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Abstract: Finite mixture models are being increasingly used in statistical
inference and to provide a model-based approach to cluster analysis. Mixture
models can be fitted to independent data in a straightforward manner via the
expectation-maximization (EM) algorithm. In this paper, we look at ways of
speeding up the fitting of normal mixture models by using variants of the EM,
including the so-called sparse and incremental versions. We also consider an
incremental version based on imposing a multiresolutionkd-tree structure on
the data. Examples are given in which the EM algorithm can be speeded up
by a factor of more than fifty for large data sets of small dimension.
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1 Introduction

Finite mixture models have continued to receive increasing attention over the years, from
both a practical and theoretical point of view. Indeed, in the past decade, the extent and
the potential of the applications of finite mixture models in statistical inference and cluster
analysis have widened considerably. Fields in which mixture models have been success-
fully applied include astronomy, biology, genetics, medicine, psychiatry, economics, en-
gineering, and marketing, among many other fields in the biological, physical, and social
sciences; see McLachlan and Peel (2000), Chapter 1 and the references therein.

The Expectation-Maximization (EM) algorithm of Dempster et al. (1977) is a popu-
lar tool for iterative maximum likelihood (ML) estimation of finite mixture distributions
(McLachlan and Basford, 1998). As set out in some detail in McLachlan and Krishnan
(1997), Section 1.7, the EM algorithm has a number of desirable properties, including
its simplicity of implementation and reliable global convergence. For most commonly
used parametric formulations of finite mixture models, the use of the EM algorithm to
find a local maximizer of the likelihood function is straightforward. However, a common
criticism is that the convergence with the EM algorithm is only at a linear rate (Moore,
1999; Neal and Hinton, 1998). In the context of mixture models, various attempts have
been proposed to accelerate the EM iteration. In considering methods for speeding up
the convergence of the EM algorithm, it is highly desirable if the simplicity and stability
of the EM algorithm can be preserved. In situations where the M-step is computation-
ally complicated, conditional M-steps can be used to avoid the requirement of iterative
M-steps. The so-called Expectation/Conditional Maximization (ECM) algorithm (Meng
and Rubin, 1993) shares all the appealing convergence properties of the EM algorithm
(Meng, 1994).

In applications where the M-step is computationally simple, for example, in fitting
multivariate normal mixtures, the rate of convergence of the EM algorithm depends mainly
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on the computation time of the E-step. Because each E-step visits each data point, the EM
algorithm requires much computation time in its application to large data sets. In this pa-
per, we look at ways of speeding up the fitting of normal mixture models by using variants
of the EM algorithm, including the so-called sparse and incremental versions proposed
by Neal and Hinton (1998) and the multiresolutionkd-tree approach proposed by Moore
(1999). We also consider an incremental version based on imposing a multiresolution
kd-tree structure on the data.

The rest of the paper is organized as follows: Section 2 describes the finite mixture
models and the EM algorithm. In Section 3, we review the incremental version (IEM) and
the sparse version (SPEM) of the EM algorithm proposed by Neal and Hinton (1998) We
also formulate a combined version of these two variants (SPIEM algorithm) and introduce
an inexact IEM algorithm proposed by Nowlan (1991). In Section 4, the multiresolution
kd-tree approach is reviewed and in Section 5, we present how an IEM algorithm can
be performed based on imposing a multiresolutionkd-tree structure. Section 6 reports
a comparative performance analysis of the variants of the EM algorithm, using some
simulated and real data on medical magnetic resonance (MR) images. In Section 7, we
end the paper by presenting some concluding remarks.

2 Finite Mixture Models and the EM Algorithm

With the mixture approach, the observedp-dimensional vectorsx1, . . . , xn are assumed
to have come from a mixture of a finite number, sayg, of groups in some unknown
proportionsπ1, . . . , πg. The mixture density ofxj is expressed as

f(xj;Ψ) =
g∑

i=1

πifi(xj; θi) (j = 1, . . . , n), (1)

whereπi (i = 1, . . . , g) sum to one and the group-conditional densitiesfi(xj; θi) are
specified up to a vectorθi of unknown parameters(i = 1, . . . , g). Usually, the group-
conditional densities are taken to belong to the same parametric family, for example, the
normal. In this case,

fi(x; θi) = φ(x; µi,Σi),

whereφ(x; µ,Σ) denotes thep-dimensional multivariate normal distribution with mean
µ and covariance matrixΣ. The vector of all the unknown parameters is given byΨ =
(π1, . . . , πg−1,θ

T
1 , . . . , θT

g )T , where the superscriptT denotes vector transpose, and the
log likelihood forΨ is then given by

log L(Ψ) =
n∑

j=1

log{
g∑

i=1

πiφ(xj; µi,Σi)}.

Solutions of the likelihood equation corresponding to local maxima can be found itera-
tively by application of the EM algorithm. Within the EM framework, eachxj is concep-
tualized to have arisen from one of theg groups. We letz1, . . . , zn denote the unobserv-
able group-indicator vectors, where theith elementzij of zj is taken to be one or zero ac-
cording as thejth feature vectorxj does or does not come from theith group. We denote
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the complete data byy = (xT ,zT )T , wherex = (xT
1 , . . . , xT

n )T andz = (zT
1 , . . . , zT

n )T .
The complete-data log likelihood forΨ is given by

log Lc(Ψ) =
g∑

i=1

n∑

j=1

zij{log πi + log φ(xj; µi,Σi)}. (2)

The EM algorithm proceeds iteratively in two steps, the expectation (E) step and the
maximization (M) step. On the(k + 1)th scan of the EM algorithm, the E- and M-steps
are

• E-step: Compute the conditional expectation of the complete-data log likelihood,
given x and the current estimatesΨ(k). As the complete-data log likelihood (2)
is linear inz, we simply have to replace the unknown zero-one component-label
variableszij by their current conditional expectations,τ

(k)
ij , where

τ
(k)
ij = τi(xj;Ψ

(k))

and

τi(xj;Ψ) = E(Zij | x;Ψ)

= πiφ(xj; µi,Σi)/
g∑

l=1

πlφ(xj; µl,Σl)

for i = 1, . . . , g andj = 1, . . . , n. For mixtures with normal component densities, it
is computationally advantageous to work in terms of the sufficient statistics. That is,
the E-step calculates the current conditional expectations of the sufficient statistics

T
(k)
i1 =

n∑

j=1

τ
(k)
ij , (3)

T
(k)
i2 =

n∑

j=1

τ
(k)
ij xj, (4)

T
(k)
i3 =

n∑

j=1

τ
(k)
ij xjx

T
j . (5)

• M-step: Update the estimates toΨ(k+1), based on the current conditional expecta-
tions of the sufficient statistics,T (k)

i1 ,T (k)
i2 , andT

(k)
i3 , as follows:

π
(k+1)
i = T

(k)
i1 /n, (6)

µ
(k+1)
i = T

(k)
i2 /T

(k)
i1 , (7)

Σ
(k+1)
i =

{
T

(k)
i3 − T

(k)−1

i1 T
(k)
i2 T

(k)T

i2

}
/T

(k)
i1 . (8)

The E- and M-steps are alternated repeatedly until convergence; see for example McLach-
lan and Krishnan (1997), Chapter 1. LetΨ̂ be the ML estimates forΨ. We can give an
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outright or hard clustering of the data by assigning eachxj to the component of the mix-
ture to which it has the highest estimated posterior probability of belonging. That is,zij

is estimated bŷzij, where

ẑij = 1, if i = arg max
h

τ̂hj,

= 0, otherwise,

for i = 1, . . . , g; j = 1, . . . , n, and where

τ̂hj = π̂hφ(xj; µ̂h, Σ̂h)/
g∑

l=1

π̂lφ(xj; µ̂l, Σ̂l).

It can be seen from (3) to (5) that the E-step is implemented for each feature vector
xj. Hence the computational time spent in the E-step depends linearly on the number of
observations and the number of groups in the finite mixture models. On the other hand,
the time spent on the M-step ((6) to (8)) depends linearly only on the number of groups.
For a huge data set, the computational cost in the E-step is therefore enormous, compared
to that in the M-step.

3 Incremental and Sparse Versions of EM

3.1 The IEM Algorithm

With the IEM algorithm proposed by Neal and Hinton (1998), the availablen observations
are divided intoB (B ≤ n) blocks and the E-step is implemented for only a block of data
at a time before the next M-step is performed. A scan of the IEM algorithm thus consists
of B partial E-steps andB M-steps. We letΨ(k+ b/B) denote the estimate ofΨ after the
bth iteration on the(k + 1)th scan(b = 1, . . . , B).

• (Partial) E-step: For the first scan(k = 0), a full E-step is performed to avoid
premature component starvation (Ng and McLachlan, 2002; Thiesson et al., 2001);
that is, we haveT (0)

iq (q = 1, 2, 3) evaluated as in (3) to (5), with initial valueΨ(0)

for Ψ. On subsequent scans, the conditional expectations of the sufficient statistics
are calculated for only a block of observations at a time. For example on the(b+1)th
iteration of the(k+1)th scan (b = 0, . . . , B-1), the current conditional expectations
of the sufficient statisticsT (k+ b/B)

i1 , T
(k+ b/B)
i2 , andT

(k+ b/B)
i3 are obtained fori =

1, . . . , g, using the relationship

T
(k+ b/B)
iq = T

(k+(b−1)/B)
iq − T

(k−1+ b/B)
iq,b+1 + T

(k+ b/B)
iq,b+1 (q = 1, 2, 3), (9)

for b = 0, . . . , B-1, where only

T
(k+ b/B)
i1,b+1 =

∑

j∈Sb+1

τ
(k+ b/B)
ij , (10)

T
(k+ b/B)
i2,b+1 =

∑

j∈Sb+1

τ
(k+ b/B)
ij xj, (11)

T
(k+ b/B)
i3,b+1 =

∑

j∈Sb+1

τ
(k+ b/B)
ij xjx

T
j , (12)
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have to be calculated. This is because the first term on the right-hand side of (9)
is available from the previous iteration, while the second term is available from the
previous scan. In (10) to (12),Sb+1 denotes the subset of{1, . . . , n} containing the
subscripts of thosexj that belong to the(b + 1)th block.

• M-step: For i = 1, . . . , g, the estimates ofπi, µi, andΣi are updated, based on
the conditional expectations of the sufficient statistics, as follows:

π
(k+(b+1)/B)
i = T

(k+ b/B)
i1 /n,

µ
(k+(b+1)/B)
i = T

(k+ b/B)
i2 /T

(k+ b/B)
i1 ,

Σ
(k+(b+1)/B)
i =

{
T

(k+ b/B)
i3 − T

(k+ b/B)−1

i1 T
(k+ b/B)
i2 T

(k+ b/B)T

i2

}
/T

(k+ b/B)
i1 .

The argument for improved rate of convergence is that the IEM algorithm exploits
new information more quickly rather than waiting for a complete scan of the data before
parameters are updated by an M-step. The relative performances of the IEM algorithm
with various number of blocksB have been studied by Ng and McLachlan (2002). Adopt-
ing here their simple rule to determine the optimal value ofB, we choose the number of
blocksB to be that factor ofn that is the closest toB∗ = round(n2/5), where round(r)
roundsr to the nearest integer.

3.2 The SPEM Algorithm

In fitting a mixture model by maximum likelihood via the EM algorithm, it is often ob-
served that the posterior probabilities for some components of the mixture for a given
data pointxj are close to zero (for example,τ

(k)
ij < 0.005). With the SPEM algorithm

proposed by Neal and Hinton (1998), only those posterior probabilities of component
membership of the mixture that are above a specified threshold are updated; the remain-
ing component-posterior probabilities are held fixed. To examine this more closely, let
Aj (j = 1, . . . , n) be a subset of{1, . . . , g} which component-posterior probability ofxj

is close to zero, say less than0.005, and hence is held fixed. Suppose that a set ofAj is
selected on thekth scan forj = 1, . . . , n, if τ

(k)
ij < 0.005, thenAj contains theith compo-

nent; otherwiseAc
j (the complement ofAj) containsi. Now suppose that the sparse EM

step is to be implemented on the subsequent(k + 1)th scan. Then on the E-step on the
(k + 1)th scan of the SPEM algorithm, consider for allj = 1, . . . , n

• for all i ∈ Aj, setτ (k)
ij = τ

(k−1)
ij ,

• for all i ∈ Ac
j, calculate the posterior probabilities of component membership based

on the current estimatesΨ(k), τi(xj;Ψ
(k)), and formτ

(k)
ij by rescalingτi(xj;Ψ

(k))
as

τ
(k)
ij =

∑

h∈Ac
j

τ
(k−1)
hj

τi(xj;Ψ
(k))

∑
h∈Ac

j
τh(xj;Ψ

(k))
. (13)

This sparse E-step thus will take time proportional only to the number of components
i ∈ Ac

j (j = 1, . . . , n). The calculation ofT (k)
i1 , T

(k)
i2 , andT

(k)
i3 are the same as (3) to
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(5), but it can now be done efficiently by updating only the contribution to the sufficient
statistics for those componentsi ∈ Ac

j. For example,

T
(k)
i1 =

n∑

j=1

IAj
(i)τ

(k−1)
ij +

n∑

j=1

IAc
j
(i)τ

(k)
ij , (14)

whereIAj
(i) is the indicator function for the setAj. The first term on the right-hand side

of (14) is calculated at thekth scan and can be saved for use in the subsequent SPEM scan.
Similar arguments apply toT (k)

i2 andT
(k)
i3 . After running the sparse version a number of

scans, a standard EM scan is then performed, and a new setAj (j = 1, . . . , n) is selected.

3.3 The SPIEM Algorithm

A sparse version of the IEM algorithm (SPIEM) can be formulated by combining the
sparse E-step of the SPEM algorithm and the partial E-step of the IEM algorithm. Suppose
that a set ofAj is selected on thekth scan forj = 1, . . . , n. That is, on the(b + 1)th
iteration of thekth scan(b = 0, . . . , B-1), if τ

(k−1+b/B)
ij < 0.005 for j ∈ Sb+1, then

Aj contains theith component; otherwiseAc
j (the complement ofAj) containsi. Now

suppose that the sparse IEM step is to be implemented on the subsequentB iterations of
the (k + 1)th scan. Then on the(b + 1)th iteration(b = 0, . . . , B-1), consider for all
j ∈ Sb+1,

• for all i ∈ Aj, setτ (k+b/B)
ij = τ

(k−1+b/B)
ij ,

• for all i ∈ Ac
j, calculate the posterior probabilities of component membership based

on the current estimatesΨ(k+b/B), τi(xj;Ψ
(k+b/B)), and formτ

(k+b/B)
ij by rescaling

τi(xj;Ψ
(k+b/B)) as

τ
(k+b/B)
ij =

∑

h∈Ac
j

τ
(k−1+b/B)
hj

τi(xj;Ψ
(k+b/B))

∑
h∈Ac

j
τh(xj;Ψ

(k+b/B))
. (15)

Similar to the SPEM algorithm, this sparse version of the partial E-step will take time
proportional only to the number of componentsi ∈ Ac

j (j = 1, . . . , n). The calculation of

T
(k+ b/B)
i1,b+1 , T

(k+ b/B)
i2,b+1 , andT

(k+ b/B)
i3,b+1 in (10) to (12) can also be done efficiently by updating

only the contribution to the sufficient statistics for those componentsi ∈ Ac
j, as described

in last subsection.
The performance of the SPIEM algorithm has been studied by Ng and McLachlan

(2002). To avoid the problem of premature component starvation, we follow their proce-
dure that the standard EM step is performed in the first scan, followed by five scans of
IEM step before running the sparse version SPIEM step. After running the SPIEM step
for five scans, the IEM step is performed for a scan, and a new setAj (j = 1, . . . , n) is
selected.



S.-K. Ng and G. McLachlan 149

3.4 An Inexact IEM Algorithm

An incremental variant of the EM algorithm somewhat similar to that of (9) was investi-
gated by Nowlan (1991) and described in detail in Neal and Hinton (1998). His variant
calculates the current conditional expectations of the sufficient statistics as an exponen-
tially decaying average of recently-visited data. That is, (9) is replaced by

T
(k+ b/B)
iq = αT

(k+(b−1)/B)
iq + T

(k+ b/B)
iq,b+1 (q = 1, 2, 3; b = 0, . . . , B − 1),

where0 < α < 1 is a decay constant. As described in Neal and Hinton (1998), this
algorithm will not converge to the exact answer ifα is kept at some fixed value. However,
this inexact IEM algorithm could be faster than the IEM algorithm as it can forget out-of-
date sufficient statistics more rapidly.

4 Multiresolution kd-tree Algorithm

The use of multiresolutionkd-tree has been proposed by Moore (1999) to speed up the EM
algorithm. Herekd stands fork-dimensional where, in our notation,k = p, the dimension
of a feature vectorxj. Thekd-tree is a binary tree that recursively splits the whole set of
observations into regions. Each node in thekd-tree includes a bounding box that specifies
a subset of the observations and the root node owns all the observations. The children of
a node are smaller bounding boxes, generated by splitting along the parent node’s widest
dimension. The multiresolutionkd-tree is constructed top-down, starting from the root
node and the splitting procedure continues until the range of observations in the widest
dimension of a descendant node is smaller than some thresholdγ. This node is then
declared to be a leaf-node and is left unsplit. Hence ifγ = 0, then all leaf nodes denote
singleton or coincident data points. In this case, the multiresolutionkd-tree algorithm
cannot speed up the EM algorithm.

Let nL be the total number of leaf nodes. With the help of the multiresolution data
structure built up by thekd-tree, the E-step becomes

• E-step: Compute the conditional expectations of the sufficient statistics, givenx
and the current estimatesΨ(k). For themth leaf nodeLNm (m = 1, . . . , nL), the
conditional expectations of the sufficient statistics are simplified by treating all the
observations in it to have the same posterior probabilitiesτi(x̄m;Ψ(k)) calculated
at the mean of its observations, where

τi(x̄m;Ψ(k)) = π
(k)
i φ(x̄m; µ

(k)
i ,Σ

(k)
i )/

g∑

l=1

π
(k)
l φ(x̄m; µ

(k)
l ,Σ

(k)
l ),

for i = 1, . . . , g, and wherēxm is the mean of observations belonging to the leaf
nodeLNm. Thus, the contribution of themth leaf nodeLNm (m = 1, . . . , nL) to
the conditional expectations of the sufficient statistics can be approximated as

T
(k)
i1,m = τi(x̄m;Ψ(k))nm, (16)

T
(k)
i2,m = τi(x̄m;Ψ(k))nmx̄m, (17)

T
(k)
i3,m = τi(x̄m;Ψ(k))

∑

j∈LNm

xjx
T
j (18)
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for i = 1, . . . , g, wherenm is the number of observations in the leaf nodeLNm.
The conditional expectations of the sufficient statistics are therefore obtained as

T
(k)
iq =

nL∑

m=1

T
(k)
iq,m, (i = 1, . . . , g; q = 1, 2, 3).

The M-step is the same as that of the standard EM algorithm ((6) to (8)). From (16) to
(18), it can be seen that the multiresolutionkd-tree (without pruning) algorithm speeds
up the EM algorithm roughly a factor ofn on nL. Moreover, as the calculation of the
sufficient statistics is approximated by treating all the data points in an node as at their
mean, the multiresolutionkd-tree algorithm is inexact.

4.1 Pruning of Multiresolution kd-tree

In Moore (1999), a further (pruning) step was introduced to reduce the computational
time. For each groupi at a given node(i = 1, . . . , g), compute the minimum and maxi-
mum values that any observation in the node can have for its current posterior probabili-
ties. Denote these valuesτi,min andτi,max, respectively. If the differences betweenτi,min

andτi,max for all i = 1, . . . , g are small and satisfy some pruning criteria (see below),
then the node is treated as if it is a (pseudo) leaf node. Hence its descendants need not be
searched at this scan.

Let ns be the number of observations in thesth node, andτi,total the sum of the poste-
rior probabilities ofith group membership for all the observations. With reference to the
source code of Moore (1999), we prune if

1. ns(τi,max − τi,min) < βτi,total with β = 0.01 for all i = 1, . . . , g, and

2. log{∑g
i=1 πiφi,max} − log{∑g

i=1 πiφi,min} < 0.1 | log{∑g
i=1 πiφ(x̄; µi,Σi)} |,

wherex̄ is the mean of the data points in the node. For the first criterion, if a larger value
of β is adopted, the number of pseudo-leaf nodes will decrease. Hence the time to con-
vergence decreases, but the contributions to the conditional expectations of the sufficient
statistics may not be well approximated by (16) to (18). The second criterion ensures
that the pruning step will not reduce significantly the value of log likelihood. However,
this additional criterion increases the number of pseudo-leaf nodes and hence the time to
convergence.

In practice, the time to convergence for this algorithm against that without pruning is
a tradeoff between the additional computational time forτi,min andτi,max (i = 1, . . . , g)
and the fewer number of leaf nodes in each scan. There are some possibilities, such as
those described in the source code of Moore (1999), to reduce the amount of computation
of τi,min andτi,max and hence favour the adoption of the pruning step. For example, if
τi,max is found to be close to zero at a given node, for instance,τi,max < 0.5τh,min for some
other grouph, then there is no need to computeτi,min andτi,max in descendants of this
node. It means that, near the tree’s leaves, the limiting values of the posterior probabilities
need to be computed only for a small fraction ofg. In addition, it is easy to determine
whether the hyper-rectangle of the current node is very far away from the meanµi. If it
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is the case,τi,max andτi,min may be set to zero and hence theith group is not considered
in descendants of the current node. These two procedures will considerably reduce the
computational time in cases where there are large number of groups and the overlapping
of the groups is small. As described in Moore (1999), the computation ofτi,min and
τi,max is much easier to formulate in terms of bounds on the density at the feature vector
belonging to the node. It means that the minimum and maximum Mahalanobis squared
distances between the meanµi (i = 1, . . . , g) and any feature vector within the hyper-
rectangle are required, the Mahalanobis squared distance between vectorxj andµi is
defined as

∆2 = (xj − µi)
TΣ−1

i (xj − µi).

Let ∆2
i,min and∆2

i,max be the minimum and maximum Mahalanobis squared distances,
respectively. Then a lower bound on theith group-conditional density at the feature vector
xj in the node is given by

φi,min = (2π)−p/2 | Σi |−1/2 exp(−1
2
∆2

i,max),

and, similarly, an upper boundφi,max is obtained for this density. If follows that a lower
bound of the posterior probability is given by

τi,min = πiφi,min/(πiφi,min +
∑

l 6=i

πlφl,max).

Similarly, an upper boundτi,max can be obtained. Moore (1999) used quadratic program-
ming with the hyper-rectangular constraints to find∆2

i,min and∆2
i,max for i = 1, . . . , g.

For data with dimensionp less than or equal to three, we propose an analytic geometry
approach to obtain the lower and upper bounds ofτi. The idea is to transform the feature
vectors by a matrix of normalized eigenvectors so that the covariance matrix becomes an
identity matrix. By doing this, the Mahalanobis squared distance becomes the Euclidean
squared distance. Analytic tools within the context of vector geometry can then be applied
to find the minimum and maximum values. This analytic geometry approach is found to
be faster than the quadratic programming subroutine E04NFF of the FORTRAN NAG
library for computing∆2

i,min and∆2
i,max.

In the implementation of the algorithm, we do not perform the pruning step on every
scan because it will slow down the algorithm. Our proposed procedure is to use thekd-
tree (without pruning) on the first scan, followed by five scans with pruning of thekd-tree.
Then we fix the pseudo-leaf nodes obtained from the fifth scan and run five more scans
by searching only on the pseudo-leaf nodes of thekd-tree. That is, no pruning step is
required in these five scans and hence computational time is saved. Then we perform a
scan with pruning of thekd-tree and determine a new set of pseudo-leaf nodes. However,
due to the implementation of the pruning step, the number of pseudo-leaf nodes at each
scan is different, and hence the approximate log likelihood calculated using the mean of
each pseudo-leaf node is not monotonic increasing after each scan. This algorithm can be
terminated by considering the convergence of the estimates at each scan; see Section 6.1.
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5 An Incremental EM with Multiresolution kd-tree Al-
gorithm

With the multiresolutionkd-tree structure, it can be seen from Section 4 that the number
of leaf nodes is unchanged once thekd-tree is constructed. In other words, with the mul-
tiresolutionkd-tree (without pruning) algorithm, the number of leaf nodes is a constant at
each scan. Now, we perform the IEM algorithm based on thiskd-tree structure without
pruning. That is, the leaf nodes are divided intoB blocks (Figure 1(a)). At each scan, the
partial E-step is implemented for only a block of leaf nodes at a time before the next M-
step is performed. With this IEM–kd-tree algorithm, the equations (10) to (12) in Section
3.1 are now replaced by

T
(k+ b/B)
i1,b+1 =

∑

m∈Sb+1

τi(x̄m;Ψ(k+ b/B))nm,

T
(k+ b/B)
i2,b+1 =

∑

m∈Sb+1

τi(x̄m;Ψ(k+ b/B))nmx̄m,

T
(k+ b/B)
i3,b+1 =

∑

m∈Sb+1

τi(x̄m;Ψ(k+ b/B))
∑

j∈LNm

xjx
T
j ,

for thoseLNm (m = 1, . . . , nL) in the(b+1)th block, whereSb+1 now denote a subset of
{1, . . . , nL} containing the subscripts of those leaf nodesLNm that belong to the(b+1)th
block. The sparse version of the IEM algorithm (SPIEM) described in Section 3.3 may
also be adopted to further reduce the computational time in applying the EM algorithm.
As in Section 3.1, we choose the number of blocksB based on the simple rule proposed
by Ng and McLachlan (2002) and implement the algorithm according to the procedure, as
described for the IEM algorithm in Section 3.1. The flowchart of the algorithm is depicted
in Figure 1(b).

6 Comparison of Variants of the EM Algorithm

6.1 Simulation I

A random sample of sizen = 256 × 256 observations was generated from a seven-
component trivariate normal mixture(g = 7, p = 3). The estimates obtained in Liang
et al. (1994) were used as the values of our population parameters (Table 1). These seven
components correspond to seven tissue types (outer table of the skull and skin; inner table
of the skull; temporalis muscle and internal occipital protuberance; Cerebral spinal flow
space; gray matter; subcutaneous fat and diploic space; white matter) in the segmentation
of a 2D MR image of the human brain.

In this paper, all the algorithms used the same initial estimates as starting values.
The algorithms were terminated when the absolute values of the relative changes in the
estimates of the means all fell below 0.0001. This stopping criterion was adopted because
the approximate log likelihood was not monotonic increasing for multiresolutionkd-tree
(with pruning) algorithm; see Section 4.1. In the simulation study, we considered the
thresholdγ to be 1%, 0.5%, and 0.3% of the range in the splitting dimension of the
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Ψ(0)

(b)

A scan of IEM steps:

B

B partial E−steps
and B M−steps

satisfy
the convergence

criterion?

Stop

Yes

No

− Non−leaf nodes

− Leaf nodes

(a)

Figure 1:The IEM–kd-tree algorithm: (a) the partition of leaf nodes (say blocks of 6 leaf
nodes); (b) the flowchart of the algorithm.

whole data set. The results are summarized in Table 2. All the algorithms are written in
FORTRAN and the simulations are run on a Sun unix workstation. Withγ = 0.01, the
number of leaf nodesnL is 18973. Forγ = 0.005 and0.003, nL = 35519 and47824,
respectively.
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Table 1: The Proportions, Intensity Means, Variances, and Correlation Coefficients of
Seven Groups:µid andσ2

id (d = 1, 2, 3) are, respectively, the means and variances of the
trivariate normal distribution associated with theith group, the correlation coefficients
between the variates are denoted byρi12, ρi13, andρi23.

i πi µi1 µi2 µi3 σ2
i1 σ2

i2 σ2
i3 ρi12 ρi13 ρi23

1 0.06 1.50 1.00 2.48 1.09 0.48 2.37 0.55 0.38 0.74
2 0.05 4.96 8.06 10.17 6.91 10.46 17.62 0.22 0.27 0.95
3 0.11 5.30 3.25 8.01 3.19 1.90 4.74 0.43 0.42 0.79
4 0.08 6.53 12.92 15.00 2.55 6.39 0.92−0.41 0.09 0.17
5 0.37 8.23 9.57 14.53 0.65 1.89 1.52−0.52 −0.29 0.73
6 0.11 9.39 3.42 7.70 12.24 2.95 14.17 0.80 0.81 0.95
7 0.22 9.43 7.93 12.58 0.16 0.48 0.44−0.12 0.26 0.49

In Table 2,CPU represents the CPU time in seconds for various algorithms,nscan
indicates the number of scans to convergence,log likelihood is the log likelihood of the
simulated data calculated using the final estimates obtained,error is the percentage of
incorrect segmentation calculated from the final estimates, andspeedupis the ratio of
CPU times compared to that of the standard EM algorithm. The CPU time consists of
the computations of the E- and M-steps for the standard EM algorithm, and the partial
E- and M-steps for the IEM algorithm. For thekd-tree-based algorithms, it consists of
the computation of the E-step (or partial E-step), the M-step, and the construction of the
kd-tree.

It can be seen from Table 2 that the standard EM, the IEM, the SPIEM, the multireso-
lution kd-tree (without pruning,γ = 0.003), and the IEM–kd-tree (γ = 0.003) algorithms
converged to essentially the same log likelihood value. For the multiresolutionkd-tree-
based algorithms, it is observed that the smaller value ofγ decreases the error rate but
increases the CPU time to convergence. It can also be seen that the pruning step with
γ ≥ 0.005 does not reduce the computational time, compared with thekd-tree (without
pruning) algorithm. The error rates and the values of log likelihood obtained by these two
algorithms, however, are similar.

For the inexact IEM algorithm, it can be seen from Table 2 that a larger value ofα
decreases the error rate but increases the CPU time to convergence. As commented by
Neal and Hinton (1998), though the inexact IEM algorithm could be faster than the IEM
algorithm with an appropriate value forα, it did not converge to the same log likelihood
value as that of the IEM algorithm. From Table 2, it can also be seen that the inexact IEM
algorithm has comparable error rates and speedup factors with the multiresolutionkd-tree
algorithms. But the log likelihood values obtained by the inexact IEM algorithm are in
general smaller.

For the IEM–kd-tree algorithm, it leads to a larger speedup factor and a slightly larger
value of the log likelihood forγ ≤ 0.005, compared with thekd-tree (without pruning)
algorithm. The error rate is also found to be decreased forγ ≤ 0.005. Comparing with the
IEM or SPIEM algorithms, it can be seen from Table 2 that the IEM–kd-tree algorithm can
lead to a larger speedup factor (withγ = 0.01), but the error rate is slightly larger. When
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Table 2: Summary of Simulation I(n = 256× 256)

Algorithm CPU nscan log likelihood error speedup
standard EM 303.0 90 −367223.2 11.73 1.0
IEM (B=64) 217.0 52 −367223.2 11.72 1.4
SPIEM (B=64) 121.2 56 −367223.2 11.72 2.5
kd-tree (no pruning)

γ = 0.01 119.5 89 −367228.5 11.75 2.5
γ = 0.005 225.1 90 −367223.5 11.74 1.4
γ = 0.003 312.9 90 −367223.2 11.74 1.0

kd-tree (pruning)
γ = 0.01 181.0 88 −367228.7 11.77 1.7
γ = 0.005 257.0 88 −367223.9 11.74 1.2
γ = 0.003 285.6 88 −367223.8 11.74 1.1

Inexact IEM (B=64)
α = 0.95 155.4 36 −367231.0 11.74 2.0
α = 0.96 184.6 43 −367228.2 11.74 1.6
α = 0.97 230.9 54 −367226.0 11.73 1.3

IEM–kd-tree
γ = 0.01 81.6 55 −367228.5 11.75 3.7
γ = 0.005 150.4 55 −367223.5 11.73 2.0
γ = 0.003 230.3 55 −367223.2 11.73 1.3

a smaller value ofγ is adopted, the IEM–kd-tree algorithm provides accurate estimates
as that of the IEM or SPIEM algorithms. The speedup factor is also similar to that using
the IEM or SPIEM algorithms. However, when the data set is large and redundant, the
IEM–kd-tree algorithm can converge to accurate estimates faster than the IEM or SPIEM
algorithms, as presented in the next section.

6.2 Simulations II and III

We adopted the same parameter values as in Simulation I, but changedn to128×128×128
and256 × 256 × 256 in Simulations II and III, respectively. The results are presented in
Tables 3 and 4. Forn = 1283, the numbers of leaf nodesnL are 91321, 281128, and
513235 forγ = 0.01, 0.005, and0.003, respectively. Forn = 2563, nL = 128268,
560274, and 1216506, respectively.

From Tables 3 and 4, it can be seen that the speedup factors of the IEM and SPIEM
algorithms are similar whenn is increased. On the other hand, for thekd-tree-based
algorithms, the speedup factors increase withn. It can also be seen that the pruning step
with γ ≤ 0.005 does reduce the computational time compared to thekd-tree without
pruning, but the log likelihood values are slightly smaller.

For the inexact IEM algorithm, the appropriate choice ofα seems to depend onn.
From Tables 3 and 4, it can be seen that the algorithm requires less number of scans
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Table 3: Summary of Simulation II(n = 128× 128× 128)

Algorithm CPU nscan log likelihood error speedup
standard EM 10143 96 −11750666 12.00 1.0
IEM (B=256) 6166 55 −11750665 12.00 1.6
SPIEM (B=256) 4114 61 −11750665 12.00 2.5
kd-tree (no pruning)

γ = 0.01 773 95 −11750898 12.02 13.1
γ = 0.005 2179 96 −11750682 12.00 4.7
γ = 0.003 3802 96 −11750668 12.00 2.7

kd-tree (pruning)
γ = 0.01 923 95 −11750904 12.02 11.0
γ = 0.005 1603 95 −11750689 12.00 6.3
γ = 0.003 1963 95 −11750680 12.00 5.2

Inexact IEM (B=256)
α = 0.95 1728 12 −11750812 12.01 5.9
α = 0.97 2504 18 −11750734 12.00 4.0
α = 0.99 6074 45 −11750674 12.00 1.7

IEM–kd-tree
γ = 0.01 506 57 −11750899 12.02 20.1
γ = 0.005 1314 56 −11750682 12.00 7.7
γ = 0.003 2713 56 −11750667 12.00 3.7

to convergence whenn increases. Compared to the multiresolutionkd-tree-based algo-
rithms, the values of the log likelihood obtained by the inexact IEM algorithm are smaller.

As in the simulation I, the IEM–kd-tree algorithm leads to a larger speedup factor, a
slightly larger value of the log likelihood, and a smaller value of error rate forγ ≤ 0.005,
compared with thekd-tree (without pruning) algorithm. From Tables 3 and 4, it can be
seen that the IEM–kd-tree algorithm converges to accurate estimates faster than the IEM
and SPIEM algorithms. For a less accurate estimates, this algorithm can speed up the
EM algorithm by a factor of 22, compared to the SPIEM algorithm and a factor of 56,
compared to the standard EM algorithm.

6.3 Real Data

We applied the variants of the EM algorithm described in Sections 3, 4, and 5 to a real
MR image data set concerning the human brain. The image was a 2D MR image acquired
by a 2 Tesla Bruker Medspac whole body scanner. The acquisition matrix was256× 256.
The image intensities were scaled to the range of (0,20) for the parameter estimation. We
assumedg = 7 and adopted the same initial estimates for all the algorithms. The relative
performances of the variants of the EM algorithm are summarized in Table 5. The number
of leaf nodes are given bynL = 15419, 24871, and 33024 forγ = 0.01, 0.005, and 0.003,
respectively.

From Table 5, it can be seen that the relative performances of the various versions of
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Table 4: Summary of Simulation III(n = 256× 256× 256)

Algorithm CPU nscan log likelihood error speedup
standard EM 88950 95 −94015922 11.99 1.0
IEM (B=1024) 59425 54 −94015918 11.99 1.5
SPIEM (B=1024) 35845 62 −94015918 11.99 2.5
kd-tree (no pruning)

γ = 0.01 1860 94 −94018940 12.02 47.8
γ = 0.005 5079 95 −94016148 11.99 17.5
γ = 0.003 10138 95 −94015939 11.99 8.8

kd-tree (pruning)
γ = 0.01 2150 94 −94018863 12.02 41.4
γ = 0.005 3647 94 −94016164 11.99 24.4
γ = 0.003 4727 94 −94016001 11.99 18.8

Inexact IEM (B=1024)
α = 0.98 13274 11 −94028005 12.01 6.7
α = 0.99 16309 14 −94020334 11.99 5.5
α = 0.995 27992 25 −94017080 11.99 3.2

IEM–kd-tree
γ = 0.01 1589 56 −94018948 12.02 56.0
γ = 0.005 3962 56 −94016148 11.99 22.5
γ = 0.003 8516 56 −94015937 11.99 10.4

the EM algorithm on real MR data are comparable to that presented in Simulation I. As
demonstrated in the Simulation I, with the sample sizen = 2562, the SPIEM algorithm
speeds up the EM algorithm and provides an exact estimates as that of the EM algorithm.
The IEM–kd-tree algorithm can converge faster, but only to a smaller log likelihood value.

7 Discussion

We have considered several ways of speeding up the fitting of normal mixture models
by using variants of the EM algorithm, including the incremental and sparse versions of
EM and the multiresolutionkd-tree-based algorithms. The relative performances of these
algorithms has been studied, using simulated and real data on MR images. Both the IEM
and SPIEM algorithms improve the time to convergence of the EM algorithm by reducing
the number of scans required, their performances (in terms of the speedup factor) remain
similar when the sample size of the data increases; see Tables 2, 3, and 4. These two
algorithms, however, maintain strictly the accurate sufficient statistics in each scan. Thus
they both converge to the same likelihood value as that of the standard EM algorithm. The
inexact IEM algorithm, on the other hand, requires less number of scans to convergence
when the sample size increases. Because it forgets out-of-date sufficient statistics more
rapidly, it has larger speedup factor, compared to the IEM algorithm. However, it can-
not converge to the exact likelihood value as that of the IEM or the SPIEM algorithms.
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Table 5: Analysis of Real 2D MR Image Data(n = 256× 256)

Algorithm CPU nscan log likelihood speedup
standard EM 265.1 79 −178810.9 1.0
IEM (B=64) 189.6 46 −178809.4 1.5
SPIEM (B=64) 107.0 51 −178809.3 2.5
kd-tree (no pruning)

γ = 0.01 90.2 81 −179077.6 2.9
γ = 0.005 148.1 82 −178848.8 1.8
γ = 0.003 203.9 81 −178821.7 1.3

kd-tree (pruning)
γ = 0.01 137.3 88 −179067.6 1.9
γ = 0.005 202.3 92 −178843.6 1.3
γ = 0.003 248.8 90 −178821.0 1.1

Inexact IEM (B=64)
α = 0.92 105.2 24 −178850.0 2.5
α = 0.94 125.4 29 −178835.2 2.1
α = 0.96 187.8 40 −178823.5 1.4

IEM–kd-tree
γ = 0.01 64.3 47 −179082.9 4.1
γ = 0.005 107.4 49 −178848.7 2.5
γ = 0.003 148.7 48 −178820.5 1.8

Moreover, it is found that the inexact IEM algorithm needs an adequate randomization
of the data such that each block of the data has entities from each of the components.
Otherwise, the algorithm will converge to points that would be very poor estimates. An
appropriate choice of the decay constantα is also crucial to the ultimate qualities of the
final estimates.

With the multiresolutionkd-tree structure, the number of leaf nodesnL does not lin-
early increase withn. For example, withγ = 0.01, nL = 18973, 91321, and128268 for
n = 2562, 1283, and2563, respectively. Hence, when the sample size increases,kd-tree-
based algorithms have better relative performances for speeding up the EM algorithm.
As approximation is made in the calculation of the sufficient statistics (Equations (16) to
(18)), the multiresolutionkd-tree method is inexact. However, it can be seen from Tables
2 to 4 that for sufficient small value ofγ (smaller sized leaf nodes), sayγ ≤ 0.003, the
multiresolutionkd-tree (without pruning) and the IEM–kd-tree algorithms converge to
essentially the same maximum likelihood value as the standard EM algorithm.

With the simulated data sets II and III, we found that the pruning step (withγ ≤ 0.005)
can reduce the computational time, compared with thekd-tree (without pruning) algo-
rithm. It implies that the fewer number of leaf nodes in each scan offsets the additional
computational time in finding the minimum and maximum values of the posterior proba-
bilities. However, due to the implementation of the pruning step, the number of pseudo-
leaf nodes at each scan will be different. Hence, with the pruning version, there is no
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guarantee that the log likelihood value is monotonic increasing after each scan. In fact,
we have seen that the log likelihood value for some simulated data starts to decrease just
before the convergence of the estimates.

When an IEM algorithm is adopted in conjunction with a multiresolutionkd-tree, it
can be seen that the speedup factor increases and the error rate decreases. The algorithm
is also stable because the partition is performed on the leaf nodes and their number is
constant in each scan; see Section 5. This implies that the approximate log-likelihood
values are monotonic increasing after each scan.

For applications to high dimensional data sets, it is noted that the number of leaf nodes
will increase dramatically when the dimension of the feature vectorp increases. This im-
plies that multiresolutionkd-tree-based algorithms will not be able to speed up the EM
algorithm when the dimension of the feature vectorp increases (McCallum et al., 2000;
Sand and Moore, 2001; Thiesson et al., 2001). Moore (1999) conducted a simulation
experiment to study the impact of the dimensionp on the number of leaf nodes. He gen-
eratedn = 160000 data points from a mixture ofp-variate normal. In that study,g = 20
with equal mixing proportions were considered. The ratio ofn/nL was found to be 4.4,
2.6, and 1.7 forp = 4, p = 5, andp = 6, respectively. Beyondp = 6, the ratio ofn/nL is
not much greater than one and hence there is little gain for using multiresolutionkd-tree
approaches, even though the pruning step can reduce the number of leaf nodes. Recent
work on dimensionality reduction, however, may enable the multiresolutionkd-tree-based
algorithms to be used on high dimensional data. These methods such as Broomhead and
Kirby (2000), Dasgupta (2000), and Jimenez and Landgrebe (1999) reduce dimensional-
ity of the data via a linear projection that optimizes a function known as the projection
index. The effectiveness in applying these dimensionality reduction techniques to huge
data sets needs further exploration.
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