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Abstract

Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide
range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable
computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over
10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of
convergence. In this paper, we show how this modi8ed EM algorithm can be speeded up further by adopting a multiresolution
kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for
segmenting MR images of the human brain.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Finite mixture models have been widely applied in the
8eld of unsupervised statistical pattern recognition, where a
pattern is considered as a single entity and is represented by
a 8nite dimensional vector of features of the pattern [1–3].
The aim of pattern recognition is to automate processes per-
formed by humans. Important applications include a variety
of disciplines such as medicine, computer vision, signal and
image analysis, machine learning, and remote sensing. For
example, automatic segmentation of di/erent tissue cells of
magnetic resonance (MR) images of the human brain facil-
itates an imaging-based medical diagnosis, provided an aid
to surgery and treatment planning [4], as well as a means
for studying the e/ect of the locality of abnormal tissues
in neurologic disease [5,6] and the human brain activation
e/ects to stimuli [7,8]. Such tissue segmentation of MR im-
ages is often achieved by applying statistical classi8cation
techniques to the signal intensities [9,10].

∗ Corresponding author. Fax: +61-7-33651477.
E-mail address: skn@maths.uq.edu.au (S.-K. Ng).

We consider here a statistical-based approach whereby
the intensity on each voxel is modeled by a Gaussian mix-
ture [11]. The expectation-maximization (EM) algorithm
[12] is adopted to segment MR images and estimate the
tissue parameters. An approximation to the E-step of the
EM algorithm is employed based on a fractional weight
version of Besag’s iterated conditional modes (ICM) al-
gorithm [13]. The prior (spatial) distribution of di/erent
tissue types is modeled by a hidden Markov random 8eld
(MRF) so as to incorporate spatial continuity constraints
on the tissue segmentation. Alternative segmentation ap-
proaches using the mean 8eld theory can be found in
Refs. [14,15].
As set out in some detail in Ref. [16, Section 1.7], the EM

algorithm has a number of desirable properties, including
its simplicity of implementation and reliable global conver-
gence. However, a common criticism is that the convergence
with the EM algorithm is only at a linear rate [17,18]. With
the computer revolution, huge data sets of 10 millions of
multidimensional images are now commonplace. The size of
these image data sets means that there is an ever increasing
demand on speeding up the EM algorithm; yet it is highly
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desirable if the simplicity and stability of the EM algorithm
can be preserved [19, Chapter 12].
In the context of mixture models, various attempts have

been proposed recently to speed up the EM algorithm
[17,20,21]. In particular, an incremental version (IEM) and
a sparse, incremental version (SPIEM) of the EM algo-
rithm both improve the rate of convergence and preserve
the desirable convergence guarantees of the EM algorithm
[18,22]. These two algorithms proceed by dividing the data
into blocks and implementing the E-step for only a block
of data at a time before performing an M-step. Detailed
formulation and empirical studies on these two algorithms
can be found in Ng and McLachlan [22]. A recursive,
nonparametric mixture approach [23] can be regarded as a
heuristic version of the IEM algorithm.
In this paper, we propose to speed up the SPIEM algo-

rithm further by imposing a multiresolution kd-tree struc-
ture in performing the E-step. We also consider a second
version that involves “pruning” the tree-nodes. These two
new SPIEM multiresolution kd-tree-based algorithms pro-
vide a fast EM-based mixture model approach for segment-
ing three-dimensional (3D) MR images. Although the mul-
tiresolution kd-tree approach has been applied to speed up
the EM algorithm with promising results [17,24,25], there
are some important issues to be resolved with its integration
to the SPIEM framework. Firstly, the multiresolution kd-tree
approach is inexact in the sense that the contribution of all
the data points in a tree node to the suKcient statistics is sim-
pli8ed by calculating at the mean of these data points; see
Section 2. This approximation will a/ect the “quality” of the
8nal segmentation which is quanti8ed in terms of the 8nal
log likelihood value and the number of misclassi8ed vox-
els. Secondly, the eKciency of the multiresolution kd-tree
approach to speed up the EM algorithm relies on the prun-
ing process (see Section 2.1) which involves calculations of
the upper and lower bounds on the probability density func-
tion at each tree node [17]. Thirdly, as a consequence of the
pruning process, the “blocking” of nodes becomes nontrivial
because the number of pruned nodes is di/erent at each iter-
ation; see Section 3.2. Fourthly, the multiresolution kd-tree
approach will not be able to speed up the EM algorithm for
applications to high-dimensional data sets [21,26]. In this
paper, we shall address these issues carefully. In particular,
we show how tuning parameters can be adjusted so that the
proposed SPIEM kd-tree-based algorithms provide an accu-
rate solution and preserve the reliable convergence as that
for the EM algorithm. We also propose a novel analytical
geometry approach to speed up the pruning process. In ad-
dition, to evaluate the applicabilities of the two versions of
SPIEM multiresolution kd-tree-based algorithms, a study is
performed to compare with some other existing algorithms.
Our focus is on providing a guide to the possible gains in
CPU time to convergence (speedup factor) and the conver-
gence properties of each algorithm. This comparative study
thus also helps to advance our understanding of existing al-
gorithms for speeding up the EM algorithm.

The rest of the paper is organized as follows: Section 2
reviews the multiresolution kd-tree approach to speed up the
EM algorithm for the 8tting of Gaussian mixtures. An ana-
lytical geometry approach is proposed to speed up the prun-
ing process. In Section 3, we introduce brieNy the SPIEM
algorithm and develop the two new algorithms by adopt-
ing a multiresolution kd-tree structure and the blocking of
tree-nodes. We describe in Section 4 the Gaussian mixture
model with hidden Markov random 8eld approach to the
segmentation of 3D MR image data sets concerning the hu-
man brain. We show how the proposed SPIEM multireso-
lution kd-tree-based algorithms can be adopted to speed up
the segmentation process. In Section 5, we report two simu-
lation results on illustrating possible gains of using the pro-
posed algorithms to speed up the EM algorithm with huge
image data sets. A study is presented that compares the pro-
posed algorithms with existing algorithms, and Section 6
ends the paper by presenting some concluding remarks and
discussion.

2. Multiresolution kd-tree approach for the �tting of
Gaussian mixtures

With a Gaussian mixture model, the observed p-dimen-
sional data x1; : : : ; xn are assumed to have come from a
mixture of an initially speci8ed number g of multivariate
Gaussian densities in some unknown proportions �1; : : : ; �g,
which sum to one. That is, each data point is taken to be a
realization of the mixture probability density function,

f(x;�) =
g∑
i=1

�i
(x; �i ;�i); (1)

where 
(x; �i ;�i) denotes the p-dimensional multivariate
Gaussian distribution with mean �i and covariance matrix
�i. Here the vector � of unknown parameters consists
of the mixing proportions �1; : : : ; �g−1, the elements of
the component means �i, and the distinct elements of the
component-covariance matrices �i.
Within the EM framework, each xj is conceptualized to

have arisen from one of the g components. We let z1; : : : ; zn
denote the unobservable component-indicator vectors,
where the ith element zij of zj is taken to be one or zero
according as the jth data point xj does or does not come
from the ith component. We put z=(zT1 ; : : : ; z

T
n )

T where the
superscript T denotes vector transpose.
The use of a multiresolution kd-tree has been proposed by

Moore [17] to speed up the EM algorithm. Here kd stands
for k-dimensional where, in our notation, k =p, the dimen-
sion of a feature vector xj . The idea of storing the data points
in a multiresolution kd-tree is also adopted in other clus-
tering algorithms, such as the k-means [24,25]. The kd-tree
is a binary tree that recursively splits the whole set of data
into regions. Each node in the kd-tree includes a bounding
box that speci8es a subset of the data points and the root
node owns all the data. The children of a node are smaller
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bounding boxes, generated by splitting along parent node’s
widest dimension. The multiresolution kd-tree is constructed
top-down, starting from the root node and the splitting pro-
cedure continues until the range of data points in the widest
dimension of a descendant node is smaller than some thresh-
old 
. This node is then declared to be a leaf-node and is left
unsplit. In Ref. [17], Moore took 
 to be 1% of the range in
the splitting dimension of the whole data set.
For Gaussian mixtures, it is computationally advanta-

geous to work in terms of the suKcient statistics [22]. With
the help of the multiresolution data structure built up by the
kd-tree, the computation of the current conditional expec-
tations of the suKcient statistics in the E-step can be re-
structured as follows on the (k + 1)th iteration of the EM
algorithm. Let nL be the total number of leaf nodes. For the
mth leaf node LNm (m=1; : : : ; nL), the conditional expecta-
tions of the suKcient statistics are simpli8ed by treating all
the data points in it to have the same posterior probabilities
�i( Qxm;�(k)) calculated at the mean, where

�i( Qxm;�
(k))= �(k)i 
( Qxm; �

(k)
i ;�

(k)
i )
/ g∑

l=1

�(k)l 
( Qxm; �
(k)
l ;�

(k)
l )

for i = 1; : : : ; g, and where Qxm is the mean of data points
belonging to the leaf node LNm. The contribution of the mth
leaf node LNm (m=1; : : : ; nL) to the conditional expectations
of the suKcient statistics is given as

T (k)
i1;m = �i( Qxm;�

(k))nm; T (k)
i2;m = �i( Qxm;�

(k))nm Qxm;

T (k)
i3;m = �i( Qxm;�

(k))
∑
j∈LNm

xjx
T
j (2)

for i=1; : : : ; g, where nm is the number of data points in the
leaf node LNm. The conditional expectations of the suKcient
statistics are approximated as

T (k)
i1 =

n∑
j=1

�(k)ij ≈
nL∑
m=1

T (k)
i1;m; (3)

T (k)
i2 =

n∑
j=1

�(k)ij xj ≈
nL∑
m=1

T (k)
i2;m; (4)

T (k)
i3 =

n∑
j=1

�(k)ij xjx
T
j ≈

nL∑
m=1

T (k)
i3;m (5)

for i = 1; : : : ; g, where

�(k)ij = E(Zi j| x;�(k)) (i = 1; : : : ; g; j = 1; : : : ; n)

is the current estimate of the posterior probability that xj
comes from the ith component.
The M-step updates the estimates as follows:

�(k+1)i = T (k)
i1 =n; �(k+1)i = T (k)

i2 =T
(k)
i1 ;

�(k+1)
i = {T (k)

i3 − T (k)−1

i1 T (k)
i2 T

(k)T

i2 }=T (k)
i1 : (6)

It is noted that the calculation of the suKcient statistics
is Eqs. (3)–(5) is approximate, the multiresolution kd-tree
algorithm is therefore inexact. In practice, the leaf nodes

should be very small (or 
 small) in order that the simpli8ed
equations (3)–(5) be applicable. However, in this situation,
nL will be close to the number of data points n, and hence
there is very little computational gain over the standard EM
algorithm. 1 Thus, Moore [17] introduced a further (prun-
ing) step to reduce the computational time.

2.1. Pruning of multiresolution kd-tree

For each component i at a given node (i=1; : : : ; g), com-
pute the minimum and maximum values that any data point
in the node can have for its current posterior probabilities.
Denote these limiting values �i;min and �i;max, respectively.
If the di/erences between �i;min and �i;max for all i=1; : : : ; g
are small and satisfy a pruning criterion (see below), then
the node is treated as if it is a (pseudo) leaf node. Hence its
descendants need not be searched at this scan.
Let nd be the number of data points in the dth node, and

�i; total the sum of the posterior probabilities of ith component
membership for all the data points. Based on the source code
of Ref. [17], we prune if

1. nd(�i;max − �i;min)¡��i; total with � = 0:01 (i = 1; : : : ; g)
and

2. log(
∑g

i=1 �i
i;max=
∑g

i=1 �i
i;min)
¡ 0:1|log∑g

i=1 �i
( Qxd; �i ;�i)|,

where Qxd is the mean of the data points in the node,

i;max and 
i;min are the upper and lower bound on the ith
component-conditional density, respectively. For the 8rst
condition, if a larger value of � is adopted, the number of
pseudo-leaf nodes will decrease. Hence the computational
time at each iteration decreases, but the contributions to the
conditional expectations of the suKcient statistics may not
be well approximated by Eqs. (3)–(5). The second condi-
tion ensures that the pruning step will not reduce signi8-
cantly the value of log likelihood. However, this additional
condition increases the number of pseudo-leaf nodes and
hence the computational time at each iteration.
In practice, the time to convergence for this algorithm

against that without pruning is a tradeo/ between the addi-
tional computational time needed to compute �i;min and �i;max
(i = 1; : : : ; g) and the fewer number of leaf nodes in each
scan. There are some possibilities to reduce the amount of
computation of �i;min and �i;max and hence favour the adop-
tion of the pruning step. For example, if �i;max is found to be
close to zero at a given node, for instance, �i;max ¡ 0:5�h;min
for some other group h, then there is no need to compute
�i;min and �i;max in descendants of this node [17]. In addition,
it is easy to determine whether the hyper-rectangle of the
current node is very far away from the mean �i. If it is the
case, �i;min and �i;max may be set to zero and the ith group
is not considered in descendants of the current node [17].

1 Noted from Eq. (2) that the multiresolution kd-tree algorithm
speeds up the EM algorithm roughly a factor of n on nL.
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With these two procedures, it means that, near the tree’s
leaves, the limiting values of the posterior probabilities need
to be computed only for a small fraction of g. This process
is known as “blacklisting” in Ref. [25] and will consider-
ably reduce the computational time in cases where there are
large number of groups and the overlapping of the groups
is small.
Due to the implementation of the pruning step, the number

of pseudo-leaf nodes at each scanmay be di/erent, and hence
the approximate log likelihood calculated using the mean of
each pseudo-leaf node is not monotonically increasing after
each scan. This algorithm can be terminated by considering
the convergence of the estimates at each scan.

2.2. Analytical tools for 6nding the limiting values of �i

As described in Ref. [17], the computation of �i;min and
�i;max is much easier to formulate in terms of bounds on
the density at the data point belonging to the node. Let the
Mahalanobis squared distance between vector xj and �i be

 2 = (xj − �i)
T�−1

i (xj − �i):

The minimum and maximum values of  2 between the mean
�i (i=1; : : : ; g) and any data point within the hyper-rectangle
are denoted by  2

i;min and  
2
i;max, respectively. A lower bound

on the ith component-conditional density at the data point
xj in the node is then given by


i;min = (2�)−p=2|�i|−1=2 exp(− 1
2 

2
i;max)

and, similarly, an upper bound 
i;max is obtained for this
density. It follows that a lower bound of the posterior prob-
ability is given by

�i;min = �i
i;min

/(
�i
i;min +

∑
l �=i

�l
l;max

)
:

Similarly, an upper bound �i;max can be obtained.
In Ref. [17], a quadratic programming with hyper-

rectangular constraints is adopted to obtain the limiting
values of �i (i=1; : : : ; g). In this paper, we propose a novel
analytical geometry approach to obtain �i;min and �i;max. The
idea is to transform the data points by a matrix of normal-
ized eigenvectors so that the covariance matrix becomes
an identity matrix. By doing this, the Mahalanobis squared
distance becomes the Euclidean squared distance. For data
with dimension p less than or equal to three, analytic
tools within the context of vector geometry can then be
applied to 8nd the minimum and maximum values easily.
An example is given in the appendix as an illustration.
We found that this analytical geometry approach is faster
than the quadratic programming subroutine E04NFF of the
FORTRAN NAG library for computing �i;min and �i;max.

3. Sparse and incremental algorithm with a
multiresolution kd-tree structure

A sparse and incremental version of the EM algorithm
(SPIEM) has been considered in Refs. [18,22] to improve
the rate of convergence of the EM algorithm. The SPIEM al-
gorithm is formulated by combining the partial E-step of the
incremental EM (IEM) algorithm and the sparse E-step of
the sparse EM (SPEM) algorithm [18]. With the IEM algo-
rithm, the available n data points are divided into B (B6 n)
blocks and the E-step is implemented for only a block of
data at a time before the next M-step is performed. A scan
of the IEM algorithm thus consists of B partial E-steps and
B M-steps. The argument for improved rate of convergence
is that the IEM algorithm exploits new information more
quickly rather than waiting for a complete scan of the data
before parameters are updated by anM-step. With the SPEM
algorithm, component-posterior probabilities that are below
a speci8ed threshold are held 8xed while those for the re-
maining components in the mixture are updated. That is,
instead of considering all g components, it is possible to
“freeze” those �(k)ij that are close to zero and save time. There-
fore, this sparse E-step will take time proportional only to
the number of components needed to be updated.
To examine the combined sparse and incremental version

(SPIEM) more closely, let Aj (j = 1; : : : ; n) be a subset of
{1; : : : ; g} which component-posterior probability of xj is
close to zero, say less than 0.005, and hence is held 8xed
[22]. Let �(k+b=B) denote the estimate of � after the bth
iteration on the (k+1)th scan (b=1; : : : ; B) and Sb+1 denote
the subset of {1; : : : ; n} containing the subscripts of those xj
that belong to the (b+1)th block (b=0; : : : ; B−1). Suppose
that a set of Aj is selected on the kth scan for j=1; : : : ; n. That
is, on the (b+1)th iteration of the kth scan (b=0; : : : ; B−1),
if �(k−1+b=B)

ij ¡ 0:005 for j∈ Sb+1, then Aj contains the ith
component; otherwise Acj (the complement of Aj) contains i.
Now suppose that the sparse IEM step is to be implemented
on the subsequent B iterations of the (k + 1)th scan. Then
on the (b+1)th iteration (b=0; : : : ; B− 1), consider for all
j∈ Sb+1,

• for all i∈Aj , set �(k+b=B)ij = �(k−1+b=B)
ij ,

• for all i∈Acj , calculate the “nonproper” posterior
probabilities of component membership, denoted as
�∗i (xj;�

(k+b=B)), based on the current estimates �(k+b=B)

and then form the updated posterior probabilities �(k+b=B)ij

by rescaling �∗i (xj;�
(k+b=B)) as

�(k+b=B)ij =


∑
h∈Acj

�(k−1+b=B)
hj


 �∗i (xj;�

(k+b=B))∑
h∈Acj �

∗
h (xj;�

(k+b=B))
: (7)

This sparse version of the partial E-step thus will take time
proportional only to the number of components i∈Acj (j =
1; : : : ; n). The current conditional expectations of the suK-
cient statistics T (k+b=B)

i1 , T (k+b=B)
i2 , and T (k+b=B)

i3 are obtained
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for i = 1; : : : ; g, using the relationship

T (k+b=B)
iq = T (k+(b−1)=B)

iq − T (k−1+b=B)
iq;b+1 + T (k+b=B)

iq;b+1 (8)

for b = 0; : : : ; B − 1 and q = 1; 2; 3, where the 8rst and the
second terms of Eq. (8) are available from the previous
iteration and previous scan, respectively. Only the third term
on the right-hand side of Eq. (8) have to be calculated by
updating only the contribution to the suKcient statistics for
those components i∈Acj . For example,

T (k+b=B)
i1; b+1 =

∑
j∈Sb+1

IAj (i)�
(k−1+b=B)
ij +

∑
j∈Sb+1

IAcj (i)�
(k+b=B)
ij ; (9)

where IAj (i) is the indicator function for the set Aj . The 8rst
term on the right-hand side of Eq. (9) is calculated at the (b+
1)th iteration of the kth scan and can be saved for use in the
subsequent iteration on the (k+1)th scan. Similar arguments
apply to T (k+b=B)

i2 and T (k+b=B)
i3 . In the following, we consider

how the SPIEM algorithm performs with a multiresolution
kd-tree structure imposed on the data.

3.1. SPIEM with the multiresolution kd-tree (no
pruning) algorithm

With the multiresolution kd-tree structure, it can be seen
from Section 2 that the number of leaf nodes is unchanged
once the kd-tree is constructed. In other words, with the mul-
tiresolution kd-tree (without pruning) algorithm, the num-
ber of leaf nodes is a constant at each scan. Now, we per-
form the SPIEM algorithm based on this kd-tree structure
without pruning. That is, the leaf nodes are divided into B
blocks (Fig. 1(a)). At each scan, the partial E-step is imple-
mented for only a block of leaf nodes at a time before the
next M-step is performed. With this SPIEM-kd-tree (with-
out pruning) algorithm, Eq. (9) is now replaced by

T (k+b=B)
i1; b+1 =

∑
m∈Sb+1

IAm(i)�i( Qxm;�
(k−1+b=B))nm

+
∑

m∈Sb+1
IAcm(i)�i( Qxm;�

(k+b=B))nm (10)

for those LNm (m= 1; : : : ; nL) in the (b+ 1)th block, where
Sb+1 now denote a subset of {1; : : : ; nL} containing the sub-
scripts of those leaf nodes LNm that belong to the (b+ 1)th
block. In Eq. (10), IAm(i) is the indicator function for the set
Am, which contains the components that are held 8xed for
the leaf node LNm.
The algorithm is implemented as follows. We choose the

number of blocks B based on the simple rule proposed in
Ref. [22]. To avoid the problem of premature component
starvation, the standard EM step is performed on multires-
olution kd-tree leaf nodes in the 8rst scan, followed by 8ve
scans with the IEM step. We 8x the set Am (m = 1; : : : ; nL)

obtained from the last IEM scan and run 8ve scans with the
spares version SPIEM step. An IEM step is then performed
to determine a new set of Am. The Nowchart of the algorithm
is depicted in Fig. 1(b).

3.2. SPIEM with multiresolution kd-tree (with pruning)
algorithm

With the multiresolution kd-tree (with pruning) algo-
rithm, the number of pseudo-leaf nodes is, however, di/er-
ent at each scan. Thus, the division of pseudo-leaf nodes
into blocks is not so straightforward as that for leaf nodes
in the SPIEM-kd-tree (without pruning) algorithm. This
diKculty can be solved by using an alternative procedure to
divide the tree nodes. Instead of dividing the nodes at the
leaves of the kd-tree (leaf-nodes) as in the SPIEM-kd-tree
(without pruning) algorithm, we divide at some level of
the kd-tree, say L, that the number of nodes at that level is
much larger than B (Fig. 2(a)), where the number of blocks
B is again so chosen based on the rule of Ng and McLach-
lan [22]. On the 8rst scan of the algorithm, we perform the
standard EM step on kd-tree leaf nodes without pruning.
During this scan, we search down from each node at level L
and determine the number of leaf nodes under each node at
that level. We then divide the nodes at level L into roughly
B blocks such that numbers of leaf nodes within each block
are similar (Fig. 2(a)). The division of nodes into block of
similar sizes ensures better convergence of the algorithm.
In practice, there could be some leaf nodes present above
the level L. These leaf nodes are grouped into the 8rst block
at level L.
With this SPIEM-kd-tree (with pruning) algorithm, the

partial E-step is implemented by searching down from only
a block of nodes at level L at a time before the next M-step
is performed. It is noted that the number of pseudo-leaf
nodes in each block is di/erent, which is in contrast to the
SPIEM-kd-tree (without pruning) algorithm where the num-
ber of leaf nodes in each block can be set to be exactly the
same except the last block.
To further speed up the algorithm, we do not prune on

every scan. Our procedure is to perform the standard EM
step on kd-tree leaf nodes on the 8rst scan, followed by 8ve
scans of IEM step with pruning process. We then 8x the set
Am and pseudo-leaf nodes obtained from the last IEM scan.
Five scans of the SPIEM step is then performed by searching
only on those 8xed pseudo-leaf nodes. That is, no pruning
step is required in these 8ve scans and hence computational
time is saved. An IEM scan with pruning process is then
performed to determine a new set of pseudo-leaf nodes and
a new set of Am (m=1; : : : ; nPL), where nPL is the number of
pseudo-leaf nodes at this scan. Both of them are 8xed in the
next 8ve scans of SPIEM steps. The Nowchart of the algo-
rithm is depicted in Fig. 2(b). This new algorithm improves
dramatically the rate of convergence of the multiresolution
kd-tree (with pruning) algorithm.
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Fig. 1. THE SPIEM-kd-tree (without pruning) algorithm: (a) the partition of leaf nodes (say blocks of 6 leaf nodes) and (b) the Nowchart
of the algorithm.
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Fig. 2. The SPIEM-kd-tree (with pruning) algorithm: (a) the partition of nonleaf nodes at Level L into blocks (number of leaf nodes under
each block of nodes at Level L should be similar) and (b) the Nowchart of the algorithm.
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4. Mixture model-based approach to segment MR
images

We consider here the Gaussian mixture model with hidden
Markov random 8eld approach of Ref. [11] to segment a
real three-dimensional (3D) MR image data set concerning
the human brain. Suppose that a continuous MR image is
partitioned into a set of disjoint voxels labeled 1 to n, and that
each voxel is assumed to belong to one of g distinct tissue
types. This assumption is tenable because MR images have
a spatial resolution at the range of the voxel size [27]. We
let xj denote the 3D features vector containing the values of
the variables T1, T2, and )D for the jth voxel (j=1; : : : ; n).
Within the context of image segmentation, the problem is
to infer the unknown vector of component indicator z from
the observed data x = (xT1 ; : : : ; x

T
n )

T.
As detailed in Ref. [11], the segmentation of MR im-

ages is 8rstly implemented via a noncontextual approach
where the spatial characteristics of each voxel is ignored.
This noncontextual process provides fuzzy classi8cation of
tissue type �ij for each voxel and estimates of unknown pa-
rameter �. By assuming xj be independent and identically
distributed, the estimation of � corresponds to the maxi-
mum likelihood estimation from incomplete data via the EM
algorithm [11,27]. Thus, the process can be speeded up by
the variants of the EM algorithm described in the previous
section.
The segmentation is 8nalized by the iterative computation

of a “contextual” process, where the spatial characteristics
of each voxel is involved in the estimation. BrieNy, the spa-
tial correlation in image intensity between voxels and their
neighbours is captured by the Markov random 8eld prior in
which

log �(k+1)ij ˙ +

(∑
m

�(k)im + 1=
√
2
∑
m

�(k)im

+1=
√
3
∑
m

�(k)im

)
; (11)

where

�(k+1)ij = pr{zij = 1|z,j = �(k),j }
is the probability that the jth voxel belongs to the ith tis-
sue type given the component membership of its speci8ed
neighbours ,j as implied by �(k),j . The summations on the
right-hand side of Eq. (11) are over the prescribed 8rst-,
second-, and third-order neighbours, respectively, of the
jth voxel. The values 1=

√
2 and 1=

√
3 reNect the spatial

relatedness between a central voxel and its second- and
third-order neighbouring voxels, respectively [9,11]. With
this contextual segmentation, the E-step is approximated by
the conditional expectation of zij given x and the current
component-membership of the neighbours of the jth voxel:

�(k)ij ≈ �(k)ij 
(xj; �
(k)
i ;�

(k)
i )
/ g∑

l=1

�(k)lj 
(xj; �
(k)
l ;�

(k)
l ): (12)

With the speci8cation of + a priori, the M-step is in closed
form and can be implemented as in the noncontextual case
(6).
In this real example, the data set was 8ve slices of a

3D MR image acquired by a two-Tesla Bruker Medspac
whole body scanner. The acquisition matrix was 256×256×
256. Fig. 3 displays the T1-, T2-, and )D-weighted images
of one of the 8ve sliced images. The number of voxels
was n = 256 × 256 × 5 = 327; 680. In the analysis, the
image intensities were scaled to the range of (0,20) for the
parameter estimation. We assumed g = 7 and adopted the
proposed SPIEM multiresolution kd-tree-based algorithms
to the noncontextual segmentation process. We considered
the threshold 
 to be 0.7%, 0.5%, and 0.3% of the range in
the splitting dimension of the whole data set. The algorithms
were terminated when the absolute values of the relative
changes in the estimates of the means all fell below 0.001.
For comparison, we also consider some existing variants

of the EM algorithm to speed up the noncentextual process.
These include an inexact IEM algorithm and a subsampling
approach where a randomly selected subset of data points of
size ns is used in the estimation. The inexact IEM algorithm
was proposed by Nowlan [28] where the suKcient statistics
was calculated as an exponentially decaying average of re-
cently visited data. Instead of Eq. (8), the current conditional
expectations of the suKcient statistics are obtained by

T (k+b=B)
iq = .T (k+(b−1)=B)

iq + T (k+b=B)
iq;b+1

(q = 1; 2; 3; b= 0; : : : ; B− 1);

where 0¡.¡ 1 is a decay constant. The subsampling
method in general speeds up the EM algorithm roughly
a factor of n on ns. Here, 10 randomly selected subsets
of the simulated data were used and the average was pre-
sented. The relative performances of these algorithms are
summarized in Table 1.
In the contextual process, we adopted + = 0:6 and con-

sidered the 8rst- and second-order neighbours (8rst and sec-
ond term, respectively) in Eq. (11). Three scans of contex-
tual process were performed and the CPU time required was
about one minute. Fig. 4 depicts the 8nal segmented image
of the three main tissue types, cerebral spinal Now (CSF),
white matter, and gray matter from some chosen algorithms.
It can be seen that the details of the three main tissue types
are all very well classi8ed by the algorithms.
From Table 1, it can be seen that all the variants of the

EM algorithms, except the subsampling approach, have
convergence as reliable as the standard EM algorithm. The
log likelihood values are found to be monotonically in-
creasing after each scan. These algorithms are marked with
an asterisk in Table 1. Moreover, it can be seen from Table
1 that the standard EM, the IEM, the SPIEM, the inexact
IEM (with . = 0:97), and multiresolution kd-tree-based
algorithms (without pruning, 
 = 0:003) converged to
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Fig. 3. Real MR data set: (a) T1-weighted image (top left); (b) T2-weighted image (top right); (c) )D-weighted image (bottom).

essentially the same log likelihood value. Among these six
algorithms, the SPIEM-kd-tree (without pruning) algorithm
has the largest speedup ratio. To evaluate the relative per-
formance of variants of the EM algorithm for speeding up
the noncontextual segmentation of huge image data more
closely, we perform a comparative study using simulated
3D MR data.

5. Simulation experiments

A random sample of size n observations was generated
from a seven-component trivariate normal mixture (g =
7; p=3). The estimates obtained in Ref. [27, Table II] were
used as the values of our population parameters. These seven
components correspond to seven tissue types (outer table
of the skull and skin; inner table of the skull; temporalis
muscle and internal occipital protuberance; cerebral spinal
Now space; gray matter; subcutaneous fat and diploic space;
white matter) in the segmentation of a 2D MR image of the
human brain.
In the simulation study, we consider two di/erent sam-

ple sizes of n = 1283 and 2563, respectively, which cor-
respond to typical number of voxels of a 3D MR image.

All the algorithms used the same initial estimates as starting
values and were terminated when the absolute values of
the relative changes in the estimates of the means all few
below 0.0001. The algorithms are written in FORTRAN and
the simulations are all run on a Sun unix work-station. The
results of the simulation study are summarized in Tables 2
and 3, respectively. From Tables 1–3, the characteristics of
variants of the EM algorithm are summarized as follows.
(i) IEM/SPIEM algorithms: The IEM algorithm is exact

as accurate suKcient statistics are strictly maintained in each
scan. The SPIEM algorithm is also exact provided that occa-
sional full partial E-steps are performed to obtain a new set of
Aj (j=1; : : : ; n). Thus, both the IEM and SPIEM algorithms
have reliable convergence as the standard EM algorithm.
However, as both algorithms improve the time to conver-
gence of the EM algorithm by reducing the number of scans
required, their performances (in terms of the speedup factor)
remain similar when the sample size of the data increases.
In Ref. [22], empirical studies on both algorithms using var-
ious settings of n, g, and p were reported, the speedup fac-
tors (relative to the EM algorithm) ranged from 1.3 to 1.8 to
2.1 to 2.3 for the IEM and SPIEM algorithms, respectively.
These values agree with those presented in Tables 1–3. In
applications to huge data sets, these two algorithms can be
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Table 1
Results for real 3D MR image data (n = 256 × 256 × 5)

Algorithma CPUb nscanc Log likelihoodd Speedupe

Standard EM∗ 1251.2 70 −1; 028; 022 1.0
IEM∗ (B = 160) 916.7 41 −1; 028; 019 1.4
SPIEM∗ (B = 160) 470.0 44 −1; 028; 019 2.7

kd-tree (no pruning)

 = 0:007∗ 320.1 67 −1; 028; 343 3.9

 = 0:005∗ 430.2 68 −1; 028; 194 2.9

 = 0:003∗ 618.6 69 −1; 028; 045 2.0

kd-tree (pruning)

 = 0:007∗ 649.9 70 −1; 028; 270 1.9

 = 0:005∗ 762.6 70 −1; 028; 202 1.6

 = 0:003∗ 1053.0 71 −1; 028; 085 1.2

Inexact IEM (B = 160)
. = 0:95∗ 334.9 14 −1; 028; 076 3.7
. = 0:96∗ 377.1 16 −1; 028; 060 3.3
. = 0:97∗ 486.4 21 −1; 028; 045 2.6

Subsampling approach
ns = n=8 169.2 74 −1; 028; 388 7.4
ns = n=5 258.3 72 −1; 028; 194 4.8

SPIEM-kd-tree (no pruning)

 = 0:007∗ 124.3 46 −1; 028; 330 10.1

 = 0:005∗ 173.2 47 −1; 028; 182 7.2

 = 0:003∗ 226.6 44 −1; 028; 038 5.5

SPIEM-kd-tree (pruning)

 = 0:007∗ 174.1 54 −1; 028; 266 7.1

 = 0:005∗ 206.6 52 −1; 028; 183 6.1

 = 0:003∗ 285.2 54 −1; 028; 076 4.3

aAlgorithm is marked with an asterisk if the log likelihood value calculated using the estimates at each scan is monotonically increasing.
bCPU represents the CPU time in seconds for various algorithms, it includes the time to construct the kd-tree for kd-tree-based algorithms.
cnscan indicates the number of scans to convergence.
dLog likelihood is the value of the log likelihood calculated at the 8nal estimates obtained.
eSpeedup is the ratio of the CPU time compared to that of the standard EM algorithm.

useful at the 8nal stage of an iterative-computational seg-
mentation process, where an inexact method is performed
initially and then an exact method with reliable convergence
property is adopted to obtain the 8nal estimates.
(ii) Inexact IEM algorithm: The inexact IEM algorithm

requires fewer scans to convergence when n increase. As it
forgets out-of-date suKcient statistics more rapidly, it can
have larger speedup factor compared to the IEM algorithm
provided an appropriate value of the decay constant . were
adopted. In general, a larger value of . provides a larger
8nal log likelihood value. In particular, when . is close to
one, the log likelihood value obtained will be close to that
obtained by the IEM or the SPIEM algorithms. However,
the algorithm takes longer time to converge. Moreover, it
is found from the simulation studies that the inexact IEM

algorithm needs an adequate randomization of the data such
that each block of the data has data points from each of
the components. Otherwise, the algorithm will converge to
points that would be very poor estimates. An appropriate
choice of . seems to depend on n and its value is also crucial
to the ultimate qualities of the 8nal estimates.
(iii) Subsampling approach: The algorithm in general

provides smaller log likelihood value and larger error rate
compared to other variants of the EM algorithm though
its performance improves when the sample size increases.
The quality of 8nal estimates however depends heavily
on the randomly selected subset of the data. This e/ect
is more pronounced in the application to the real data set
(Table 1). Moreover, even a reasonably large proportion of
the original data was randomly selected to include in the
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Fig. 4. Final segmented images from some algorithms, along with the percentages of voxels allocated to di/erent tissue types compared to
the segmentation obtained by the standard EM algorithm.
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Table 2
Results for Simulation 1 (n = 128 × 128 × 128)

Algorithm CPU nscan Log likelihood Error (%)a Speedup

Standard EM∗ 10,723 95 −11; 749; 600 11.979 1.0
IEM∗ (B = 256) 7132 54 −11; 749; 599 11.979 1.5
SPIEM∗ (B = 256) 4528 60 −11; 749; 599 11.978 2.4

kd-tree (no pruning)

 = 0:007∗ 1137 94 −11; 749; 649 11.982 9.4

 = 0:005∗ 2069 95 −11; 749; 618 11.979 5.2

 = 0:003∗ 3927 95 −11; 749; 601 11.977 2.7

kd-tree (pruning)

 = 0:007 3403 94 −11; 749; 646 11.984 3.2

 = 0:005 4589 94 −11; 749; 622 11.981 2.3

 = 0:003 5988 94 −11; 749; 610 11.980 1.8

Inexact IEM (B = 256)
. = 0:95 1693 12 −11; 749; 707 11.984 6.3
. = 0:97∗ 2497 18 −11; 749; 661 11.980 4.3
. = 0:99∗ 5862 44 −11; 749; 610 11.978 1.8

Subsampling approach
ns ≈ n=20 522 95 −11; 750; 312 11.992 20.5
ns ≈ n=10 1041 95 −11; 749; 920 11.986 10.3

SPIEM-kd-tree (no pruning)

 = 0:007∗ 457 61 −11; 749; 649 11.982 23.5

 = 0:005∗ 773 61 −11; 749; 618 11.979 13.9

 = 0:003∗ 1431 61 −11; 749; 600 11.978 7.5

SPIEM-kd-tree (pruning)

 = 0:007 735 61 −11; 749; 648 11.985 14.6

 = 0:005 1013 61 −11; 749; 624 11.982 10.6

 = 0:003 1327 61 −11; 749; 611 11.979 8.1

aError is the proportion of misclassi8ed data points.

estimation, this subsampling approach cannot provide accu-
rate estimates and cannot guarantee than the log likelihood
value is monotonically increasing after each scan. For exam-
ple, with n=1283 = 2; 097; 152 (Table 2), the averaged log
likelihood value obtained by using ns = 209; 715(≈ n=10)
randomly selected data is still far from the maximum log
likelihood obtained by the standard EM algorithm. Some
trails also do not possess reliable convergence. The same sit-
uation occurs with n=2563 =16; 777; 216 (Table 3), where
ns=838; 861(≈ n=20) is used. More e/ective sampling tech-
niques [29,30] may be adopted to improve the quality of 8nal
estimates. The subsampling approach also has a limitation
that the mixing proportions �i (i = 1; : : : ; g) must be large
enough so that a random sample of the data will involve a
nonnegligible amount of data points from each component.
(iv) SPIEM-kd-tree (no pruning) algorithm: The algo-

rithm reduces the time to convergence by imposing a mul-
tiresolution kd-tree structure on the data. It can be seen from
Tables 1–3 that the number of leaf nodes nL does not linearly

increase with n. For example, with 
= 0:007, nL = 62; 753,
148,876 and 257,968 for n = 2562 × 5, 1283, and 2563,
respectively. Hence the speedup factor increases when the
sample size increases. As an approximation is made in the
calculation of the suKcient statistics, the algorithm is in-
exact. However, it can be seen from Tables 1–3 that for a
suKciently small value of 
 (smaller sized leaf nodes), the
algorithm possesses reliable monotonic convergence (with

6 0:007) and converges to essentially the same maximum
log likelihood value as the standard EM algorithm (with

6 0:003). One can compromise between the speed and the
accuracy by choosing an appropriate value for 
.
(v) SPIEM-kd-tree (with pruning) algorithm: Similar

to the above algorithm (iv), the speedup factor for the
SPIEM-kd-tree (with pruning) algorithm increases when
the sample size increases. However, due to the implemen-
tation of the pruning step, the number of pseudo-leaf nodes
at each scan will be di/erent. It is found in the simulation
studies that the log likelihood value is not monotonically
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Table 3
Results for Simulation 2 (n = 256 × 256 × 256)

Algorithm CPU nscan Log likelihood Error (%) Speedup

Standard EM∗ 88,950 95 −94; 015; 922 11.989 1.0
IEM∗ (B = 1024) 59,425 54 −94; 015; 918 11.989 1.5
SPIEM∗ (B = 1024) 35,845 62 −94; 015; 918 11.989 2.5

kd-tree (no pruning)

 = 0:007∗ 2949 95 −94; 016; 387 11.993 30.2

 = 0:005∗ 5079 95 −94; 016; 148 11.992 17.5

 = 0:003∗ 10,138 95 −94; 015; 939 11.989 8.8

kd-tree (pruning)

 = 0:007 6682 94 −94; 016; 329 11.994 13.3

 = 0:005 8916 94 −94; 016; 138 11.992 10.0

 = 0:003 11,921 94 −94; 016; 001 11.990 7.5

Inexact IEM (B = 1024)
. = 0:98 13,274 11 −94; 028; 005 12.005 6.7
. = 0:99∗ 16,309 14 −94; 020; 334 11.994 5.5
. = 0:997∗ 42,495 38 −94; 016; 277 11.990 2.1

Subsampling approach
ns ≈ n=40 2217 96 −94; 018; 005 11.995 40.1
ns ≈ n=20 4443 97 −94; 017; 136 11.993 20.0

SPIEM-kd-tree (no pruning)

 = 0:007∗ 1698 62 −94; 016; 387 11.993 52.4

 = 0:005∗ 2585 61 −94; 016; 147 11.992 34.4

 = 0:003∗ 4389 61 −94; 015; 937 11.988 20.3

SPIEM-kd-tree (pruning)

 = 0:007 2132 61 −94; 016; 330 11.994 41.7

 = 0:005 2738 60 −94; 016; 133 11.992 32.5

 = 0:003 3465 61 −94; 016; 002 11.990 25.7

increasing after each scan. However, the pruning step can
be an advantage in some cases. From Tables 2 and 3, it
can be seen that, when 
6 0:003, the SPIEM-kd-tree (with
pruning) algorithm converges faster than the version with-
out pruning. Moreover, the algorithm with pruning step does
increase monotonically the log likelihood to a maximum
value, similar to the 8nal log likelihood of the standard EM
algorithm, before the log likelihood value starts to decrease
just before the convergence of the estimates. Therefore, the
SPIEM-kd-tree (with pruning) algorithm is useful at the
early stage to speed up the segmentation process. Then it is
switched to the version without pruning for convergence to
the 8nal estimates, as the latter possesses reliable conver-
gence. Based on the empirical studies performed, the algo-
rithm with pruning step can be run until the absolute values
of the relative changes in the estimates of the means fell be-
low 0.001 (Table 1) before it is switched. Sand and Moore
[31], on the other hand, proposed to run a 8xed number of
scans, say 10, and then modify the model using density es-
timation with kd-trees.

To conclude, it can be seen from Tables 2 and 3 that
the standard EM, the IEM, the SPIEM, and multiresolution
kd-tree-based algorithms (
 = 0:003) converged to essen-
tially the same log likelihood value. Among them, the pro-
posed SPIEM-kd-tree algorithms (with or without pruning)
are the two fastest. The version without pruning also pos-
sesses reliable convergence as the log likelihood values are
monotonically increasing after each scan.

6. Discussion

We have studied the use of a multiresolution kd-tree
structure for speeding up the SPIEM algorithm for mix-
ture model-based image segmentation. An analytical geom-
etry approach has been considered to speed up the pruning
process of kd-trees. In Section 3, we have presented how
the SPIEM multiresolution kd-tree-based algorithms are im-
plemented via the blocking of tree-nodes. The applicabil-
ities and relative performances of these new algorithms,
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Table 4
Number of leaf nodes (nL) versus the dimension of data

Dimension n = 1; 000; 000 n = 5; 000; 000

nL n=nL nL n=nL

p = 4 138,502 7.22 263,682 18.96
p = 5 340,815 2.93 905,241 5.52
p = 6 582,230 1.72 1,798,116 2.78
p = 7 858,157 1.17 3,582,999 1.40
p = 8 940,475 1.06 4,328,097 1.16
p = 9 972,260 1.03 4,679,888 1.07
p = 10 982,294 1.02 4,786,099 1.05

compared with other variants of the EM algorithm, for
speeding up the segmentation process has been illustrated
using the real 3D MR image data (Section 4) and simulated
3D image data (Section 5).
The comparative study presented in Section 5 provides a

guide to the possible gains in CPU time to convergence, the
quality of the solution, and the convergence properties for
each variant of the EM algorithm. In particular, it was found
that the IEM, the SPIEM, and the kd-tree-based (without
pruning, 
6 0:007) algorithms, along with the standard EM
algorithm, possess reliable convergence and the log likeli-
hood values are monotonically increasing after each scan.
The multiresolution kd-tree structure has some limitations

of which we have not yet addressed. Firstly, in some cases,
data may actually appear in block in a time and/or there may
be con8nes of a limited memory bu/er. In such situations, a
scalable version of the EM algorithm proposed recently by
Bradley et al. [20] may be adopted to handle huge data sets.
The algorithm is based on identifying regions of the data
that are compressible and regions that must be maintained in
memory. It works within the con8nes of a limited memory
bu/er and is “resumable” such that incremental progress can
be saved for continued computation later, possibly on new
data. Our SPIEM multiresolution kd-tree-based algorithms
may also be applicable in these problems. Instead of building
the multiresolution kd-tree until all the data are available,
multiresolution “kd-sub-tree” can be built based on the block
of data available and the suKcient statistics calculated is
stored for later processing.
Secondly, the number of leaf nodes will increase dramati-

cally when the dimension of the data pointsp increases. This
implies that multiresolution kd-tree-based algorithms will
not be able to speed up the EM algorithm for applications to
high dimensional data sets [21,26]. To see how the number
of leaf nodes is a/ected by the dimension p, we generate
data points from a mixture of p-variate normal and report
the number of leaf nodes in each case. We consider g = 5
with equal mixing proportions and set each covariance ma-
trix to be diagonal matrix with its diagonal elements gener-
ated randomly between (0,0.1). The elements of each mean

�i are generated randomly between (0,10). The result is dis-
played in Table 4. It can be seen that with n=1; 000; 000, the
upper bound on the dimension is p = 6, beyond which the
ratio of n=nL is not much greater than one and hence there is
little gain for using multiresolution kd-tree approaches even
though the pruning step can further reduce the number of
leaf nodes. With n= 5; 000; 000, the upper bound is p= 7.
Recently, a number of techniques have been developed to
reduce dimensionality without losing signi8cant information
and separability among components. For example, Jimenez
and Landgrebe [32] adopted a parametric-projection pursuit
method to reduce the dimensionality of the data by seeking
a set of linear projections that minimizes the Bhattacharyya
distance among the components. Their method, however,
requires a training set with labeled samples to estimate the
Bhattacharyya distance under a parametric assumption. Das-
gupta [33] considered a projection of the original data to a
randomly chosen subspace via a linear map. This random
projection method can map data from a mixture of g Gaus-
sians into O(log g) dimensions. Further exploration of these
dimensionality reduction methods is required to study the
distortion induced in the mapping between the original and
the projected spaces and study its e/ectiveness in applica-
tions to huge data sets.

7. Summary

Mixture models implemented via the expectation-
maximization (EM) algorithm are being increasingly used
in a wide range of problems in statistical pattern recogni-
tion such as image segmentation. In this paper, we con-
sider a fast EM-based mixture model approach to segment
three-dimensional (3D) magnetic resonance (MR) images.
It can segment automatically a 3D MR image of 2563 vox-
els in less than 1/50th of the time taken using the standard
EM algorithm. The method thus provides an useful aid in
surgical planning and the diagnosis of patients, as well as
a means for monitoring changes in brain haemodynamics
and metabolism resulting from neuronal activity. Major
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contributions of our work includes

(1) A sparse, incremental EM (SPIEM) algorithm with a
multiresolution kd-tree structure is proposed for speed-
ing up the EM algorithm via the “blocking” of tree
nodes. We divide the leaf nodes (the smallest possible
partitions the kd-tree o/ers) into blocks and a “partial”
E-step is implemented for only a block of nodes at a
time before the next M-step is performed. The proposed
algorithm improves the rate of convergence as its ex-
ploits new information more quickly rather than wait-
ing for a complete scan of the data before parameters
are updated by an M-step.

(2) We also consider a second version that involves “prun-
ing” the tree-nodes. A novel analytical geometry ap-
proach is proposed to speed up this pruning process.

(3) With pruning step, a node which satis8es some pruning
criterion is treated as a “pseudo”-leaf node. The block-
ing of pseudo-leaf nodes is not so straightforward as
that for leaf nodes because the number of pseudo-leaf
nodes is di/erent at each iteration. Here, we propose an
alternative procedure for blocking pseudo-leaf nodes.

(4) In the implementation of the SPIEM multiresolu-
tion kd-tree (with pruning) algorithm, we propose to
“freeze” the pseudo-leaf nodes at some iterations so as
to obtain further reduction in the time to convergence.
This new algorithm improves dramatically the rate
of convergence of the multiresolution kd-tree (with
pruning) algorithm.

(5) We compare the two new algorithms with existing al-
gorithms, using simulated and real 3D MR data. Our
focus is on providing a guide to the possible gains in
CPU time to convergence and the convergence prop-
erties of each algorithm. This study helps to advance
our understanding of existing algorithms for speeding
up the EM algorithm. By adjusting the tuning parame-
ters, we show that proposed algorithms can provide an
accurate solution and preserve the reliable convergence
as that for the EM algorithm.
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Appendix A.

A.1. Analytical tools for 6nding the limiting values of �i:
an example

As an illustration, we consider a 2D (p=2) case. Suppose
that we need to obtain  2

i;min and  
2
i;max between any data

Fig. 5. The minimizer and maximizer of  2: (a) original data with
rectangular node and elliptical covariance matrix and (b) trans-
formed data with parallelogram-shaped node and circular covari-
ance matrix. The crosses denote data points belonging to the node.

points within the node and the mean �i which is depicted
by the ellipse in Fig. 5(a). Here, we set

�i = (4; 5)T; and �i =

(
2 1

1 2

)
:

The minimizer and maximizer of  2 are found to be  2
min =

0:5 at (3.5,4) and  2
max =14 at (5,1), respectively. Now, for

�i as above, the matrix of the normalized eigenvectors,M ,
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is given by

M =


 1=(

√
3
√
2) 1=(

√
3
√
2)

1=
√
2 −1=

√
2


 :

Under the transform

x �→ Mx;

the covariance matrix �i becomes an identify matrix, as de-
picted by the circle in Fig. 5(b), which implies that  2

i;min

and  2
i;max can be obtained simply by computing the limit-

ing values of Euclidean squared distance between the new
transformed mean and any data point within the transformed
node. However, the rectangular boundary of the node will be
transformed into a parallelogram boundary. For p less than
or equal to three, we can still easily compute the minimum
and maximum Euclidean squared distance using analytical
tools within the context of vector geometry. For example,
the minimum Euclidean squared distance is the square of
the distance between the new mean (3.67,−0:71) and the
line formed by points (2.04,−2:12) and (3.67,0.71) and is
found to be 0.5. The maximum Euclidean squared distance
is the square of the distance between the new mean and the
furthest vertex of the parallelogram and is found to be 14.
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