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Abstract. With the mixed feature data, problems are induced in mod-
eling the gating network of normalized Gaussian (NG) networks as as-
sumption of multivariate Gaussian becomes invalid. In this paper, we
propose an independence model to handle mixed feature data within
the framework of NG networks. The method is illustrated using a real
example of breast cancer data.

1 Introduction

Normalized Gaussian (NG) networks, such as the NG mixture of experts (NGME)
nets [1], are of extensive interest due to their wide applicability, generalization ca-
pability, and the advantage of efficient learning via the expectation-maximization
(EM) algorithm [2]; see for example [1,3,4]. For many applied problems in ma-
chine learning, there often involves both categorical and continuous feature vari-
ables [5]. With the mixed feature data, the input vector x; on the j-th entity
consists of ¢ categorical variables in the vector x; in addition to p continuous
variables represented by the vector xa; for j = 1,...,n, where n is the total
number of observations. Problems are therefore induced in modeling the gating
network with NG networks as the assumption of multivariate Gaussian becomes
invalid when the data are mixed-mode. In this paper, we propose an indepen-
dence model to handle mixed feature data within the framework of NG networks.
The method bases on the NAIVE assumption that the categorical variables are
independent of each other and of the continuous variables [6, 7].

2 Generalized NGME and learning via the EM algorithm

Normalized Gaussian networks softly partition the input space into, say M,
regions by NG functions (the gating network)
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where 7, > 0, Z,jlw:l mn = 1, and fp(x; ) = édp(x; puy, X)) denotes the mul-
tivariate Gaussian function for input vector x, with mean p, and covariance



matrix 3',. The local units (experts) approximate the distribution of the output
y; within the partition. The final output of the NGME network is given by the
summation of these local outputs weighted by the NG functions (1):
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where ¥ is the vector of all the unknown parameters and fi(y;|z;;04) are
local output densities, which are generally assumed to belong to the exponential
family of densities [1,8]. The unknown parameter vector ¥ can be estimated
by the maximum likelihood approach via the EM algorithm [1]. In contrast to
the ME networks [8], the learning of NGME networks does not require both the
selection of a learning rate and the iterative inner loop in the EM algorithm [1,
4,8]. Under the independence assumption, fx(x;; o) in (1) can be written as
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where the h-th conditional density of the i-th categorical variable x;; (i
1,...,q) in 1, gn(x145), is given by a multinomial distribution consisting of one
draw on n; distinct values with probabilities Ap;1,. .., Anin;, and where Ap;pn, =
1->0T Y Xpa and 0(z145,v) = 1if 2145 = v and is zero otherwise (v =1, ..., n;).
The vector of unknown parameters ay, thus consists of Ay (1 = 1,...,¢; v =
1,...,n; — 1), and the elements of p, and ¥y (h=1,..., M).

To apply the EM algorithm to the generalized NGME networks, we introduce
the indicator variables zpj, where zp; is one or zero according to whether Y;
belongs or does not belong to the hth expert [4]. On the (k + 1)th iteration, the
E-step involves the calculation of T,(LI;-)
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forh=1,...,M, with fp(z;; a%k)) is given by (3) based on the current estimate

(4)

aglk). In the M-step, the updated estimates of ¥ are obtained as follows:
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For binary classification problems, fp(y,|z;;60p) are assumed to be Bernoulli
distribution of possible binary outcomes of “failure” and “success” [8]. That is,
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Table 1. Leave-one-out error rates for the breast cancer data

Method Error rate
NGME network on continuous variables 29.5%
independence model on mixed variables 19.2%

where 6, = wy. For notational convenience, we still present the mixed-mode
input vector as x; in (5). Indeed, the categorical variables are replaced by n;-
1 dummy variables and contribute to the local output via the linear predictor
nhj = wia;; see [4]. The updated estimate of 02’““) is obtained by solving
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for h =1,...,M, which are M sets of nonlinear equations each with unknown
parameter vector wy,.

3 A real example: Breast cancer data

We illustrate the method using an example of classifying breast cancer patients
on the basis of the gene expression-profile vector of tumor samples and categori-
cal variables of patient’s clinical characterisitcs. The original data set [9] consists
of 5000 gene expression profiles and 6 binary variables of clinical indicators from
78 sporadic lymph-node-negative breast cancer patients. With these patients,
44 remained metastasis free after a period of more than 5 years (good prog-
nosis) and 34 patients had developed distant metastases within 5 years (poor
prognosis). In this study, we work on the data set with 6 binary variables of clin-
ical indicators and 5 continuous variables representing the top 5 “metagenes”
ranked in terms of the likelihood ratio statistic described in [10]. We first apply
the NGME network of [1] on the continuous variables to classify the patients into
good and poor prognosis subgroups; see Eqt. (5). This preliminary analysis pro-
vides the initial estimates and the determination of the number of experts M for
the generalized NGME network. In addition, the improvement of the generalized
NGME network by using additional binary clinical indicators can be assessed.
Such evaluation is based on the misclassification error rate using the “leave-one-
out” method for cross-validation. The number of experts M is determined based
on a frequentist analog of the “worth index” on model selection [11]. A NGME
network with M = 2 experts is selected. The leave-one-out error rate is provided
in Table 1. We then apply the generalized NGME networks to classify the pa-
tients, using the independence model, on the mixed feature data. From Table 1,
it can be seen that the generalized NGME network significantly reduce the error
rate by using additional binary clinical indicators.



4 Discussion

We have extended the NGME network to incorporate the independence model for
tackling problems with mixed feature data. Although the independence assump-
tion is likely to be unrealistic for many problems, it often performs surprisingly
well in practice as a way of handling problems with mixed feature data [6, 7]. One
important reason is that the NAIVE method usually requires fewer parameters
to be estimated and hence tends to have a lower variance for the estimates [6].

The error rates in Table 1 have been considered in a relative sense. However,
caution should be exercised in interpreting these rates in an absolute sense. This
is because the metagenes in the data set are determined using the expression
profiles from the 78 cancer patients. Thus, the misclassification error rate is
calculated without allowance for the selection bias [12]. The error rates given in
Table 1 should therefore be interpreted as apparent error rates. An “external”
cross-validation can be adopted to correct for the bias in estimating the error of
a prediction rule [12].
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