixture with a noise component.

To provide starting values for the EM algorithm, a small
number of random starts and modi� ed versions of various hier-
archical methods and k means using the angle between vectors
(see Section 2) as a distance measure were used. This pro-
vides an automated approach where the user simply provides
the sample and speci� es the methods to be utilized to provide
starting values.

5. DETERMINING THE NUMBER OF JOINT SETS

An important question that needs to be addressed is how
many joint sets are present or, in the mixture model frame-
work, the value of g. This question was previously examined
for directional data by Hsu, Walker, and Ogren (1986), who
looked at a stepwise method for determining the number of
components in a mixture with example applications to joint
set data. Their stepwise procedure used a bootstrap method
to determine the null distribution of Watson’s U 2 statistic.

An alternative is to use the likelihood ratio test statistic as
described in McLachlan (1987).

With regard to the work presented in this article, it was felt
a quick crude approximation would suf� ce due to the need
for reasonably fast analysis. For this reason, the Akaike infor-
mation criterion (AIC; Akaike 1973) and Bayesian informa-
tion criterion (BIC; Schwarz 1978) were used; see Kass and
Raftery (1995) on the BIC and other approximations to the
Bayes factor. The AIC criterion tends to over� t, in general, and
so for mixture models, it leads to the � tting of too many com-
ponents. On the other hand, the BIC criterion tends to under-
estimate the number of components; see, for example, Cutler
and Windham (1993) and Celeux and Soromenho (1996).

6. EXAMPLE

6.1 Introduction

To demonstrate the methods outlined in this paper, two sam-
ples, which shall be referred to as Site 1 and Site 2 [supplied
by the Julius Kruttschnitt Mineral Research Centre (JKMRC)
at the University of Queensland], were analyzed. Site 1 con-
sists of 860 measurements of dip angle and direction and
Site 2 consists of 531 measurements. Also available are the
user interpretations based on the use of contour plots, as
described in Section 1. These user-de� ned groupings are given
in Figures 6 and 7 for Site 1 and Site 2, respectively, with
the groupings denoted by rectangular regions bounded by the
solid lines and labeled J 11 J21 : : : 1 Jg. The sample points are
indicated by + and � symbols (corresponding to the number
of repeated values found at the indicated point), and contour
graphs are superimposed on the plots.

A mixture of Kent distributions and a uniform distribution
was � tted to the data using a modi� cation of the program
EMMIX (McLachlan, Peel, Basford, and Adams 1999). In this
application, the data are axial (antipodally symmetric). Hence,
as pointed out by a referee, it would have suf� ced to � t mix-
tures of Bingham distributions, because the latter apply only
for antipodally symmetric data; see Mardia (1972, sec. 8.5).
In the � tting of our model with Kent component distributions,
the problem of antipodal symmetry is handled by representing
each datum point by the pole closest to the center of the cluster
in question (using angular distance, as de� ned in Section 2).
In effect, the data space is now restricted to a hemisphere and
the uniform component distribution must be suitably changed
to f04y5 = 1=42� 5. The use of Kent component distributions
modi� ed as in the preceding text should give similar results to
Bingham components. The advantage of Kent components is
that their use is not restricted to antipodally symmetric data.

As reported in Table 1, the number of groups speci� ed by
the user for the two examples is within the range de� ned
by AIC and BIC. To initialize the EM algorithm, 10 random
starts, 10 k means, and 7 hierarchical methods were used. The
number of components � tted was taken to be same as the user
interpretation. The results produced are shown in Figures 6
and 7 for Site 1 and Site 2, respectively. In these and sub-
sequent � gures, the points identi� ed as noise are denoted by
dots.

First, we compare the result obtained by � tting a mixture
model to the user’s interpretation for Site 1 (Fig. 6). There is
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Mixture model Human operator

Figure 6. Polar Plot of the Results for Site 1.

some agreement between the solutions, with the groups des-
ignated as J1, J2, and J3 by the user roughly corresponding to
the groups denoted by the , + , and ï symbols in the mixture
model solution. However, the user-de� ned groups J4 and J5
are modeled by a single group in the mixture model solution
(denoted by the symbol ) and the extra component (denoted
by the symbol �) used to � t the points to the left of J2.

The results produced when � tting a mixture model for Site 2
were much closer to the user-de� ned groups (see Fig. 8). The
user-de� ned groups J1 and J2 matched very well to the mix-
ture model solution (denoted by and � symbols, respec-
tively), whereas group J3 was shifted slightly in the mixture
model solution (denoted by the symbol ).

Overall, the computed results correspond very nicely to
what the human user determined. It should be noted that, as
stated in Section 1, the user’s solutions are not necessarily the
only solutions, but possible solutions. It is, however, encour-
aging that the two results are similar.

Mixture model Human operator

Figure 7. Polar Plot of the Results for Site 2.

6.2 Simulations

To examine the use of the AIC and BIC criteria to pro-
vide a guide to the number of joint sets, a variety of sim-
ulated samples were analyzed. Whereas the true number of
groups is known, some indication of the performance of AIC
and BIC can be gained. Eight simulated samples, with various
parameter con� gurations, were examined. A modi� cation of
the program EMMIX (McLachlan et al. 1999) was then used
to examine the data � tting models from g = 0 to g = 10 with
the criteria evaluated for each g. Here g = 0 corresponds to � t-
ting just the uniform distribution. Each model was � tted using
10 random starts, 10 k-means starts, and 7 hierarchical meth-
ods to provide partitions of the sample to initialize the EM
algorithm. The results are given in Table 1, which reports the
number of groups estimated by AIC and BIC for the various
samples. The number of sample and noise points is also given
in Table 1. A comparison between the true grouping and the
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Figure 8. Comparison of True Grouping to That Obtained Fitting a Mixture Model for Simulated Sample 1.

grouping obtained by � tting the mixture model for sample 1
is given in Figure 6.2.

In all cases, the true number of components lies between
the estimates provided by AIC and BIC. In this way, AIC
and BIC provide a useful interval or range for the number of
components. The estimate given by BIC was correct in six
simulations out of eight, whereas AIC was correct in three of
the simulations.

In the literature, AIC and BIC have been found to be very
sensitive to the number of sample points and parameters (see
Cutler and Windham 1993), with the methods failing for small
sample size relative to the number of parameters. To deter-
mine how sensitive the criteria are within this application, a
simple experiment was done to investigate the effect of sample
size on the accuracy of the criteria. Samples of various sizes
n were generated from four well separated groups, each con-
sisting of n=7 points. The remaining 3n=7 points were noise
points generated from a uniform distribution. To each of these
samples, AIC and BIC were calculated and the results are
reported in Table 2. The experiment was repeated for three less
separated groups and the results also are reported in Table 2.
As expected, the criteria fail when the sample size is small.
However, for reasonable sample sizes, the results were excel-
lent, with both criteria repeatedly determining values for g that
correspond to the true number of groups.

Table 1. Number of Groups Estimated by AIC and BIC
for Various Samples

Sample
Pg

i =1 n i n0 True g AIC BIC

1 400 300 4 4 4
2 200 500 3 3 2
3 0 700 0 1 0
4 300 400 3 4 2
5 600 100 1 2 1
6 200 500 2 2 2
7 500 200 5 6 5
8 600 100 6 7 6
Site 1 860 — 5 6 2
Site 2 531 — 3 4 2

The number of groups estimated by the user from contour plots.

7. DISCUSSION

The work presented in this article gives a useful application
of nonnormal mixture models and demonstrates that the mix-
ture model approach offers a practical method of analyzing
joint sets in two ways. First, to identify joint sets in noisy data
and, second, to determine a range for the number of joint sets
suggested by the data. In the case of identifying joint sets, the
mixture approach using Kent component distributions (plus
a uniformly distributed component) performed very well on
actual data. The results approximately matched those indepen-
dently obtained by an operator using contour plots. An exact
match was not expected, because even two experienced oper-
ators can produce differing results. However, the results pro-
duced by � tting a mixture of Kent and uniform distributions
provided a reasonable interpretation of the data. An impor-
tant feature of the model is that it is robust with respect to
noise due to the inclusion of the extra uniform component in
the model. With regard to determining the number of joint
sets, in the simulation experiment conducted in this article, the
AIC and BIC criteria were found to give useful and accurate
bounds to the true number of simulated joint sets.

Table 2. Number of Groups Estimated by AIC and BIC for a
Range of Sample Sizes n

True g = 4 True g = 3

n AIC BIC AIC BIC

100 0 0 1 1
200 4 0 3 1
300 4 0 3 1
400 4 0 3 2
500 4 4 3 2
600 4 4 3 3
700 4 4 3 3
800 4 4 4 3
900 4 4 3 3

1,000 4 4 3 3
1,500 4 4 3 3
2,000 4 4 4 3
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In summary, our mixture model-based method provides a
fully automated method for determining the number of joint
sets present and their location and shape, in the form of model
parameters, a partition of the sample, and/or posterior proba-
bilities. The manual interpretation of joint sets using the pro-
gressive contouring has several disadvantages. First, the result-
ing interpretation is subjective and often varies according to
who made the interpretation. Second, the presentation of the
contours on a circle distorts the original hemisphere and may
result in a biased interpretation. Third, it is dif� cult to remove
accurately a particular joint set so that the remaining data can
be be examined, particularly in the case of overlapping joint
sets. Fourth, it is time-consuming and requires an experienced
user.

Our mixture model approach is based on a sound statistical
model of the joint set distribution that overcomes these prob-
lems because it (1) provides a quantitative method that is not
dependent on the user’s interpretation and (2) places no bias
on the interpretation of joints at different angles. Moreover,
it is capable of describing elongated clusters that often occur
in practice, as well as circular clusters, and of dealing cor-
rectly with overlapping clusters in a satisfactory manner. Fur-
thermore it requires only a limited amount of the user’s time,
this being mainly to read the computer output, and does not
require any special experience.

Some work already exists with regard to analyzing hetero-
geneous directional data. Fisher, Lewis, and Embleton (1987)
stated that there are three possible approaches to “multimodal”
directional data: partition the data into groups visually using
contour plots, use a clustering method, or use a probability
model (such as a mixture of Fisher distributions). Fisher et al.
(1987) went on to point out with regard to clustering methods
for directional data that there is “little currently available in
the literature which seems to be of practical use.” One exam-
ple is given of a clustering method based on a nonparametric
density approach in Schaeben (1984).

With regard to � tting mixtures of Fisher distributions, Fisher
et al. (1987) referred to Stephens (1969), who investigated � t-
ting mixtures of Fisher distributions and found the estimation
of the parameters to be tedious. However, it must be stated that
Stephen’s (1969) comment was made when the available com-
puter power was considerably less than that available today.

Hsu et al. (1986) � tted a mixture of bivariate von Mises dis-
tributions; that is, the dip angle and direction were assumed
to be distributed independently, each with a von Mises dis-
tribution. This assumption does not allow for any correla-
tion between dip direction and dip angle, which can certainly
occur. If we visualize the cluster’s elliptical contours on the
surface of the sphere, then the use of bivariate von Mises dis-
tributions constrains the axis of the cluster ellipses to be par-
allel to longitude and latitude lines of the sphere.

More recently, Hammah and Curran (1998) described the
use of a fuzzy k-means algorithm for joint set identi� cation,
which utilizes extra fracture information, such as roughness or
spacing in the clustering process.

Future work will investigate the use of a bootstrap based
procedure as described in McLachlan (1987) to provide a more
accurate estimation of the number of joint sets if required.
Also, the joint set data as collected also include other infor-
mation on the joint such as the actual position of the joint and

qualitative information on the type of joint. This information
could well be included as additional information to assist in
the identi� cation of joint sets by clustering.

APPENDIX: MOMENT ESTIMATES OF KENT
DISTRIBUTION PARAMETERS

The following steps were proposed in Kent (1982) to
estimate the parameters of a single Kent distribution from
a sample 4ƒ111 ƒ215T 1 : : : 1 4ƒ1n1ƒ2n5T . Let 4y111 y211 y315T 1 : : : 1

4y1n1 y2n , y3n5T denote the respective directional cosines. Then the
moment estimates are calculated as follows.

Step 1. Calculate the sample mean direction

Nƒ1 =
nX

j=1

ƒ1j=n1 Nƒ2 =
nX

j=1

ƒ2j=n1

and
R2 = S2

y1
+ S2

y2
+ S2

y3
1

where Sy1
=

Pn
i=1 y1i , Sy2

=
Pn

i=1 y2i , and Sy3
=

Pn
i=1 y3i . Next calcu-

late the mean resultant length NR = R=n and the matrix S, given by

S =

2
664

P
y2

1i

P
y1iy2i

P
y1iy3i

P
y1iy2i

P
y2

2i

P
y2iy3i

P
y1iy3i

P
y2iy3i

P
y2

3i

3
775 0

Step 2. Compute the matrix

H =

2
664

cos Nƒ2 ƒ sin Nƒ2 0

sin Nƒ2 cos Nƒ1 cosƒ2 cos Nƒ1 ƒ sin Nƒ1

sin Nƒ2 sin Nƒ1 cosƒ2 sin Nƒ1 cos Nƒ11

3
775 1

and then compute the matrix B given by

B = HT SH0

Then O� is de� ned by

O� = 1
2 tanƒ182b23=4b22 ƒb33590

Step 3. The matrix K is computed, where

K =

"1 0 0
0 cos O� ƒ sin O�
0 sin O� cos O�

#
0

Put
OG = HK = 4 O�11 O�21 O�351

where O�11 O�2, and O�3 are 3 1 column vectors. Then calculate

V = OGT S OG

and
W = v22 ƒv331

where vij denotes the element of matrix V in the ith row and jth
column.

Step 4. When Š is large, the parameter estimates of OŠ and O‚ are
given approximately by

OŠ = 42 ƒ2Rƒ W 5ƒ1 + 42 ƒ2R+ W5ƒ1 (A.1)

and

O‚ = 1
2
642 ƒ 2R ƒW 5ƒ1 ƒ 42 ƒ 2R + W 5ƒ171 (A.2)

and the mean direction ( Ny11 Ny21 Ny35T is given by O�1 .
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