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Summary

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity,
health care resource consumption, and patient acuity. This research work aims at
developing an incremental expectation maximization (EM) based learning approach
on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-
mode learning process in most existing artificial neural networks to predict LOS is
unrealistic, as the data become available over time and their pattern change
dynamically. In contrast, an on-line process is capable of providing an output when-
ever a new datum becomes available. This on-the-spot information is therefore more
useful and practical for making decisions, especially when one deals with a tremen-
dous amount of data.
Methods and material: The proposed approach is illustrated using a real example of
gastroenteritis LOS data. The data set was extracted from a retrospective cohort
study on all infants born in 1995—1997 and their subsequent admissions for gastro-
enteritis. The total number of admissions in this data set was n ¼ 692. Linked
hospitalization records of the cohort were retrieved retrospectively to derive the
outcomemeasure, patient demographics, and associated co-morbidities information.
A comparative study of the incremental learning and the batch-mode learning
algorithms is considered. The performances of the learning algorithms are compared
based on the mean absolute difference (MAD) between the predictions and the actual
LOS, and the proportion of predictions with MAD � 1 day (Prop(MAD � 1)). The
significance of the comparison is assessed through a regression analysis.
Results: The incremental learning algorithm provides better on-line prediction of LOS
when the system has gained sufficient training from more examples (MAD ¼ 1:77 days
and Prop(MAD � 1) ¼ 54:3%), compared to that using the batch-mode learning. The
regression analysis indicates a significant decrease of MAD ( p- value ¼ 0:063) and a
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significant ( p- value ¼ 0:044) increase of Prop(MAD �1) with the incremental learning
algorithm.
Conclusions: The incremental learning feature and the self-adaptive model-selection
ability of the ME network enhance its effective adaptation to non-stationary LOS data.
It is demonstrated that the incremental learning algorithm outperforms the batch-
mode algorithm in the on-line prediction of LOS.
# 2005 Elsevier B.V. All rights reserved.
1. Introduction

Health care is a rapidly changing field that embraces
information technology at all levels. The continuing
development and innovative use of information
technology in health care has played a significant
role in contributing and advancing this active and
burgeoning field. Targeting high quality and effi-
cient health care, artificial intelligent systems such
as neural networks, are required for health care
professionals [1,2]. In particular, limitations in
health care funding require hospitals to find effec-
tive ways to utilize hospital resources [3]. Inpatient
length of stay (LOS) is an important measure of
hospital activity and health care utilization [4,5].
It is also considered to be a measurement of disease
severity and patient acuity [1,6]. Length of stay
predictions have therefore important implications
in various aspects of health care decision support
systems.

Neural networks have been adopted to predict
LOS for many disease states [1,3,6,7]. Neural net-
works are intelligent systems that attempt to simu-
late many abilities of the human brain, such as
decision-making based on learning from experi-
ences. They can be regarded as universal function
approximators of underlying nonlinear functions
that can be learned (trained) from examples of
known input—output data (training set) [8]. Many
existing neural networks for predicting LOS, how-
ever, only predict a broad category for the LOS,
such as less than 7 days or greater than 7 days
[6,7]. This binary classification does not provide
hospital administrators with enough information
to adequately plan for hospital resource allocation
[3]. Moreover, the backpropagation learning
method adopted in most of these LOS prediction
networks has been criticized for failure to extra-
polate from the training population [3]. The back-
propagation algorithm also requires careful
adjustment of data-dependent tuning constants
[9]. The development of alternative efficient learn-
ing methods in neural networks, such as the expec-
tation maximization (EM) algorithm [10,11], is
amongst the latest research directions in machine
learning [8,12].
The main drawback of existing neural networks
for predicting LOS is the use of a batch-mode
learning process. That is, the network is learned
only after the entire training set is available.
Such a learning method is unrealistic in the pre-
diction of LOS as the data become available over
time and the input—output pattern of data
changes dynamically over time. On the other hand,
an on-line process is capable of providing an
output whenever a new datum becomes available.
This on-the-spot information is therefore more
useful and practical for adaptive training of model
parameters and making decisions [13,14], espe-
cially when one deals with a tremendous amount
of data.

In this paper, we propose an intelligent mixture
of experts (ME) system for on-line prediction of LOS
via an incremental EM-based learning process. The
strength of an incremental learning process is that
it enables the network to be updated when an
input—output datum becomes known. These on-
line and incremental updating features increase
the simulation between neural networks and human
decision-making capability in terms of learning
from ‘‘every’’ experience. The computational
efficiency in real-time applications is thus
improved. The above features also reduce storage
space and are especially useful and essential
in situations where data become available over
time. The rest of the paper is organized as follows:
Section 2 introduces the ME network [15] for
approximating underlying nonlinear mappings
between the input and the output. We also describe
how ME networks can be learned in batch-mode
via the use of an expectation-conditional maximi-
zation (ECM) algorithm [16]. In Section 3, an incre-
mental version of the ECM algorithm is formulated
where the unknown parameters are updated
whenever an input—output datum is available. In
Section 4, we describe how the proposed system
can provide on-line predictions of LOS. The ability
of the system to ‘‘prune’’ or ‘‘grow’’ the expert
networks is also investigated. The proposed
intelligent system is illustrated in Section 5, using
a set of gastroenteritis LOS data derived from
the Western Australia hospital morbidity data
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system. Section 6 presents some concluding
remarks and discussion.
2. Mixture of experts neural networks

2.1. Background

In ME neural networks (Fig. 1), there arem modules,
referred to as expert networks. These expert net-
works approximate the distribution of the output y j

within each region of the input space. The expert
network maps its input x j ¼ ðx1 j; . . . ; xp jÞT to an
output, the density fhðy jjx j; uhÞ, where p is the
dimension of the input vector x j; uh is a vector of
unknown parameters for the h-th expert network,
and the superscript T denotes vector transpose. It is
assumed that different experts are appropriate in
different regions of the input space. The gating
network provides a set of scalar coefficients
phðx j; vÞ that weight the contributions of the var-
ious experts, where v is a vector of unknown para-
meters in the gating network. Therefore, the final
output of the ME neural network is a weighted sum
of all the output produced by expert networks:

fðy jjx j; CÞ ¼
Xm
h¼1

phðx j; vÞ fhðy jjx j; uhÞ; (1)

where C ¼ ðvT; uTÞT is the vector of all the unknown
parameters [15,17] and u ¼ ðuT1 ; . . . ; uTmÞ

T. With the
probabilistic interpretation (1), the expected value
of the output y j for a given input x j under the
Figure 1 Mixture of exp
current model Ĉ is a weighted sum of the expecta-
tions of the local outputs [17]:

Eðy jjx j; ĈÞ ¼
Xm
h¼1

phðx j; v̂ÞEðy jjx j; ûhÞ:

With the ME network, the output of the gating
network is usually modeled by the softmax function
[18] as

phðx j; vÞ ¼
exp ðvT

hx jÞ
1þ

Pm�1
l¼1 exp ðvT

l x jÞ

ðh ¼ 1; . . . ;m� 1Þ;
(2)

and pmðx j; vÞ ¼ 1=ð1þ
Pm�1

l¼1 exp ðvT
l x jÞÞ, where v

contains the elements in the weight vectors vhðh ¼
1; . . . ;m� 1Þ such that v ¼ ðvT

1 ; . . . ; vT
m�1Þ

T. It is
implicitly assumed that the first element of x j is
one to account for the bias term. The local output
densities fhðy jjx j; uhÞ ðh ¼ 1; . . . ;mÞ can be
assumed to belong to the exponential family of
densities [17]. For regression problems such as
the prediction of LOS, the local output densities
are generally assumed to be Gaussian

fhðy jjx j; uhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ps2

hÞ
q exp

� 1
2 ðy j �wT

hx jÞ2

s2
h

( )
;

(3)

wherewh and s2
h are, respectively, the weight vector

and the variance (dispersion parameter) of the h-th
expert network. Thus, we have uh ¼ ðwT

h; s
2
hÞ

T. The
unknown parameter vector C can be estimated by
erts with m modules.
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the ML approach via the EM algorithm [17,19] or its
morerecentextensionssuchastheECMalgorithm[8].

2.2. Batch-mode learning via the ECM
algorithm

To apply EM-based algorithms to the ME networks,
we introduce the indicator variables zh j, where zh j
is one or zero according to whether y j belongs or
does not belong to the h th expert [8]. The com-
plete-data log likelihood for C is then given by

log LcðCÞ ¼
Xn
j¼1

Xm
h¼1

zh jflogphðx j; vÞ

þ log fhðy jjx j; uhÞg;

where n is the total number of input—output data.
On the ðtþ 1Þth1 iteration of the EM algorithm, the
E-step involves the computation of the so-called Q-
function, which is given by the expected value of the
complete-data log likelihood conditioned on the
observed input—output and the current model
[11]. That is

QðC; CðtÞÞ ¼ E
CðtÞflog LcðCÞjy;xg

¼
Xn
j¼1

Xm
h¼1

E
CðtÞ ðZh jjy;xÞflogphðx j; vÞ

þ log fhðy jjx j; uhÞg

¼
Xn
j¼1

Xm
h¼1

t
ðtÞ
h j logphðx j;vÞ

þ
Xn
j¼1

Xm
h¼1

t
ðtÞ
h j log fhðy jjx j; uhÞ; (4)

where

t
ðtÞ
h j ¼ E

CðtÞ ðZh jjy;xÞ

¼
phðx j; v

ðtÞÞ fhðy jjx j; u
ðtÞ
h ÞPm

r¼1prðx j; vðtÞÞ frðy jjx j; u
ðtÞ
r Þ

(5)

is the current estimated posterior probability that
y j belongs to the h-th expert ðh ¼ 1; . . . ;mÞ.

The M-step updates the estimates that maximizes
theQ-function over the parameter space [11]. In (4),
it can be seen that the Q-function can be decom-
posed into two terms with respect to vand u, corre-
sponding to the gating and expert networks,
respectively. It implies that separate maximizations
can be performed independently [17]. For most
members of the exponential family for the local
1 Here and after, the iteration number is labeled by t. We
purposely do so for the consistency of labeling, as each incre-
mental update of estimates considered in Section 3 corresponds
to an input—output datum being known over time.
output density (such as Gaussian distribution), the
second term of (4) can be further decomposed intom
terms corresponding to each expert network [8].
However, within the gating network, it can be seen
from (2) that the parameter vector vh for the h-th
expert depends also on other parameter vectors
vlðl ¼ 1; . . . ;m� 1Þ. It means that each parameter
vector vh cannot be updated independently. In this
paper, we adopt the learning process via the ECM
algorithm as proposed by Ng and McLachlan [8]. With
the ECM algorithm, the M-step is replaced by several
computationally simpler conditional-maximization
(CM) steps. More importantly, each CM-step corre-
sponds to a separable set of parameters in vh for
h ¼ 1; . . . ;m� 1. The ECM algorithm also preserves
the appealing convergence properties of the EM
algorithm, such as the monotone increasing of like-
lihood after each iteration [11,20]. A detailed for-
mulation of the CM steps is given in Appendix A. With
the gating and expert networks as specified, respec-
tively, by (2) and (3), it follows from Appendix A that
the maximization of the Q-function (4) in the M-step
leads to the following updating rules:

vðtþ1Þh ¼ vðtÞh þ ½S
ðtþh=ðm�1ÞÞ
v;h ��1Eðtþh=ðm�1ÞÞh ; (6)

wðtþ1Þ ¼ ½SðtÞ ��1SðtÞ ; (7)
h xx;h xy;h

ðSðtÞ �wðtþ1Þ
T

SðtÞ Þ

s2ðtþ1Þ

h ¼ yy;h h xy;h

S
ðtÞ
1;h

: (8)

In (6), we have

E
ðtþh=ðm�1ÞÞ
h ¼

Xn
j¼1
ðtðtÞh j � phðx j; v

ðtþh=ðm�1ÞÞÞÞx j

and

S
ðtþh=ðm�1ÞÞ
v;h ¼

Xn
j¼1

phðx j; v
ðtþh=ðm�1ÞÞÞð1�

phðx j; v
ðtþh=ðm�1ÞÞÞÞx jx

T
j;

where vðtþh=ðm�1ÞÞ indicates that, in calculating
phðx j; v

ðtþh=ðm�1ÞÞÞ, vlðl< hÞ are fixed at vðtþ1Þl while
vlðl> hÞ are fixed at vðtÞl . In (7) and (8), we have

S
ðtÞ
xx;h ¼

Xn
j¼1

t
ðtÞ
h jx jx

T
j;

ðtÞ Xn ðtÞ
Sxy;h ¼
j¼1

th j y jx j;

ðtÞ Xn ðtÞ 2
Syy;h ¼
j¼1

th j y j ;

ðtÞ Xn ðtÞ
S1;h ¼
j¼1

th j :
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These equations may be referred to as the condi-
tional expectations of the sufficient statistics, using
the value CðtÞ for C [21].
3. Formulation of incremental
learning algorithm

With the batch-mode learning described in the
previous subsection, the unknown parameters
are updated after the entire training set is avail-
able. In this section, we derive an incremental ECM
learning algorithm where the unknown parameters
are updated whenever an input-output datum
becomes known. The work on speeding up the
convergence of the EM algorithm with an incre-
mental EM (IEM) algorithm [21] forms the basis for
the formulation of an incremental learning pro-
cess, which updates the unknown parameters via
the M-step when a single input-output datum is
available. Related work in the context of recursive
(incremental) learning algorithms can be found in
[22]. In particular, stochastic approximation pro-
cedures have been considered for the recursive
estimation of parameters that can be linked to the
EM algorithm.

Let Cðtþ 1Þ be the unknown parameter vector
after the t-th observed input—output datum ðxt; ytÞ.
With the incremental updating version of the EM
algorithm for the on-line prediction of LOS, an
important feature is the introduction of a discount
factor that gradually ‘‘forgets’’ the effect of the old
posterior probabilities (5) obtained from earlier
inaccurate estimates [17,23]. The idea is to intro-
L
ðtþh=ðm�1ÞÞ
v;h ¼ 1

g
L
ðt�1þh=ðm�1ÞÞ
v;h �

phð1�phÞL
ðt�1þh=ðm�1ÞÞ
v;h

xtx
T
t L
ðt�1þh=ðm�1ÞÞ
v;h

gþphð1�phÞxTt L
ðt�1þh=ðm�1ÞÞ
v;h

xt

 !
:

duce a discount parameter g, where 0< g< 1, such
that the sufficient statistics required in the learning
process (Eqs. (6)—(8)) are decayed exponentially
with a multiplicative factor g as the learning pro-
ceeds. For example, SðtÞxx;hin (7) can be updated
incrementally as

SðtÞxx;h ¼ gSðt�1Þxx;h þ t
ðtÞ
ht xtx

T
t : (9)

The discount parameter g is related to the degree of
discounting past examples. When g is relatively
small, the network tends to forget the past learning
result and to adapt quickly to the input—output
pattern [24,25]. On the other hand, a larger
g implies that a larger effect on learning the
unknown parameters has imposed from past exam-
ples. When the discount parameter gis scheduled to
approach one as t tends to infinity, the updating
rules so formed can be considered as a stochastic
approximation for obtaining the ML estimators
[22,23]. For example, Jordan and Jacobs [17] initi-
alised g to be 0.99 and increased a fixed fraction
(0.6) of the remaining distance to 1.0 every 1000
time steps. A similar schedule was adopted in [26],
where a fixed fraction of 0.0007 for every time step
was used. Travén [27], on the other hand, consid-
ered the d most recent datapoints and specified
g ¼ ð1� 1=dÞ. In this paper, we adopt the scheme
in [26] with an initial value of 0.99 for g.

Based on the incremental scheme (9), we obtain
the incremental analog of the updating rules (Eqs.
(6)—(8)) as follows (details are given in Appendix B):

vðtþ1Þh ¼ vðtÞh þ ½S
ðtþh=ðm�1ÞÞ
v;h ��1ðtðtÞht

� phðxt; v
ðtþh=ðm�1ÞÞÞÞxt; (10)

wðtþ1Þ ¼ wðtÞ þ ½SðtÞ ��1tðtÞxtðyt � xT
tw
ðtÞÞ; (11)
h h xx;h ht h

ðSðtÞ �wðtþ1Þ
T

SðtÞ Þ

s2ðtþ1Þ

h ¼ yy;h h xy;h

S
ðtÞ
1;h

¼
gS
ðt�1Þ
yy;h þ t

ðtÞ
ht y

2
t �w

ðtþ1ÞT
h S

ðtÞ
xy;h

gSðt�1Þ1;h þ t
ðtÞ
ht

(12)

In (10) and (11), the direct calculation of the
inverses of Sv;h and Sxx;h can be avoided by using
the efficient updating formula [21] that specify the
new matrix inverse in terms of the old one; see

Appendix B. LettingL
ðtþh=ðm�1ÞÞ
v;h ¼ ½Sðtþh=ðm�1ÞÞv;h ��1and

ph ¼ phðxt; vðt�1þhðm�1ÞÞÞ, we have
Similarly, letting L
ðtÞ
xx;h ¼ ½S

ðtÞ
xx;h�

�1, we have

L
ðtÞ
xx;h ¼

1

g
L
ðt�1Þ
xx;h �

t
ðtÞ
ht L

ðt�1Þ
xx;h xtxT

tL
ðt�1Þ
xx;h

g þ t
ðtÞ
ht x

T
tL
ðt�1Þ
xx;h xt

0
@

1
A:

4. On-line prediction and model
selection

The ME network can be incrementally learned using
Eqs. (10)—(12) from known input—output data.
Whenever a new input xt becomes available, a
on-line prediction of LOS is given by the expected
value of the output yt in (1), conditioned on the
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input xt and the current estimates of the para-
meters CðtÞ; see Section 2.1. A 95% confidence
interval (CI) of the prediction can be formed using
a resampling approach [28]. Samples of size 100 for
yt are generated independently from fðytjxt; CðtÞÞ.
The 3rd and the 98th ordered samples of yt can be
used to estimate the 95% confidence limits for the
prediction. If the actual LOS observed is outside the
95% CI of the prediction, this datum may be con-
sidered as an ‘‘outlier’’ and therefore inappropriate
for updating the parameters of the model. These
outliers, however, should be checked frequently
with new input data because they may indicate a
systematic change in the input—output pattern.

The intelligent system of ME networks with incre-
mental learning process as described in the previous
section requires the initialization of unknown para-
meters. This can be proceeded by applying the
batch-mode learning on an ‘‘initialization’’ data
set consisting of some past examples. The initializa-
tion data set can also be used to initialize the
‘‘structural’’ parameters of the ME network such
as the number of expert networks and the number of
covariates in each input vector. These two aspects
are referred to as the main subproblems in model
selection in the context of neural networks [29]. In
particular, the selection of the number of expert
networks is relevant in modeling dynamic environ-
ments where the input—output pattern changes
over time [23]. Hence, with the incremental learn-
ing process, another important aspect required is
the provision of pruning and growing of expert net-
works for adapting with varying environments as the
learning proceeds.

Within the Bayesian framework, Jacobs et al. [29]
considered ways of assessing whether a given ME
networks should be pruned or grown. They defined
the worth index for the h-th expert, based on the
indicator variables zh j over the observed data, as

Ih ¼
Xn
j¼1

zh j
n

ðh ¼ 1; . . . ;mÞ; (13)

where the unknown variable zh j was estimated by
the average of its generated values on a specified
number of simulations. Here, we consider a fre-
quentist analog of (13) where zh j is replaced by
its estimated conditional expectation t

ðtÞ
h j with the

current estimates CðtÞ. If the indices for the experts
are all of similar magnitudes, for example, they are
within 10% of 1=m, then a network with additional
experts may be considered. Alternatively, if the
index for an expert is small relative to that of other
experts, this expert can be pruned from the archi-
tecture [29]. In practice, the threshold index values
for pruning and growing of expert networks should
be carefully designed [23]. Mixture of experts with
toomany free parameters (or toomany experts) tend
to overfit the training data and show poor general-
ization performance. In contrast, networks with as
few freeparameters as possible but are still adequate
for summarizing the data tend to generalize com-
paratively well. A useful criterion suggested by
Jacobs et al. [29] to determine the number of experts
is the minimum number of experts with the largest
worth indices forwhich the sumof theirworth indices
exceeds somecritical value k. For example,with aME
network of m� modules, we select

min m : m<m� and
Xm
h¼1

IðhÞ> k

( )
; (14)

where Ið1Þ � Ið2Þ � � � � � Iðm�Þ are ordered worth
indices. All other ðm� �mÞ expert networks can
be pruned from the model. Jacobs et al. [29] sug-
gested the value of k ¼ 0:8. Another criterion is
proposed by Ishii and Sato [26], who suggest that
expert networks with Ih< 0:1=m�are pruned. Hence,
their criterion will select a larger number of experts
as compared to that given by Jacobs et al. [29].
Although these threshold values are arbitrary, they
have worked well in practice. With the incremental
learning process, the worth indices can be updated
according to the incremental scheme (9). The cri-
terion (14) can be checked, say after each time step
of 10. The flow diagram of the on-line prediction
procedure of the proposed intelligent ME network is
depicted in Fig. 2.
5. An example of gastroenteritic LOS
data

In this section, the proposed incremental learning of
ME networks is compared with the batch-mode
learning to predict the LOS of infants admitted
for gastroenteritis in Western Australia (WA). Gas-
troenteritis is an infectious disease prevalent among
infants and children worldwide, especially in devel-
oping countries. The present data were extracted
from a retrospective cohort study on all infants born
in 1995—1997 and their subsequent admissions for
gastroenteritis. Admissions by infants, who were
born in other years, for gastroenteritis were not
captured. Also, we focus on a single public tertiary
hospital for children in WA. Thus, the present data
set should be considered as a set of hospital-based
LOS data observed over time for the cohort, rather
than a data set retrieved from hospital admission
database that also accumulates records from other
patients. The total number of admissions in this data
set was n ¼ 692. Linked hospitalization records of
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Figure 2 The flow diagram of the proposed intelligent ME network.
the cohort were retrieved retrospectively to derive
the outcome measure, patient demographics, and
associated co-morbidities information [30]. The
observed LOS (outcome measure) ranged from one
(same day separation) to 82 days. As the empirical
distribution of LOS appears to be positively skewed,
log-transformation of LOS is applied [31]. Other
transformations within the Box—Cox family of trans-
formations [32] may also be considered and assessed
using the profile likelihood, with reference to the
local output densities (3) adopted in the ME net-
work. In this study, concomitant information on
each patient’s age (in months), gender (female:
0; male: 1), indigenous status (non-Aboriginal: 0;
Table 1 Patient demographic and descriptive characterist

Number of gastroenteritis admissions
Average (standard deviation) LOS in days
Average (standard deviation) patient age in months

Proportion of admissions (%)
Male
Aboriginal
Rural residence

Average (standard deviation) number of co-morbidities
Co-morbidity (%)

Dehydration
Gastrointestinal sugar intolerance
Failure to thrive
Iron deficiency anaemia
Infection (genitourinary/scabies/otitis media)
Aboriginal: 1), place of residence (metropolitan: 0;
rural: 1), and number of co-morbidities (0—5) were
included as the input variables of the ME network.
These variables are considered as potential deter-
minants of LOS for gastroenteritis [5]. Table 1 pre-
sents the patient demographic and descriptive
measures at admission.

The LOS input—output data are rearranged in
order according to the date of admission. As
described in Section 4, the first 100 ordered samples
are chosen as the initialization set for the determi-
nation of initial model and structural parameters.
Table 2 displays the results for the model selection.
We here take k ¼ 0:9 in (14) because an initial value
ics

692
4.5 (5.9)
8.4 (6.9)

55.3
17.3
8.7

0.6 (0.8)

29.9
10.3
6.5
4.2
8.5
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Table 2 Model selection

Number of experts Worth indices (I) Remark

2 (0.69, 0.31) Ið1Þ< 0:9

3 (0.42, 0.37, 0.21) Ið1Þ þ Ið2Þ< 0:9

4a (0.30, 0.27, 0.23, 0.20) Ið1Þ þ Ið2Þ þ Ið3Þ< 0:9

5 (0.46, 0.26, 0.16, 0.10, 0.02) Ið1Þ þ Ið2Þ þ Ið3Þ þ Ið4Þ> 0:9
a The number of experts selected.

Table 3 Prediction of LOS for gastroenteritis

Learning method Data set D1(n1 ¼ 500) Data set D2 (n2 ¼ 92)

MAD Prop(MAD � 1) MAD Prop(MAD � 1)

Batch mode learning 2.03 days 49.2% 2.03 days 42.4%
Incremental learning 2.13 days 46.2% 1.77 days 54.3%

Figure 3 The performance of the incremental learning
algorithm as time proceeds: (a) mean absolute difference
for each 30 input—output examples (MAD30) along the
time frame; (b) proportion of predictions with MAD30 less
than or equal to 1 day (Prop(MAD30�1)) along the time
frame.
for m is determined based on a small initialization
set. A ME network with m ¼ 4 experts is selected
and the initial estimates of the parameters C are
obtained. The incremental learning algorithm
(Eqs. (10)—(12)) are applied to the remaining data
ðn ¼ 592Þ. In this study, the criterion (14) is checked
after each time step of 10 during the incremental
learning process to determine whether the pruning
or growing of the ME network is required. For com-
parison, we also include the predictions of LOS
obtained by the batch-mode learning algorithm
(Eqs. (6)—(8)). With the batch-mode learning pro-
cess, the first 500 ordered samples of the remaining
data (n ¼ 592) is used as the training set D1 to train
the ME network. The relative performance of the
incremental and batch-mode learning algorithms is
compared separately on data sets D1 and D2 (the
remaining 92 samples). In Table 3, the mean abso-
lute difference (MAD) between the predictions and
the actual LOS along with the proportion of predic-
tions with MAD less than or equal to 1 day (Prop(MAD
� 1)) are presented. It can be seen that the batch-
mode learning algorithm performs slightly better
than the incremental learning algorithm in the data
set D1. However, when the intelligent system has
gained sufficient learning from more examples, the
incremental learning algorithm provides better on-
line prediction as indicated in the data set D2. This
improvement is quantified in Fig. 3, where the MAD
and Prop(MAD � 1) for each 30 input—output exam-
ples are plotted against the time frame. Outliers
that are outside the 95% CI of the predictions are
excluded in this regression analysis. The regression
fitted lines in Fig. 3 indicate a significant decrease of
MAD (p- value ¼ 0:063) and a significant (p-
value ¼ 0:044) increase of Prop(MAD � 1), as time
proceeds.
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6. Concluding remarks

Intelligent decision support systems such as neural
networks and machine learning algorithms have
been of much interest in recent years in their
applications to health care studies. Different initia-
tives propel the development and use of intelligent
systems in health care leading to significant
advances in the field. As LOS is an important mea-
sure of hospital activity and health care utilization,
an accurate prediction of LOS has important impli-
cations in various aspects of health care manage-
ment and decision-making.

In this paper, we have developed an intelligent ME
network that ‘‘reads’’ the input data that become
available over time and enables the on-line predic-
tion of LOS. The strength of the proposed intelligent
system is that it provides on-the-spot information
for determining appropriate policies in hospital
resource utilization management and making finan-
cial decisions for improving economic efficiency [1].
The on-line information also contributes towards an
early prediction of patients who will require longer
hospital care [6] and the achievements of artificial
intelligence scheduling in clinical management con-
cerning the minimization of patient stay in hospital
[33]. At the same time, the comparison of LOS
predictions can be taken into consideration for
the assessment of the global influence of preventive
and therapeutic interventions or the allocation of
resources [7]. Another important feature of the
intelligent system is that the architecture of the
ME network can be determined from the data itself
via pruning or growing the ME network. The sequen-
tial discounting feature and the self-adaptive
model-selection ability of the system enhance its
effective adaptation to non-stationary LOS data, in
terms of memory and computational efficiency (cf.
[21,24]). It is noted that the learning behavior
changes according to the scheduling of the discount
parameter g(Section 3). With non-stationary input-
output pattern of data, the MAD and the number of
expertsm should be tracked during the incremental
updating process. A drastic increase of m may indi-
cate that the value of g is too large and the network
adapts to the change of the input distribution with-
out forgetting past examples by growing of expert
networks [23].

The example presented in Section 5 shows that
the performance of the batch-mode algorithm in
LOS predictions deteriorates in the test set. It means
that the batch-mode algorithm fails to adapt to the
changing input-output distribution of data over
time. An additional disadvantage of the batch-mode
learning is the heavy burden of storing the training
data. On the other hand, it is observed that the
performance of the incremental learning algorithm
improves when the system learns from more exam-
ples as time proceeds. The results from the example
demonstrate that the incremental learning on-line
system outperforms the batch-mode learning algo-
rithm in the prediction of LOS for gastroenteritis. In
related work, the uses of incremental algorithms
have been successfully applied to the motion-based
tracking of objects [13], robot dynamics problems
[23], and the reconstruction of nonlinear dynamics
[26].

Mixture of experts networks are useful in model-
ling nonlinear mappings between the input—output
patterns, mainly due to their wide applicability
[17,29], generalization capability, and advantage
of fast learning via EM-based algorithms [8,17]. A
theoretical analysis of the convergence of the EM
algorithm for the ME networks is provided in [19].
Jiang and Tanner [34] have obtained conditions for
the identifiability of the ME network, which they
showed held for some commonly used expert net-
works such as Poisson, gamma, and Gaussian
experts. For the specification of the local output
density fhðy jjx j; uhÞwithin the ME network, instead
of Gaussian distribution, other members of the
exponential family of densities may be adopted in
views of the skewness of the LOS data. An example is
given by Lee et al. [4], where a gamma mixture
model is used for the analysis of maternity LOS data.
In addition, the normal inverse Gaussian distribution
[35], which also belongs to the exponential family of
densities, may be adopted to handle skewed and
heavy-tailed data. The assumption of a Gaussian
distribution for fhðy jjx j; uhÞ in (3) is motivated by
its simple form and well-established theoretical
framework within the context of ML estimation
via EM-based algorithms. Although the focus of this
paper is on the prediction of LOS, the proposed
intelligent ME system should be readily applicable
to predict other clinical outcomes or health care
resource measures. For example, the system can be
used to predict disease severity or prognostic
indices [6], a patient’s acuity measure, health insur-
ance payment, and payment rate for each hospital
stay [36].
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Appendix A. Learning via the ECM
algorithm

With the ECM algorithm, the parameter vector v
is partitioned as ðvT

1 ; . . . ; vT
m�1Þ

T. On the ðtþ 1Þth
iteration of the ECM algorithm, the M-step is
replaced by ðm� 1Þ computationally simpler CM-
steps:
� C
M-step 1: Calculate v
ðtþ1Þ
1 by maximizing Qv with

vlðl ¼ 2; . . . ;m� 1Þ fixed at vðtÞl .

� C
M-step 2: Calculate vðtþ1Þ2 by maximizing Qv with

v1 fixed at vðtþ1Þ1 and vlðl ¼ 3; . . . ;m� 1Þ fixed at
vðtÞl ..
� ..

� C
M-step (m� 1): Calculate vðtþ1Þðm�1Þ by maximizing

Qv with vlðl ¼ 1; . . . ;m� 2Þ fixed at v
ðtþ1Þ
l ,

where

Qv ¼
Xn
j¼1

Xm
h¼1

t
ðtÞ
h j logphðx j; vÞ

is the term of the Q-function in (4) for the gating
network. As the CM maximizations are over smaller
dimensional parameter space, they are often sim-
pler and more stable than the corresponding full
maximization called for on the M-step of the EM
algorithm, especially when iteration is required
[16]. More importantly, each CM-step above corre-
sponds to a separable set of the parameters in vh for
h ¼ 1; . . . ;m� 1, and can be obtained using the
iterative reweighted least squares (IRLS) algorithm
of Jordon and Jacobs [17]; see [8].

Let vðtþh=ðm�1ÞÞ ¼ ðvðtþ1Þ
T

1 ; . . . ;vðtþ1Þ
T

h�1 ; vðtÞ
T

h ; . . . ;

v
ðtÞT
m�1Þ

T, at the h-th CM-step on the ðtþ 1Þth iteration
of the ECM algorithm ðh ¼ 1; . . . ;m� 1Þ, it follows
from (2) that the IRLS updating rule for vh is given by

v
ðtþ1Þ
h ¼ v

ðtÞ
h þ � @2Qv

@vhvT
h

" #�1
ðtþh=ðm�1ÞÞ

@Qv

@vh

� �
ðtþh=ðm�1ÞÞ

;

where

@Qv

@vh

� �
ðtþh=ðm�1ÞÞ

¼ Eðtþh=ðm�1ÞÞh

¼
Xn
j¼1
ðtðtÞh j � phðx j; v

ðtþh=ðm�1ÞÞÞÞx j
and

� @2Qv

@vhvT
h

" #
ðtþh=ðm�1ÞÞ

¼ S
ðtþh=ðm�1ÞÞ
v;h ¼

Xn
j¼1

phðx j; v
ðtþh=ðm�1ÞÞÞ

� ð1� phðx j; v
ðtþh=ðm�1ÞÞÞÞx jx

T
j:

This IRLS loop is referred to as the inner loop of the
EM algorithm [17]. It is terminated when the algo-
rithm has converged or after some prespecified
number of iterations, say 10 iterations. A least
squares algorithm has been considered by Jordan
and Jacobs [17] to replace the ML learning
approach. In that case, the gating network para-
meters vhðh ¼ 1; . . . ;m� 1Þ can be fit by a one-pass
of the least squares algorithm. Although this algo-
rithmwas found to work reasonably well in practice,
even in the early stages of fitting when the residuals
can be large, there is no guarantee that the appeal-
ing convergence properties of the EM algorithm can
be preserved.
Appendix B. Incremental updating
rules

As described in Section 3, incremental updating
rules can be formulated based on Scheme (9) that
gradually discounts the effect of previous sufficient
statistics. Here we focus on whðh ¼ 1; . . . ;mÞ as an
example. The derivation for vh can be obtained
similarly. By replacing S

ðtÞ
xx;h and S

ðtÞ
xy;h in (7) with their

incremental analogs such as (9), an incremental
analog of (7) is given by

wðtþ1Þh ¼ ½SðtÞxx;h�
�1SðtÞxy;h ¼ ½gS

ðt�1Þ
xx;h þ t

ðtÞ
ht xtx

T
t �
�1

� ðgSðt�1Þxy;h þ t
ðtÞ
ht ytxtÞ ¼ ½gSðt�1Þxx;h þ t

ðtÞ
ht xtx

T
t �
�1

� ð�t
ðtÞ
ht xtx

T
tw
ðtÞ
h þ t

ðtÞ
ht ytxtÞ þwðtÞh

¼ wðtÞh þ t
ðtÞ
ht ½gS

ðt�1Þ
xx;h þ t

ðtÞ
ht xtx

T
t �
�1xt

� ðyt � xT
tw
ðtÞ
h Þ: (15)

It can be seen from (15) that direct calculation of
the inverse of S

ðtÞ
xx;h for each t is required. Fortu-

nately, this computation can be avoided by using the
updating formula given in Ng and McLachlan [21].
Let

L
ðtÞ
xx;h ¼ ½S

ðtÞ
xx;h�

�1 ¼ ½gSðt�1Þxx;h þ t
ðtÞ
ht xtx

T
t �
�1:
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From [21], the inverse is given by

L
ðtÞ
xx;h ¼ ½gS

ðt�1Þ
xx;h þ t

ðtÞ
ht xtx

T
t �
�1

¼ 1

g
L
ðt�1Þ
xx;h �

t
ðtÞ
ht ð1gÞ

2L
ðt�1Þ
xx;h xtxT

tL
ðt�1Þ
xx;h

1þ 1
g
t
ðtÞ
ht x

T
tL
ðt�1Þ
xx;h xt

¼ 1

g
L
ðt�1Þ
xx;h �

t
ðtÞ
ht L

ðt�1Þ
xx;h xtxT

tL
ðt�1Þ
xx;h

g þ t
ðtÞ
ht x

T
tL
ðt�1Þ
xx;h xt

0
@

1
A:

The use of this updating formula avoids the direct
calculation of the inverse of SðtÞxx;h in the incremental
updating rule for wðtþ1Þh and reduces the amount of
computation time.
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