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a b s t r a c t

We present a very fast algorithm for general matrix factorization of a data matrix for use in
the statistical analysis of high-dimensional data via latent factors. Such data are prevalent
across many application areas and generate an ever-increasing demand for methods of
dimension reduction in order to undertake the statistical analysis of interest. Our algorithm
uses a gradient-based approachwhich can be usedwith an arbitrary loss function provided
the latter is differentiable. The speed and effectiveness of our algorithm for dimension
reduction is demonstrated in the context of supervised classification of some real high-
dimensional data sets from the bioinformatics literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We let x1, . . . , xn denote n observed p-dimensional observations, where the number of variables p is very large relative
to n. For example, in the analysis of microarray gene-expression data, n (the number of tissues) might be only 50, whereas
p (the number of genes) might be in the tens of thousands. We follow the traditional biologists’ practice of letting

X = (x1, . . . , xn)

be the p × n data matrix. The usual statistical practice is to take the transpose of X,X T , as the data matrix. Without loss of
generality, we assume that the overall mean of X is zero.

In most statistical analyses of the data matrix X , some form of dimension reduction is required, typically before the
primary analysis is performed, or with some approaches it might be done in conjunction with the main analysis. In recent
times, much attention has been given to matrix factorizations of the form,

X = AB, (1)

where A is a p × q matrix and B is a q × n matrix and where q is chosen to be much smaller than p. For a specified value of
q, the matrices A and B are chosen to minimize

‖X − AB‖
2, (2)

where ‖ · ‖ is the Frobenius norm (the sum of squared elements of the matrix). With this factorization, dimension reduction
is effected by replacing the data matrix X by the solution B̂ for the factor matrix B; the ith row of B̂ gives the values of
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the ith metavariable for the n entities. Thus the original p variables are replaced by q metavariables. When the elements of
X are nonnegative, we can restrict the elements of A and B to be nonnegative. This approach is called nonnegative matrix
factorization (NMF) in the literature (Lee and Seung, 1999).We shall call the general approachwhere there are no constraints
on A and B, GMF (general matrix factorization).

Principal component studies may often provide a suitable first step in the analysis of complex data, prior to a subsequent
andmore in depth rigorousmodelling of data (Mertens, 2003). The classicmethod for factoring the datamatrixX is singular-
value decomposition (SVD); see Golub and van Loan (1983). It follows from this theorem that we can decompose X exactly
into the form

X = LDRT , (3)

where L = (l1, . . . , lk) is a p × k matrix with orthonormal columns, R = (r1, . . . , rk) is a n × k matrix with orthonormal
columns, D is a diagonal matrix with elements d1 ≥ d2 ≥ · · · ≥ dk > 0, and k ≤ min(p, n) is the rank of X . For any q ≤ k,

q−
i=1

dilirTi = arg min
X̂∈M(q)

‖X − X̂‖
2, (4)

whereM(q) is the set of rank-q p × nmatrices; see, for example, Eckart and Young (1936).
Let L(q) = (l1, . . . , lq),R(q) = (r1, . . . , rq), and D(q) be the diagonal matrix with diagonal elements d1, . . . , dq. Then on

considering thematrix factorization (1) of X , it follows from (4) that for a specified value of qwe can find the factor matrices
A and B that minimize (2) by taking Â = L(q) and B = D(q)R(q)T .

Now SVD, effectively principal component analysis (PCA), imposes orthogonality constraints on the rows of the matrix
B. However, this ignores the non-independence of biological processes, which is equivalent to nonorthogonality of the
rows of B; see, for example, Kossenkov and Ochs (2009). On the other hand, GMF which has no constraints on B provides
a factorization into a lower-dimensional subspace with no orthogonality constraints on its basis vectors. Thus GMF has
the flexibility to model, for example, biological behaviour in which the gene signatures overlap. In contrast, PCA with
its orthogonality constraints is overly constraining for such data and is thus not suited to isolating gene signatures that
have appreciable overlap. Also, PCA is based on finding the directions of greatest variance, but the sample covariance
matrix provides misleading estimates where the number of variables p is much greater than the number n of observations
(Johnstone and Lu, 2009). It should be noted too that the GMF approach is suitable for other high-throughput data where
the fundamental assumptions of multiple overlapping sets within the data and nonorthogonality of these sets across
observations hold.

Hence we consider a very fast approach to the general matrix factorization (1), using a gradient-based algorithm that
is applicable to an arbitrary (differentiable) loss function. The novelty of our algorithm lies in the way that on each global
iteration it

(a) iterates on only a small subset of the elements of the factormatrixAwith the other factormatrix B fixed before reversing
their roles;

(b) loops through all the terms in the objective function, minimizing them individually at a time rather than their total sum
(that is, it adopts a stochastic gradient descent approach).

As to be presented in Section 3, our algorithm takes only between 10 and 15 s in performing 300 global iterations to
provide a q = 11 rank factorization of a 2000 × 62 data matrix for the colon cancer data set of Alon et al. (1999). It is
understandably much quicker than nonnegative matrix factorization (NMF) which requires the estimates of the individual
elements of A and B to be nonnegative.

The effectiveness of our algorithm is to be demonstrated in its application to provide a reduction in the number of genes
for use in the formation of classifiers in the supervised classification of five well-known high-dimensional data sets in the
bioinformatics literature.

2. Background

Here we consider the factorization of X into AB in the spirit that it has no real importance in and of itself other than as
a computationally convenient means for obtaining a reduction in the number of variables. Of course in some situations in
practice once the factorization has been made, attention will turn to the interpretability of the metavariables.

The latter consideration has led to much recent interest in the use of NMF in the analysis of data for which the elements
are nonnegative. It constrains the elements of the factormatricesA andB to be nonnegative,which can be advantageous from
the point of view of interpretability. Lee and Seung (1999) and Lee and Seung (2001) developed NMF in order to improve
upon the interpretability of SVD. The nonnegativity constraints onA andB form awhole in a nonsubtractiveway. In thisway,
NMF is considered as a procedure for learning a parts-based representation (Lee and Seung, 1999). However, as pointed out
in Li et al. (2001) the additive parts by NMF are not necessarily localized. This led them to propose a subspacemethod, called
local nonnegativematrix factorization (LNMF) for learning spatially localized, parts-based representation of visual patterns;
see also Donoho and Stodden (2004), Gao and Church (2005), Fogel et al. (2007), and the recent monograph Cichocki et al.
(2010).
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More recently, Ding et al. (2010) has considered variations of NMF where the elements of A, but not of B, are constrained
to be nonnegative, and so allowing the data matrix X to have mixed signs (semi-NMF). They also consider algorithms in
which the basis vectors of A are constrained to be convex combinations of the data points. In other work, Witten et al.
(2009) have proposed a penalized matrix decomposition for computing a q-rank approximation to X .

3. Gradient-based algorithm for GMF

We now describe our gradient-based algorithm for carrying out the general matrix factorization (1) of the data matrix
X . In this paper we apply this algorithm using always a squared-error loss function. However, its use is not restricted to the
latter loss function, and so it can be used to minimize the objective function given by

L(A, B) =
1

p · n

p−
i=1

n−
j=1

Ψ (Eij), (5)

where Eij = xij −
∑q

f=1 aif bfj, and Ψ is the loss function assumed to be differentiable with derivative denoted by ψ .
For illustrative purposes here in the description of the algorithm, we take Ψ to be a member of the exponential family of

loss functions given by

Ψ (x;α) = 2
(cosh(αx)− 1)

α2
= α−2(exp(αx)+ exp(−αx)− 2), (6)

where α is a regularization parameter. Note that a squared loss function may be regarded as a marginal limit in relation to
this family of loss functions since

lim
α→0

Ψ (x;α) = x2. (7)

In our initial experiments Nikulin and McLachlan (2009), we tried a range of values between 0.003 and 0.004 for α, which
gave similar results as for the squared loss function.

The algorithm can be implemented as follows.
Gradient-based framework for matrix factorization
1: Input: X-matrix of microarrays.
2: Select m-number of global iterations; q-number of factors; λ > 0-initial learning rate, 0 < ξ < 1-correction rate,

LS-initial value of the target function.
3: Initial matrices A and Bmay be generated randomly.
4: Global cycle: repeatm times the following steps 5–17:
5: genes-cycle: for i = 1 to p repeat steps 6–15:
6: tissues-cycle: for j = 1 to n repeat steps 7–15:
7: compute prediction S =

∑q
f=1 aif bfj;

8: compute error of prediction: E = xij − S;
9: internal factors-cycle: for f = 1 to q repeat steps 10–15:

10: compute α = aif bfj;
11: update aif ⇐ aif + λψ(E)bfj;
12: E ⇐ E + α − aif bfj;
13: compute α = aif bfj;
14: update bfj ⇐ bfj + λψ(E)aif ;
15: E ⇐ E + α − aif bfj;
16: compute L = L(A, B);
17: LS = L if L < LS ; otherwise: λ ⇐ λ · ξ .
18: Output: A and B-matrices of loadings and metagenes.

The following partial derivatives are necessary for the above algorithm (see steps 11 and 14):

∂Ψ (Eij)
∂aif

= −ψ(Eij)bfj, (8)

∂Ψ (Eij)
∂bfj

= −ψ(Eij)aif . (9)

The target function (5) that needs to be minimized includes a total of q(p + n) regularization parameters. The algorithm
loops through all the differences Eij, minimizing them as a function of the elements of the two factor matrices A and B. If
the optimization were to be performed by fixing on B and solving the optimization with respect to A and then reversing
the roles of the variables with the intention to iterate until convergence, there can be difficulties with convergence given
that the two factor matrices are completely unconstrained. We circumvent this problem by iterating on only some of the
elements of A before iterating on some of the elements of B. This partial updating of A before a switch to a partial updating
of B is very effective and is responsible for the very fast convergence of the process.
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Fig. 1. Behaviour of the target (5) with squared loss as a function of global iteration for q = 10 metagenes; dashed blue, solid black and dot–dashed red
lines correspond to the colon, leukaemia and lymphoma cases. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

This procedure of role reversal between the elements of the two factor matrices after only partial updating of their
elements has been used effectively in the context of a recommender system; see, for example Paterek (2007) and, more
recently, Koren (2009), who used factorization techniques to predict users’ preferences for movies on the Netflix Prize data
set.

It is noted that in the case of the squared loss function, we can optimize the value of the step-size. However, taking into
account the complexity of the model, we recommend maintaining fixed and small values of the step-size or learning rate.
In all our experiments we applied our algorithm using 100 global iterations with the following regulation parameters. The
initial learning rate λ was set at 0.01, while the correction rate ξ rate was set at 0.75. The convergence of the algorithm is
illustrated in Fig. 1 for GMF applied to the 2000 × 62 data matrix X for three data sets, including the colon cancer data set
of Alon et al. (1999) with n = 62 tissues and p = 2000 genes. The other cancer data sets (leukaemia and lymphoma) are to
be described in the next section. As pointed out in the introductory section, our algorithm takes only between 10 and 15 s
in performing 300 global iterations to provide a q = 11 rank factorization of this data matrix compared to around 25 min
to perform 20 global iterations with nonnegative matrix factorization. We used a Linux computer with speed 3.2 GHz, RAM
16 GB with the algorithm written in C.

4. Application of GMF in supervised classification

In what follows, we focus on the performance of GMF in its application to some data sets in the context of supervised
classification (discriminant analysis). In this latter context, we have an obvious criterion to guide in the choice of the number
q of metavariables, namely the estimated error rate of the classifier.

Concerning suitable estimates for the error rate of a classifier, we introduce the following notation. It is assumed that
the observed data points x1, . . . , xn come from g possible classes, C1, . . . , Cg , with known class labels specified by z ,
where

z = (z1, . . . , zn)T ,

and where zj is a g-dimensional vector of zeros or ones with its ith element, zij, defined to be one if xj comes from class Ci,
and zero otherwise (i = 1, . . . , g; j = 1, . . . , n). For the allocation of an observation xo to one of the g possible classes, we
let r(xo;X, z) be a classifier formed from the training data X with its known class labels in z , where r(xo;X, z) equal to i
implies that xo is assigned to class Ci (i = 1, . . . , g). We shall henceforth abbreviate r(xo;X, z) to r(xo;X). Also, we let e(X)
denote an estimate of the error rate of r(xo;X, z), where dependency of this estimate on z is also suppressed for brevity of
expression. If we use, for example, n-fold cross-validation (that is, the leave-one-out estimate), then

e(X) = n−1
g−

i=1

n−
j=1

zijH[i, r(xj;X(j))], (10)

where the function H[u, v] is defined to be equal to 1 if u ≠ v, and zero otherwise and where X(j) denotes X with xj deleted.
Finally, we let B̂(q)(X) denote the solution for Bwhen GMF is applied to X for a specified value of q.
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In the case where the full data matrix X is replaced by the reduced matrix B̂(q)(X) computed for a specified q, we can use
(10) to estimate the expected error rate of the classifier formed from this reduced set. An estimate is given by

e1(B̂(q)(X)) = n−1
g−

i=1

n−
j=1

zijH[i, r(bj; B̂
(q)
(j) (X))], (11)

where bj is the jth column of B̂(q)(X) and B̂(q)(j) (X) denotes B̂
(q)(X)with its jth column bj deleted.

As pointed out by Ambroise and McLachlan (2002), this estimate will provide an optimistic assessment of the true error
rate of the classifier, since the reduced data matrix B̂(q)(X) should be recomputed on each fold of the cross-validation; that
is, in the right-hand side of (11), B̂(q)(j) (X) should be replaced by B̂(q)(X(j)), the reduced data matrix obtained by applying the
GMF algorithm to X(j), the data matrix X with its jth column deleted. This estimate can be written as

e2(B̂(q)(X)) = n−1
g−

i=1

n−
j=1

zijH[i, r(bj; B̂(q)(X(j)))]. (12)

In order to calculate this estimated error rate with n-fold cross-validation, it means that the GMF algorithm has to be run
n times in addition to its replication to the full data set. This is feasible given the speed with which the algorithm carries
out the GMF. It should be pointed out that since the GMF does not make use of the known class labels, the selection bias of
the classifier based on the selected subset of metavariables B̂(q) will not be nearly as great in magnitude as with selection
methods that use the class labels. Also, in practice, n-fold cross-validation can produce an estimatewith toomuch variability
and so five- or ten-fold cross-validation is often used in a variance versus bias tradeoff (Ambroise and McLachlan, 2002).

We can choose the final value of q by taking it to be the value qo that minimizes the estimated error rate e2(B̂(q)(X));

qo = argmin
q∈Q

e2(B̂(q)(X(j))), (13)

where Q denotes the set of values considered for q. However, there is still a selection bias if we use

e2(B̂(qo)(X)) = n−1
g−

i=1

n−
j=1

zijH[i, r(bj; B̂(qo)(X(j)))], (14)

to estimate the error rate of the classifier basedon the reduced setwith the smallest error rate over the values of q considered;
see, for example, Wood et al. (2007) and Zhu et al. (2008). We can correct for this bias by using the estimate

e3(B̂(qo)) = n−1
g−

i=1

n−
j=1

zijH[i, r(bj; B̂(qoj)(X(j)))], (15)

where

qoj = argmin
q∈Q

g−
i=1

n−
j′=1
j′≠j

zij′H[i, r(bj′; B(q)(X(j,j′)))]
n − 1

, (16)

and X(j,j′) denotes the data matrix X with xj and xj′ deleted.
It can be seen from (16) that in order to calculate the cross-validated estimate (15), we need to perform the GMF n(n−1)

times in addition to the original application to the full data set X . This is still feasible since GMF can be implemented so
quickly, although the total computational time becomes large as n increases. As noted above, using, say, ten-fold cross-
validation would reduce the number of times that GMF has to be employed. In the data sets considered here, the increase
in the estimated error rate given by the use of e3(B̂(qo)) over (14) was very small (not of practical significance).

5. Supervised classification of some cancer data sets

We shall demonstrate the application of the GMF for dimension reduction in the context of supervised classification of
five cancer data sets that have been commonly analysed in the bioinformatics literature, as briefly described in the following
section.

5.1. Five medical data sets

For the colon data set (Alon et al., 1999) the data matrix X contains the expression levels of p = 2000 genes in each of
n = 62 tissue samples consisting of n1 = 40 tumours and n2 = 22 normals.
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Table 1
Some selected experimental results, where numbers in brackets in the first column indicate numbers of classes in the corresponding data set, and numbers
of misclassified entries in the fourth, fifth and sixth columns. Results in the sixth column ‘‘NSC’’ were obtained using nearest-shrunken centroid method
with threshold parameter∆ as it was described in Tibshirani et al. (2002). The column ps indicates the number of used/selected features.

Data Model q e1 e2 NSC ps ∆

Colon (2) SVM 8 0.08 (5) 0.113 (7) 0.129 (8) 141 1.3
Leukaemia (2) SVM 25 0 (0) 0.014 (1) 0.014 (1) 73 1.9
Lymphoma (3) MLR 10 0.032 (2) 0.032 (2) 0.016 (1) 3336 0.8
Breast (2) SVM 18 0.1 (6) 0.15 (9) 0.2 (12) 53 1.2
Khan (4) MLR 21 0.024 (2) 0.048 (4) 0.06 (5) 464 1.8

The data matrix for the leukaemia data set (Golub et al., 1999) contains the expression levels of p = 7129 genes for each
of n = 72 patients, consisting of n1 = 47 patients suffering from acute lymphoblastic leukaemia (ALL) and n2 = 25 patients
suffering from acute myeloid leukaemia (AML).

We followed the pre-processing steps of (Golub et al., 1999) applied to the leukaemia set: (1) thresholding: floor of 1
and ceiling of 20000; (2) filtering: exclusion of genes with max/min ≤ 2 and (max–min) ≤ 100, where max and min refer
respectively to the maximum and minimum expression levels of a particular gene across the tissue samples. This left us
with p = 1896 genes. In addition, the natural logarithm of the expression levels was taken.

The data matrix for the lymphoma data set (Alizadeh et al., 2000) contains the gene-expression levels of the three most
prevalent adult lymphoid malignancies: n1 = 42 samples of diffuse large B-cell lymphoma (DLCL), n2 = 9 samples of
follicular lymphoma (FL), and n3 = 11 samples of chronic lymphocytic leukaemia (CLL). The total sample size is thus n = 62
and there are p = 4026 genes.

The Sharma data set was described in Sharma et al. (2005) and contains the expression levels (mRNA) of p = 1368 genes
for each of 60 blood samples taken from 56 women. Each sample was labelled by clinicians, with n1 = 24 labelled as having
breast cancer and n2 = 36 labelled as not having it. Some of the samples were analysed more than once in separate batches
giving a total of n = 102 labelled samples.

The fifth data set (Khan et al., 2001) contains the expression levels of p = 2308 genes for each of n = 83 tissue samples,
each from a child who was determined by clinicians to have a type of small round blue cell tumour. This includes the
following g = 4 classes: neuroblastoma (N), rhabdomyosarcoma (R), Burkitt lymphoma (B) and the Ewing sarcoma (E).
The numbers in each class are: N(n1 = 18), R(n2 = 25), B(n3 = 11), and E(n4 = 29).

We applied double normalization to each data set. Firstly, we normalized each column to have means zero and unit
standard deviations. Then we applied the same normalization to each row.

5.2. RSCTC data

Six microarray data sets were obtained from the Rough Sets and Current Trends in Computing (RSCTC) Challenge which
was held as an special event at the RSCTC 2010 Conference in Poland. A description of these data sets is given in Table 2,
further information can be obtained from Wojnarski et al. (2010). During this experiment, we applied GMF to the RSCTC
training data.

Due to the large amount of genes present in these data sets, we have followed the gene selection and ranking procedure
described in EMMIX-GENE (McLachlan et al., 2002). The EMMIX-GENE software automatically assesses the relevance of each
of the p genes by fitting one and two (in some cases three) component t-mixture models to the expression data over the N
samples for each gene considered individually. The relevance of a gene for clustering the tissue samples is assessed on the
basis of the value of −2 log(λ), where λ is the likelihood ratio statistic for testing g = g0 versus g = g0 + 1 components.
If −2 log(λ) for g = 1 versus g = 2 is greater than a specified threshold b1, then the gene is taken to be relevant provided
that smaller cluster in the two component mixture model exceeds a specified threshold b2. If the −2 log(λ) > b1 condition
holds but the cluster size condition does not, then a three component t-mixture model is fitted to the tissue samples on
this gene, and −2 log(λ) is calculated to test g = 2 versus g = 3. Then the gene is selected as being relevant only if the
−2 log(λ) > b1 and at least two clusters implied by the g = 3 solution have sizes not less than b2.

Ranking of the genes selected by the EMMIX-GENE was done by the their final −2 log(λ) value, where genes with higher
−2 log(λ) are ranked to be more relevant. The top p0 genes from each of data set was used to obtain metagenes through
applying GMF.

5.3. Error rates for classifiers formed on the basis of metagenes

In Fig. 2, we plot the cross-validated error rate e1 versus the number of metagenes q for four of the five medical data sets,
using the support vector machine (SVM) in the case of g = 2 classes and (multinomial) logistic regression (LR) in the case
of g > 2 classes. We did not plot e1 for the leukaemia data set as it was close to zero if q ≥ 10.

In Table 1, we list the cross-validated error rates e1 and its bias-corrected version e2 for each of the fourmedical data sets,
where the classifier (SVM or MLR) is formed on the basis of q metagenes. To provide a guide to the level of performance of
these classifiers, we also list the value of the error rate using the nearest-shrunken centroid method (Tibshirani et al., 2002).
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Fig. 2. The estimated error rate e1 as a function of the number of metagenes.

Table 2
Description of the RSCTCBasic Track data: #-sequential index of the data set;N-numbers of samples; p-number of features/genes; n1, n2, n3, n4, n5-number
of samples per class in the training set.

# N p K n1 n2 n3 n4 n5

1 123 54675 2 88 35
2 105 22283 3 40 58 7
3 95 22277 5 23 5 27 20 20
4 113 54675 5 11 31 51 10 10
5 89 54613 4 16 10 43 20
6 92 59004 5 11 7 14 53 7

The bias-corrected error rate e2 is smaller than that of the NSC method for all but one of the data sets (the lymphoma set).
The estimated error rate for the nearest-shrunkenmethod corresponds to e2 in that it can be regarded as an almost unbiased
estimate for a given subset of the genes, but it has not been corrected for bias over the set of values q considered; see Wood
et al. (2007) and Zhu et al. (2008).

Considering now the six RSCTC data sets, the top p0 genes from each of the RSCTC data sets were used to obtain B̂ with
q = 1, . . . , 40. GMF was applied to the top p0 ranked genes of the genes selected by EMMIX-GENE. Table 3 illustrates
estimates e1 and e2 for RSCTC data with GMF parameters m = 100, λ = 0.01, ξ = 0.75 and Ls = 1. In Table 4, slightly
different GMF parameters were used with m = 300, λ = 0.01, ξ = 0.85 and Ls = 1, and linear SVM classifiers were used
for all six data sets. When more than two classes were present in data, one-against-one voting scheme with K(K − 1)/2
binary classifiers were used.

In some cases a preliminary opinion regarding the importance of the particularmetavariables (metagenes)maybederived
after inspection of the heat maps. To illustrate this, we have plotted the heat maps in Fig. 3 for three of the data sets.

In this figure, we have sorted the tissues into their classes in order to consider visual differences between the patterns.
In the case of the colon data in Fig. 3(a), we cannot see clear separation of the negative and positive classes. In contrast, in
the case of the leukaemia data in Fig. 3(b), metagene N2 separates the first 47 tissues (from the top) from the remaining
25 tissues with only one exception. It is tissue 58, which is the only one misclassified tissue in Table 1 (cases q = 3, 4).
Similarly, in the case of the lymphoma data in Fig. 3(c), metagene N1 separates clearly CLL from the remaining two classes.
Further, metagene N3 separates DLCL from the remaining two classes.

To assist with the interpretation of the metagenes, we can examine the Gene Ontology (GO) (The GO Consortium, 2009)
and the pathway records of the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2010) for those genes
that have high (absolute) correlations with the metagenes.
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Fig. 3. Images of the matrix B for q = 5: (a) colon (sorted from the top: 40 positive then 22 negative), (b) leukaemia (sorted from the top: 47 ALL, then
25 AML) and (c) lymphoma (sorted from the top: 42 DLCL, then 9 FL, last 11 CLL). All three matrices were produced using the GMF algorithm with 100
global iterations as described in the text.

Table 3
The presented estimates e1 and e2 were calculated using RSCTC data; # refers to the sequential index of the data set. The number of misclassified samples
are given in brackets.

# Model p0 = 1000 p0 = 2000
e1 q e2 q e1 q e2 q

1 SVM 0.113 (14) 17 0.113 (14) 27 0.105 (13) 34 0.105 (13) 25
2 MLR 0.295 (31) 32 0.305 (30) 20 0.305 (32) 34 0.314 (33) 28
3 MLR 0.116 (11) 6 0.116 (11) 32 0.179 (17) 11 0.084 (8) 32
4 MLR 0.469 (53) 9 0.460 (52) 16 0.460 (52) 2 0.469 (53) 37
5 MLR 0.326 (29) 6 0.314 (28) 7 0.337 (30) 3 0.281 (25) 27
6 MLR 0.337 (31) 8 0.293 (27) 39 0.315 (29) 4 0.337 (27) 18

Table 4
The presented estimates e1 and e2 were calculated using RSCTC data; # refers to the sequential index of the data set. The number of misclassified samples
are shown within brackets.

# p0 = 1000 p0 = 2000
e1 q e2 q e1 q e2 q

1 0.106 (13) 34 0.106 (13) 16 0.106 (13) 9 0.098 (12) 32
2 0.295 (31) 33 0.314 (33) 31 0.305 (32) 30 0.304 (32) 30
3 0.053 (5) 16 0.116 (11) 33 0.095 (6) 19 0.156 (15) 19
4 0.389 (44) 32 0.407 (46) 10 0.327 (37) 30 0.407 (46) 35
5 0.303 (27) 24 0.303 (27) 7 0.292 (26) 34 0.292 (26) 39
6 0.217 (20) 32 0.293 (24) 16 0.228 (21) 14 0.239 (22) 15

6. Conclusions

Wehave presented an algorithm for performing extremely fast general matrix factorization (GMF) of a high-dimensional
data matrix X . In practice some form of dimension reduction is invariably needed if standard or even nonstandard methods
of statistical analysis are to be employed to gain meaningful insight from high-dimensional data matrices. The algorithm
undertakes the factorization using gradient-based optimization for an arbitrary (differentiable) loss function. The p×n data
matrix X is approximated by the product of two matrices, ÂB̂, where the q × n factor matrix B̂ can be used in place of X for



V. Nikulin et al. / Statistics and Probability Letters ( ) – 9

a specified value of q taken to be much smaller than p. The n columns of B̂ contain the values of the qmetavariables for each
of the n observed data vectors. The stability of the algorithm depends essentially on a properly selected learning rate, which
must not be too big. We can provide additional functions so that the learning rate will be reduced or increased depending
on the current performance.

To demonstrate the usefulness of the reduced data matrix B̂ in the context of supervised classification, we applied it to
the data matrices from five cancer data matrices of microarray gene expressions that have been commonly analysed in the
medical and scientific literature. The classification of themicroarrays (tissue samples) containing these gene expressions are
of known classification with respect to g classes, where g varies from 2 to 4. The results suggest that GMF as implemented
by our algorithm is effective in providing a reduced data matrix for their subsequent use in forming a classifier that was
taken to be either the SVM in the case of g = 2 classes or logistic regression for g > 2 classes.

Some main issues associated with the use of GMF are the choice of the number q of metavariables (latent factors), the
interpretability of the metavariables, and the need for prefiltering of the variables before the factorization. These issues are
beyond the scope of this paper.

But briefly on these issues here, the choice of the number of metavariables q in supervised classification can be based
on the estimated error rate of the classifier formed from the specified number of metavariables. The situation is not as
straightforward in the context of cluster analysis where there are no training data of known origin even if there were some
a priori knowledge about the existence of some group structure in the data. One way to proceed in this context is to use the
stability in the clustering as the level of q is varied as a guide to its final choice (Brunet et al., 2004; Tamayo et al., 2007). The
question of whether there is a need for prefiltering in the context of cluster analysis has been considered recently by Zheng
et al. (2009).

The problem of interpretability of the metavariables is generally not as straightforward as with NMF’s since the latter
are nonsubtractive combinations of the original variables (Zheng et al., 2009). In general, we can calculate the correlations
between the original variables and the metavariables. For microarray data, we are currently designing a program that
automatically attempts to establish links between genes highly correlated with a metagene and the Gene Ontology (The
GO Consortium, 2009) and the pathway records of the Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al., 2010).
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