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WITH MICROARRAY DATA
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1. INTRODUCTION

Often the first step, and indeed the major goal for many microarray studies, is
the detection of genes that are differentially expressed in a known number of
classes, (1, ., C,. Statistical significance of differential expression can be tested by
performing a test for each gene. When many hypotheses are tested, the probabil-
ity that a type I error (a false positive error) is committed increases sharply with
the number of hypotheses. In this paper, we focus on the use of a two-
component mixture model to handle the multiplicity issue, as proposed initially
by McLachlan, Bean, and Ben-Tovim Jones (2006). This model is becoming more
widely adopted in the context of microarrays, where one component density cot-
tesponds to that of the test statistics for genes that are not differentially ex-
pressed, and the other component density to that of the test statistic for genes
that are differentially expressed. For the adopted test statistic, its values are trans-
formed to z-scores, whose null and non-null distributions can be represented by a
single normal each. We explain how this two-component normal mixture model
can be fitted very quickly via the EM algorithm started from a point that is com-
pletely determined by an initial specification of the proportion mg of genes that are

. not differentially expressed. Thete is an easy to apply procedure for determining

suitable initial values for mo in the case where the null density is taken to be stan-
dard normal (the theoretical null distribution). We also consider the provision of
an initial partition of the genes into two groups for the application of the EM al-
gorithm in the case whete the adoption of the theoretical null distribution would
appeat not to be appropsiate and an empirical null distribution needs to be used.
We demonstrate the approach on a data set that has been analyzed previously in
the bioinformatics literature.

In the above formulation of the problem, it is assumed that there is 2 nonzero
proportion of the genes that are differentially expressed. We shall consider also
an example where thete would appear to be no differentially expressed genes.
Hence it is advised in general that one should in the first instance cazry out a test
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of a single normal distribution versus a mixture of two normal components; that
is, a test of an empirical null only versus a mixture of an empirical null and non-
null normal component.

2. BACKGROUND

2.1. Notation

Although biological experiments vary considerably in their design, the data
generated by microarrays can be viewed as a matrix of exptession levels. For
microarray expreriments (corresponding to # tissue samples), where we measure
the expression levels of IN genes in each experiment, the results can be repre-
sented by N X 7 matrix. Typically, 7 is no mote than 100 (usually much less in
the present context), while the number of genes N is of the order of 104. The
tissue samples on the N available genes are classified with respect to g different
classes, and it is assumed that the (logged) expression levels have been preproc-
essed with adjustment for array effects.

2.2. Detection of differential expressions

Differential expression of a gene means that the (class-conditional) distribution
of its expression levels is not the same for all g classes. These distributions can
differ in any possible way, but the statistics usually adopted are designed to be
sensitive to primarily a difference in the means; for example, the oneway analysis
of variance (ANOVA) F-statistic. Even so, the gene hypotheses being tested are of
equality of distributions across the g classes, which allows the use of permutation
methods to estimate P-values if necessaty.

In the special case of g = 2 classes, the oneway ANOVA Flstatistic reduces to
the square of the classical (pooled) #statistic. Various refinements of the #statistic
have been suggested; see, for example, the procedure of Tusher ¢f a/ (2001).

3. TWO-COMPONENT MIXTURE MODEL

3.1. Posterior probability of nondifferential expression

In this paper, we focus on a decision-theoretic approach to the problem of
finding genes that are differentially expressed, as proposed in McLachlan, Bean,
and Ben-Tovim Jones (2006). Their approach is based on a two-component mix-
ture model as formulated in Lee ¢ 2/ (2000) and Efton e 4/ (2001). We let G de-
note the population of genes under consideration. It can be decomposed into two
groups Go and Gi, where Gy is the group of genes that are not differentially ex-
ptessed, and G is the complement of Gy; that is, Gi contains the genes that are
differentially expressed. We let m; denote the prior probability of a gene belonging
to G; (=0, 1), and assume that the common density of the test statistic I¥/; for a



Large-scale simultaneons inference with applications to the detection ete. 5

gene j in G; is fi{w). The unconditional density of W} is then given by the
two-component mixture model,

S () = 7o fo(w) + mA) @

Using Bayes Theorem, the postetior probability that the sth gene is not differ-
entially expressed (that is, belongs to Go) is given by

() = mo o) /f ) G= 1, N). @

In this framework, the gene-specific posterior probabilities provide the basis
for optimal statistical inference about differential expression. The posterior prob-
ability () has been termed the local false discovery rate (local FDR) by Efron
and Tibshirani (2002). It quantifies the gene-specific evidence for each gene. As
noted by Efron (2004), it can be viewed as an empirical Bayes version of the Ben-
jamini-Hochberg (1995) methodology, using densities rather than tail areas.

It can be seen from (2) that in order to use this posterior probability of nondif-
ferential expression in practice, we need to be able to estimate mp, the mixture
density f(w), and the null density f(»), or equivalently, the ratio of densities
fow)/f (w). Efton e al. (2001) has developed a simple empirical Bayes approach
to this problem with minimal assumptions. This problem has been studied since
under mote specific assumptions, including the work by Newton ef 4/ (2001,
2004), Lonnstedt and Speed (2002), Pan et al. (2002), Zhao and Pan (2003), Broét
et al. (2004), Newton ez a/. (2004), Smyth (2004), Do et /. (2005), and Gottardo ez
al. (2006), among many others. The fully parametric methods that have been pro-
posed are computationally intensive.

3.2. Bayes decision rule

Let o1 and ¢10 denote the two etrors when a rule is used to assign a gene as be-
ing differentially expressed or not, where ¢o1 is the probability of a false positive
and ¢q9 is the probability of a false negative. That is, the sensitivity is 1 - ¢10 and
the specificity is 1 - ¢o1. The so-called risk of allocation is given by

Risk = (1 - ¢)7oeot + e 610, ©)

where (1 - ¢) is the cost of a false positive. As the risk depends only on the ratio
of the costs of misallocation, they have been scaled to add to one without loss of
generality.

The Bayes rule, which is the rule that minimizes the risk (3), assigns a gene to
G1if w () < ¢, otherwise, the jth gene is assigned to Go.

4. SELECTION OF GENES

In practice, we do not know the prior probability m nor the densities /() and
Jf (), which will have to be estimated. We shall shortly discuss a simple and quick
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approach to the estimation problem. If 7, ]A‘O (w;),and ]A‘l(w ;) denote estimates

of m, fo(w), and fi(w), respectively, the gene-specific summaties of differential ex-
pression can be expressed in terms of the estimated postetrior probabilities
Zo(w;), where

t ()= 2o fow ) ,)  (j=1,.N) @)

is the estimated posterior probability that the jth gene is not differentally ex-
pressed. An optimal ranking of the genes can therefore be obtained by ranking

the genes according to the 7o (»;) ranked from smallest to largest. A short list of

genes can be obtained by including all genes with 7,(w;) less than some thresh-
old ¢ or by taking the top Np genes in the ranked list.

4.1. FDR

Suppose that we select all genes with

o)< 6. ©)
Then McLachlan ez 2/. (2004) have proposed that the false discovety rate (FDR) of
Benjamini-Hochberg (1995) can be estimated as

N
FDR :Zfo(”/j)I[o,;o](TAO(”’/'))/NM (©6)
=]

where IN; is the number of selected genes and Ls (x) is the indicator function,
which is one if x € .4 and is the zero otherwise.
Similarly, the false nondiscovery rate (FNDR) can be estimated by

S N
ENDR = #,(w )], w (Eo(w,))/ (N =DNy). ™
J=t

We can also estimate the false positive rate (FPR), ep1, and the false negative
(FNR), ¢10, in a similar manner to give

— N N
FPR :zfo(”/j)f[o,[o] (TAO(W/))/ZTAO(”’/) ®
=1 J=1
and
— N N
ENR =Y 8w ), wyEow )/ D 81 (w)) &)
= j=1

respectively.
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When controlling the FDR, it is important to have a guide to the value of the
associated FNR in particular, as setting the FDR too low may result in too many
false negatives in situations where the genes of interest (related to the biological
pathway or target drug) are not necessarily the top ranked genes; see, for example,
Pawitan e¢# a/. (2005). The local FDR in the form of the posterior probability of
nondifferential expression of a gene has an advantage over the global measure of
FDR in interpreting the data for an individual gene; see more details in Efron
(2005b).

5. USE OF Z-SCORES

5.1. Normal transformation
We let I7;denote the test statistic for the test of the null hypothesis
H;: jth gene is the not differentially expressed. (10)

For example, as discussed above, IV/;might be the # or F-statistic, depending on
whether there are two or multiple classes. Whatever the test statistic, we follow
McLachlan e /. (2006) and proceed in a similar manner as in Efron (2004) to
transform the observed value of the test statistic to a g-score given by

z= 0 (1-F), 11

where P;is the P-value for the value »; of the original test statistic I; and @ is the
N(O, 1) distribution function. Thus

P=1—Fo(w) + Fo(-w), (12

where I is the null disttibution of ;. If F is the true null distdbution, then the
null distribution of the test statistic Z; corresponding to g; is exactly standard
normal. With this definition of g, departures from the null are indicated by large
positive values of . The transformation (11) is slightly different to that in Efron
(2004), as we wish that only large positive values of the g-score be consistent with
the alternative hypothesis; that is, we want the latter to be (uppex) one-sided so
that the non-null distribution of the g-scote can be represented by a single normal
distribution rather than a mixture in equal proportions of two normal compo-
nents with means of opposite sign. Previously, Allison ez 4/ (2002) had considered
mixtute modelling of the P-values directly in terms of a mixture of beta distribu-
tions with the uniform (0,1) disttibution (a special form of a beta distribution) as
the null component. Pounds and Mortis (2003) considered a less flexible beta
mixture model for the P-values, being a mixture of a uniform (0,1) distribution
for the null and a single beta distribution for the non-null component. In the
wotk of Broét ef 4/ (2004), they used a transformation similar to the approxima-
tion of Wilson and Hilferty (1931) for the chi-squared distribution to transform
the value Fjfor the F-statistic for the jth gene to an approximate g-scote.
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5.2. Permutation assessment of p-value

In cases where we are unwilling to assume the null distribution F of the origi-
nal test statistic I; for use in our normal transformation (11), we can obtain an
assessment of the P-value P; via permutation methods. We can use just permuta-
tions of the class labels for the gene-specific statistic ;. This suffers from a
granularity problem, since it estimates the P-value with a resolution of only 1/B,
where B is the number of the permutations. Hence it is common to pool over all
N genes. The drawback of pooling the null statistics across the genes to assess the
null distribution of I¥}is that one is using different disttibutions unless all the null
hypotheses H; are true. The distribution of the null values of the differentially ex-
pressed genes is different from that of the truly null genes, and so the tails of the
true null distribution of the test statistic is overestimated, leading to consetvative
inferences; see, for example, Pan (2003), Guo and Pan (2005), and Xie e 4/
(2005).

6. TWO-COMPONENT NORMAL MIXTURE

By working in terms of the giscores as defined by (11), we can provide a para-
metric version of the two-component mixture model (1) that is easy to fit
(McLachlan ef al, 2006). The density of the test statistic Z; corresponding to the
use of the g-score (11) for the jth gene is to be represented by the two-
component normal mixture model

S &) = mh(z) + 1), 13)

where m1 = 1 - mp . In (13), o(g;) = # (355 0, 1) is the (theoretical) null density of Z,
where ¢ (3 ; % ¢*) denotes the normal density with mean z and vatiance ¢2, and

/i(g) is the non-null density of Z; It can be approximated with arbitrary accuracy
by taking g sufficiently large in the normal mixture representation

q
A& =D my b5 y,01) - (14)
5=1

For the data sets that we have analysed, it has been sufficient to use just a single
normal component (g = 1) in (14). In such cases, we can write (13) as

f(%j):”o¢(zj3031)+”1¢(%j5ﬂ1>°_12)' (15

As pointed out in a seties of papets by Efron (2004, 2005a, 2005b), for some
mictroarray data sets the normal scores do not appear to have the theoretical null
distribution, which is the standatd normal. In this case, Efron has considered the
estimation of the actual null distribution called the empirical null as distinct from
the theoretical null. As explained in Efton (2005b), the two-component mixture
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model (1) assumes two classes, null and non-null, whereas in reality the differ-
ences between the genes range smoothly from zero or near zero to very large.

In the case where the theoretical null distribution does not appear to be valid
and the use of an empirical null distribution would seem appropriate, we shall
adopt the two-component mixture model obtained by replacing the standard
normal density by a normal with mean u and variance o to be inferred from
the data. That is, the density of the g-score is modelled as

f(%j):7[0¢(Zj;/“0>0'§)+”1¢(f<j§/-ll>o'12) (16)

In the sequel, we shall model the density of the g-score by (16). In the case of
the theoretical N(0, 1) null being adopted, we shall set 1o = 0 and 0'3 = 11in (16).

7. FITTING OF NORMAL MIXTURE MODEL

7.1. Theoretical null

We now describe the fitting of the two-component mixture model (15) to the
%, firstly with the theoretical N(0, 1) null adopted. In order to fit the two-

component normal mixture (15), we need to be able to estimate 7, 1 , and ol

This is effected by maximum likelihood via the EM algorithm of Dempster ef al.
(1977), using the EMMIX program as desctibed in McLachlan and Peel (2000); see
also McLachlan and Krishnan (1997). To provide a suitable starting value for the
EM algorithm in this task, it is noted that the maximum likelilhood (ML) estimate
of the parameters in a two-component mixture model satisfies the moment equa-
tions obtained by equating the sample mean and variance of the mixture to their
population counterparts, which gives

R = Rolly + Ty an
and
57 =708 + 461 + gy (B — ) (18)

where 7; =1-7,. For the theotetical null, /4, =0 and of =1 and on substitut-
ing for them in (17) and (18), we obtain

iy =3/ (1- %) 19)

and

‘312={f§"7%0‘;[0(1_7%0)!712}/(1_7%0)- 20)
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Hence with the specification of an initial value 7" for 7, initial values for the
other patameters to be estimated, 4 and o7 , are automatically obtained from 19)

and (20). If thete is a problem in so finding a suitable solution for £ and 0'1(0)z , 1t

gives a clue that perhaps the theoretical null is inapproptiate and that consideration

should be given to the use of an empitical null, as to be discussed shortly.
Following the approach of Storey and Tibshirani (2003) to the estimation of o,

we can obtain an initial estimate z{’ for use in (19) and (20) by taking 7 to be

2 () =z, 13, <&/ {NOE)}, @1

for an appropriate value of & . There is an inherent bias-variance trade-off in the

choice of £. In most cases as & grows larger, the bias of 73 (£) grows larger, but
the variance becomes smallet.

7.2. Empirical null

In this case, we do not assume that the mean u and variance 0'3 of the null
distribution are zero and one, respectively, but rather they are estimated in addi-

tion to the other parametets 7o, s, and o7 . For an initial value 78 for m, we let

m be the greatest integer less than or equal to Nz{”, and assign the # smallest

values of the g;to one class corresponding to the null component and the remain-
ing N - mo to the other class corresponding to the altetnative component. We then
obtain initial values for the mean and vatiances of the null and alternative com-
ponents by taking them equal to the means and vatiances of the corresponding
classes so formed. The two-component mixtute model is then run from these
starting values for the parameters.

8. EXAMPLE: BREAST CANCER DATA

We consider some data from the study of Hedenfalk ¢# 4/ (2001), which exam-
ined gene expressions in breast cancer tissues from women who wete carriers of
the hereditary BRCAT or BRCA2 gene mutations, predisposing to breast cancer.
The data set comprised the measurement of N = 3, 226 genes using cDNA arrays,
for m =7 BRCA 1 tumours and 7 = 8 BRCA2 tumouts. We column normalized
the logged expression values, and ran our analysis with the aim of finding differ-
entially expressed genes between the tumours associated with the different muta-
tions. As in Efron (2004), we adopted the classical pooled #statistic as our test
statistic IV} for each gene j and we used the #distribution function with 13 degrees
of freedom, Fi3, as the null distribution of IV} in the computation of the P-value
P; from (12).
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~ We fitted the two-component normal mixture model (15) with the standard
normal N(0, 1) as the theoretical null, using various values of 7z}, as obtained

from (21). For example, using (21) for £ = 0 and -0.675, led to the initial values of
0.70 and 0.66 for . The fit we obtained (corresponding to the largest local

maximum) is given by 7, =0.65, /4 =149, and &7 =0.94 . In Figure 1, we dis-
play the fitted mixture density superimposed on the histogram of g-scores, along
with its two components, the theoretical IN(0,1) null density and the
N(1.49, 0.94) non-null density weighted by their prior probabilities of 7, and

(1- 7). It can be seen that this two-component normal mixture model gives a
good fit to the empirical distribution of the g-scores.

In Table 1, we have listed the FDR estimated from (6) for various levels of the
threshold win (5). It can be seen, for example, that if «is set equal to 0.1, then the
estimated FDR is 0.06 and IN, = 143 genes would be declared to be differentially
expressed. It is not suggested that the FDR should be controlled to be around
0.05. It is just that in this example, its control at this approximate level yields a
number (143) of differentially expressed genes that is not too unwieldy for a bi-

ologist to handle in subsequent confirmatory experiments; the choice of g is dis-
cussed in Efron (20055).

TABLE 1

Estimated FDR and other error for various levels of the thresohold co applied to the posterior probability of
nondifferential expression for the breast cancer data, where N, is the number of selected genes (with theoretical null)

‘& N, DR FNDR FNR FPR
0.1 143 0.06 0.32 0.88 0.004
0.2 338 0.11 0.28 0.73 0.02
03 539 0.16 025 0.60 0.04
0.4 743 0.21 022 0.48 0.08
05 976 027 0.18 0.37 013

In the original paper, Hedenfalk ez @/ (2001) selected 176 genes based on a
modified F-test, with a p-value cut off of 0.001. Comparing genes which were se-
lected in our set of 143, we found 107 in common, including genes involved in
DNA repair and cell death, which are over-expressed in BRCAl-mutation-positive
tumours, such as MSH2 (DNA tepait) and PDCD5 (induction of apoptosis). Storey
and Tibshirani (2003) in their analysis of this data set, selected 160 genes by
thresholding genes with g-values less than or equal to & = 0.05 (an arbitrary cut-
off value), of which there are 113 in common with our set of 143. Overall, 101
genes were selected in common to all three studies, with 24 genes unique to our
set. We searched publicly available databases for the biological functions of these
genes, and found these included DNA repair, cell cycle control and cell death,
suggesting good evidence for inclusion of these genes.
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Figure 1 — Breast cancer data: plot of fitted two-component normal mixture model with theoretical
N(0, 1) null and non-null components (weighted respectively by 7, and (1 - 7,)) imposed on his-
togram of g-scores.

Among other analyses of this data set, m was estimated to be 0.52 by Broét ez

al. (2004), 0.64 by Gottardo ez a (2006), 0.61 by Ploner ¢ al. (2006), and 0.47 by
Storey (2002). In the fully parametric Bayesian approach of Broét ez a/. (2004), the
mean of the null component was fixed at zero, but the vatiance was allowed to be
free during the estimation process for computational convenience. In Ploner e /.
(2000), 56 genes with highly extreme expression values wete first removed as in
Storey and Tibshirani (2003).

Concerning the other type of allocation rates for the choice of & = 0.1 (5), the
estimates of the FNDR, FNR, and FPR are equal to 0.32, 0.88, and 0.004, respec-
tively. The FNR of 0.88 means that there would be quite a few false negatives
among the genes declared to be null (not differentially expressed). Analogous to
the miss rate of Taylor ef 4/ (2003), we might wish to have an idea of how many
false negatives there would be in, say, the next best 57 genes with estimated pos-
terior probability of nondifferential expression greater than @ = 0.1, which takes
one down to the 200t best ranked gene. We can obtain an estimate of this quan-
tity by finding the average of the 7, (g) values for these next 57 genes. In the case
of @ = 0.1, it is 0.89, implying that among the 57 next best genes (all declated to
be null genes), approximately 51 are actually non-null.

We also considered the fitting of the two-componet normal mixture model

(16) with the null component mean and vatiance, 4 and ol , now estimated in

addition to m and the non-null mean and vatiance , z1 and o7 . As can be seen
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from Figure 2, the fit from using the empirical null in place of the N(O0, 1) theo-
retical null is similar to the fit in Figure 1.

In other analyses of this data set, Newton ez 2/ (2001), Tusher ez 2/ (2001), and
Gottardo ef a/. (2006) concluded that there were 375, 374, and 291 genes, respec-
tively, differentially expressed when the FDR is controlled at the 10% level. It can
be seen from Table 1 that our approach gives 338 genes if a thresold of 0.2 is im-
posed on the posterior probability of nondifferential expression for which the
implied FDR is 11% and the FNR is 73%. The corresponding values with the use
of the empirical null can be from Table 2 to be 13% and 77% for the FDR and
FNR, respectively, with 212 genes declared to be differentially expressed.

empirical null
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Fignre 2 — Breast cancer data: plot of fitted two-component normal migture model with empirical
null and non-null components (weighted respectively by 7y and (1 - 7)) imposed on histogram of
g-scores,

TABLE 2

Estimated FDR and other error rates for varions levels of the thresohold ¢y applied to the posterior probability of
nondifferential expression for the breast cancer data, where N, 7s the number of selected genes (with empirical null)

% N, FDR FNDR FNR FPR
0.1 62 0.07 023 0.93 0.00
02 212 0.13 0.20 0.77 0.01
03 343 0.17 0.18 0.64 0.02
0.4 504 0.23 0.15 051 0.05
05 644 0.28 0.13 0.41 0.07

The (main) reason for fewer genes being declared differentially expressed with
the use of the empirical than with the theoretical null is that the estimate of 7o is

greater (7,= 0.76). According to the Bayesian Information ctitetion (BIC), the
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empirical null would not be selected in favour of the theoretical IN(0, 1) null. The
same decision was reached too after we adopted a resembling approach (McLach-
lan, 1987) to catry out a formal test of a theoretical versus empirical null, using
the likelihood ratio test statistic.

9. CLUSTER ANALYSIS APPROACH

Another approach to this problem would be make to more assumptions and
model the expression level for each gene. Then we can use the model-based pro-
cedure EMMIX-WIRE of Ng e# 2/ (20006) to cluster the gene profiles. More specifi-
cally, we let

yi= .y ) (22)

denote the expression profile for the jth gene, where

T
Y= (.)’yl "“’.J,y)//i )

denotes the vector containing the # expression levels of the jth gene in Class
7(i=1,2). That is, yz denotes the expression level of the jth gene in the Ath mi-
croatray expetiment in the s7th Class ¢(=1,2; j=1, .., N; £=1, .., 7), and
m=m t .

We model the distribution of the profile vector y; for the sth gene by a
g-component mixture with each component specified by a linear mixed model.
Conditional on its membership of the 4th component of the mixture, we assume
that y; follows a linear mixed-effects model (LMM),

y,=XB,+Ub, +Vc, +¢,, 23)

whetre B =(0n, Pfr)T is the vector of fixed effects (h=1, ..., 9. In (23), by =
(bnj, bio)T and ¢, (a 7-dimensional vector ) represent the unobservable gene- and
cluster-specific random effects, respectively, conditional on membership of the
bth cluster. The random effects b, and ¢, and the measurement etror vectots

(s,ﬂ,...,s,};,)T are assumed to be mutually independent, where X, U, and V are
known design matrices of the corresponding fixed or random effects. Here the
design matrices X and U are taken to be equal to the 7X2matrix with the first
7 rows equal to (1, 0) and the next m = m — # rows equal to (0, 1), and Vis
equal to Z,, where the latter denotes the m X7 identity matrix. The presence of
the random effect ¢, for the expression levels of genes in the 4th component in-
duces a cotrelation between the profiles of genes within the same clustet.

With the LMM, the distributions of byand ¢; are taken, respectively, to be mul-
tivatiate normal No(0, By) and N,(0, 041,), where 1, is the mx» identity mattix.
The presence of the random effect term by is to allow for correlation between the
tissue samples. If the covariance matrix B; is diagonal, then it implies that the ex-
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pression levels of a gene in different classes are uncortelated. In an ideal experi-

ment, one would hope that there would be no cotrelations between the tissue

samples, and we could dispense with this random effects term by, in the model.
The measurement error vector sy is also taken to be multivariate normal

N0, A,), where A, = diag( H ¢,) is a diagonal matrix constructed from the vec-

tor (H¢,), where here H=X and ¢, =(0},,0,,)" . That is, we allow the Ath
component variance to be different among the two classes of microarray experi-
ments.

The vector ¥ of unknown parameters can be obtained by maximum likelihood
via the EM algorithm, proceeding conditionally on the cluster-specific random ef-
fects ¢. The E- and M-steps can be implemented in closed form. In particular, an
apptoximation to the E-step by cartrying out time-consuming Monte Carlo meth-
ods is not requited. A probabilistic or an outright clusteting of the genes into g
components can be obtained, based on the estimated postetior probabilities of
component membership given the profile vectors and the estimated cluster-
specific random effects ¢,(h=1,..., g).

Before we cluster the gene profiles, we normalized the expression levels in
each gene profile so that they have mean zero and standard deviation one. With
this normalization of the gene profiles, we fit 2 g = 3 component mixture model,
where we let ;1 and S, denote the fixed effects for the means of the two classes.
The clustering of .the gene profiles is not invariant under this normalization, but
in our experience, it has proved to be a reasonable way to proceed. With this
normalization, the intent to find three clusters whete (a) for one cluster, the esti-
mate of the fixed effects for the two class means are approximately zero, (fi1 =
P2 = 0), corresponding to the genes that are not differentially expressed; (b) for a

second cluster, £ < f,,, cortesponding to genes that (before normalization) are

upregulated mote in Class C; than in Class G (c) for a third cluster, f,, < ﬁA32 ,
corresponding to genes that are downregulated more in Class C; than in Class G,.

On fitting EMMIX-WIRE to the normalized gene profiles, we obtained three
clusters in  proportions 7z, =0.63, 7, =014, ;=023 with

B, = (0.06,-0.057, f,=(0.56,-0.49)T, and 3, =(- 0.42, 0.37)T. If we take the
genes in the first cluster to be the null genes, then our estimate of the proportion
of null genes is 7, = 0.63, which is in general agreement with that obtained above
using the -scores.

In Table 3, we have listed the FDR estimated from (6) fot various levels of the
threshold @. On compating this table with Tables 1 and 2, it can be seen that for
approximately the same FDR level, we declare more genes to be differentially ex-
pressed but with a lower FNR by working with the full data (the gene profiles)
rather than the profiles in reduced form as summarized by their g-scores. How-
evet, the validity of this approach in modelling the full data obviously depends on
much stronger distributional assumptions.
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TABLE 3

Estimated FDR and other error rates for various levels of the thresobold ¢y applied to the posterior probability of
nondifferential exgpression for the breast cancer data, where N, is the number of selected genes: clustering approach

% N, FDR FNDR FNR FPR
0.1 257 0.06 0.32 0.79 0.01
0.2 480 0.10 0.27 0.63 0.02
0.3 678 0.14 0.24 0.51 0.05
0.4 854 0.18 0.20 0.41 0.08
0.5 1048 0.23 0.17 0.32 0.12

10. RESULTS FOR A DIFFERENT VERSION OF THE HEDENFALK DATA

Efron (2004) writes that “thete is ample reason to distrust the theoretical null”
in the case of the Hedenfalk data, whereas above we have found that the theo-
retical and empirical null distributions are similar to each other. The difference in
out findings may be due to the fact that our gene expression data seems to differ
when compared with the expression data presented in Efron and Tibshirani
(2002). Thus, the breast cancer data of Hedenfalk e# 2/ (2001) that we have ana-
lysed above is not the same as analysed in the papers of Efron (2004, 20052,
2005b).

In Figute 3, we display the histogram of the g-scores as obtained by Efron
(2004) for this data set, along with the N(0, 1) distribution and the IN(0.05, 2.05)
distribution with mean and vatiance equal to the sample mean and variance of the
g-scotes. His g-score is defined to be

%= @(Fs(®), _ (24)

whete 7is the pooled two-sample #statistic and Fis is its distribution, which is the
tdistribution with 13 degrees of freedom. Thus non-null genes can have either
large positive ot large negative values for g-scores. If we use the “empirical” dis-
tribution N(0.05, 2.05) as the null distribution on its own (without a non-null
component) then it can be seen from Figure 3 that no genes would be declared to
be differentially expressed.

We now consider the two-component mixture normal approach applied to the
same data as analysed in the papers of Efron. We did this by converting his two-
sided g-scores to our one-sided ones. But before we considered fitting a two-
component normal mixture to the latter, we need to address the question of
whethet we really need a non-null component in our model; that is, whether there
are any genes that are differentially expressed (o = 1). We therefore carried out a
test of a single normal distribution with unspecified mean and variance (empirical
null) versus a mixture of an empirical null and a non-null component. It was
found in accordance with the conclusions of Efron that a single normal distribu-
tion suffices.
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Fignre 3 — Breast cancer data: plot of N(0, 1) distribution and IN(0.05, 2.05) imposed on the histo-
gram of g-scotes as analyzed in Efron’s papers.

11. DISTRIBUTION

In this paper, we consider the problem of detecting which genes are differen-
tially expressed in multiple classes of tissue samples, where the classes represent
vatious clinical or experimental conditions. The available data consist of the ex-
pression levels of typically a very lazge number of genes for a limited number of
tissues in each class. Usually, a test statistic such as the classical # in the case of
two classes or the F in case of multiple classes is formed for a test of equality of
the class means. The key step in this approach is to transform the observed value
of the test statistic for each gene j to a z-score g by using the inverse standard
normal disttibution function of the implied P-value P, similar to its use in Efron
(2004) and his subsequent papers on this problem. Typically, a two-component
normal mixture model is adequate for modelling the empirical disttibution of the
grscotes, where the first component is the standard normal, corresponding to the
null distribution of the score, and the second component is 2 normal density with
unspecified (positive) mean and variance, cortesponding to the non-null distribu-
tion of the score. This model can be used to provide a staightforward and easily
implemented assessment of whether a gene is null (not differentially expressed) in
terms of its postetior probability of being a null gene. Estimates of this postetior
probability can be easily obtained by using the EM algorithm to fit the two-
component normal mixture model via maximum likelihood. As there are multiple
local maximizers, consideration has to be given to the choice of starting values

for the algorithm. We show that the specification of an initial value 7§ for the
proportion 7o of null genes completely specifies a starting point for the fitting of
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the normal mixture model with the teoretical choice of N(0, 1) as the null com-
ponent. An interval of values for z{ can be tried, and a guide to its endpoints is

given by values of 7y obtained by equating the number of z; values less than a
threshold £'to the expected number under the theoretical N(0, 1) null component.
We consider too the case whete the theotretical IN(0, 1) null is not tenable and
an empirical null is adopted with the mean and the vatiance estimated from the
data. Also, the estimation of the false discovery rate and its control are consid-
ered, along with the estimation of other relevant rates such as the false negative
rate. Note that it is not valid to make claims as to the telative supetiotity of the
two models corresponding to the theoretical and empirical nulls on the basis of
these error rates, as they are only valid for the model under which they were cal-
culated.

Concerning the choice between the use of the theoretical N(0, 1) null and an
empirical null, the intent in the first instance is to use the former in modelling the
density of the g-scores. In some situations, it will be clear that the use of the
theoretical null is inappropriate. In other situations, an informed choice between
the theoretical and empirical null components can be made on the basis of the
increase in the log likelihood due to the use of an empitical null with its two extra
patameters. For this purpose we can use BIC or a resampling approach to assess
the P-value of a formal test based on the likelihood ratio test statistic. Recent re-
sults of the authors suggest that the latter approach is preferable to the use of BIC
in this context.

In the version of the Hedenfalk data as analysed the papets by Efron, it ap-
pears that there are no genes that are differentially expressed. Hence in general
before we proceed to fit a two-component notmal mixture model with either a
theoretical or an empirical null, the question of whether a single normal distribu-
tion is adequate needs to be considered first in situations whete it is not obvious
that there are some genes present that are differentially expressed.

The reliability of our approach obviously depends on how well the proposed
two-component notrmal mixture model approximates the empitical disttibution
of the gj-scores. Its fit can be assessed either by visual inspection of a plot of the
fitted normal mixture density versus a histogram of the gscotes ot, mote for-
mally, by a likelihood ratio test for the need for an additional normal density to
represent the non-null distribution of the g-scotes. On a similar note on the ade-
quacy of a two-component normal mixture model, Pounds and Moztis (2003)
found that a two-component mixture of the uniform (0, 1) disttibution and a sin-
gle beta component (with one unspecified unknown parameter) was adequate to
model the distribution of the P-values in their analyses. Howevet, it is advanta-
geous to work as proposed here in terms of the g-scotes, which can be modelled
by normal components on the real line rather than working in tetms of the
P-values.

Finally, we should mention explicitly that the adoption of the standatd notrmal
for the null distribution is equivalent to assuming that the genes ate all independ-
ently distributed. Typically in practice, this independence assumption will not
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hold for all the genes. As cautioned by Qiu e# /. (2005), care is needed in extrapo-
lating results valid in the case of independence to dependent gene data.
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Unipersity of Queensiand, Anstralia
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University of Queensiand, Australia SHU KAY NG

REFERENCES

D.B. ALLISON, G.L. GADBURY, M. HEO, ].R. FERNANDEZ, C.-K. LEE, T.A. PROLLA and R. WEINDRUCH
(2002), A mixture model approach for the analysis of microarray gene expression data., “Computa-
tional Statistics & Data Analysis”, 39, pp. 1-20.

Y. BENJAMINI and Y. HOCHBERG (1995), Controlling the false discovery rate: a practical and powerful
approach to multiple testing, “Journal of the Royal Statistical Society”, B57, pp. 289-300.

P. BROET, A. LEWIN, S. RICHARDSON, C. DAIMASSO and H. MAGDELENAT (2004), A mixture model-
based strategy for selecting sets of genes in multiclass response microarray experiments, “Bioinformat-
ics”, 20, pp. 2562-2571.

A.P. DEMPSTER, N.M. LAIRD and D.B. RUBIN (1977), Masxcinum likelihood from incomplete data via the
EM algorithm (with discussion). “Journal of the Royal Statistical Society”, B39, pp. 1-38.

K.-A. DO, P. MULLER and F. TANG (2005), .4 Bayesian nixture model for differential gene exqpression.
“Applied Statistics”, 54, 627-644.

B. EFRON (2004), Large-scale simnltancous hypothesis testing: the choice of a null hypothesis, “Journal
of the American Statistical Association”, 99, 96-104.

B. EFRON (20052), Sekction and Estimation for Large-Scale Simultancons Inference, “Technical Re-
port”, Stanford, CA: Department of Statistics, Stanford University, http://www-
stat.stanford.edu/ “brad/papers/Selection.pdf.

B. EFRON (2005b), Local False Discovery Rates. ““Technical Report”, Stanford, CA: Depart-
ment of Statistics, Stanford University, http://www-stat.stanford.edu/"brad/papers/

. False.pdf.

B. EFRON, R. TIBSHIRANI (2002), Empirical Bayes methods and false discovery rates for microarrays,
“Genetic Epidemiology.”, 23, pp. 70-86.

B. EFRON, R. TIBSHIRANL, J.D. STOREY and V.G. TUSHER (2001), Empirical Bayes analysis of a microar-
ray experiment, “Journal of the American Statistical Association”, 96, pp. 1151-1160.

R. GOTTARDO, AE. RAFIERY, K.Y. YEUNG and RE. BUMGARNER (2006), Bayesian robust inference for
differential gene expression in cDNA mitcroarrays with multiple samples, “Biometrics”, 62, to appeat.

X. GUO, W. PAN (2005), Using weighted permutation scorse to detect differential gene expression with mi-
croarray data, “Journal of Bioinformatics and Computational Biology”, 3, pp. 989-1006.

1. HEDENFALK ¢f al. (2001), Geng-excpression profiles in hereditary breast cancer, “The New England
Journal of Medicine”, 344, pp. 539-548.

M.-L.T. LEE, E.C. KUO, G.A. WHITMORE and J. SKLAR (2000), Importance of replication in microarray
gene excpression studies: statistical methods and evidence from repetstive cDNA hybridigations, “Pro-
ceedings of the National Academy of Science”, Us4 97, pp. 9834-9838.

L. LONNSTEDT, T. SPEED (2002) Replicated niicroarray data, “Statistica Sinica”, 12, pp. 31-46.

GJ. MCLACHLAN (1987), On bootstrapping the likelihood ratio test statistic for the number of comgpo-
nents in a normal mixture, “Applied statistics”, 36, pp. 318-324.



22 G.]. McLachlan, K. Wang S.K. Ng

DISCUSSION

Marco Alfo

First of all, T would like to thank the Editor for giving the possibility to discuss
this interesting paper. The authors are to be commended for developing an intet-
esting approach to the analysis of microarray data. It is commonly acknowledged
that 2 major problem in this kind of experiments is the detection of genes that
behave differently when two or more groups are compared.

Thus, the first section entails approaches to handle multi-group microatray
data, along the lines of eg. McLachlan e /. (2006), and Efron (2006, 2008). The
proposed approach is based on subsequent steps; first a (parametric) statistical
test is performed. Afterwards, a p-value is calculated and mapped back to zeta-
scotes, which are modelled by using a two-component mixture with Gaussian
kernel. In that context, a null distribution is used to model non differentially ex-
pressed genes, while those genes which show higher values (on the scale defined
by complementing p-values) are modelled using an extra Gaussian component.
To select differentially expressed genes, the authors propose to control for FDP
as well as FNP to help the choice of the selection threshold, say cp, such that

T(w;)S ¢

where 7(-) indicates the posterior probability that a gene is non-differentially ex-

pressed, once a value has been recorded for the adopted statistical test W. The
Authors discuss explicitly only the single-channel slide case, but the proposed ap-
proach can be straightforwardly applied to double-channel studies, whete the null
hypothesis is that of a unit (in absolute value) ot zero (on a log scale) mean.

As far as I understand, the use of a parametric statistical test is not discussed at
length; just the potential adoption of alternative test procedures, e.g. based on
permutation test, is outlined. However, the use of the pooled t-statistic may lead
to biased p-values especially when the distribution of the observed expression
levels is far from being Gaussian, unimodal or symmetric. The latent assumption
of a common distribution, i.e. of a simple location change when we pass from the
non-differentially expressed genes to the differentially expressed, is unverified,
unverifiable and, probably, there is a general need for simulation studies compar-
ing parametric to nonparametric approaches. Further, a general change in the
shape of the distribution may not be recognized if an empirical null is used. Here
is one of the central points of the paper: the choice between a theoretical and an
empirical null; the choice is not discussed apart from a generic reference to Efron
(2005). However, what if we adopt an empirical null with po=0.2? Does this
component still represent non-differentially expressed genes? From this point of
view, the theoretical null has a number of clear advantages; it depicts non null
genes as distributed around 0, with a vatiance which is constant over experiments
and does not depend on the slides at hand (and thus dramatically on the capacity
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of filtering the observed data). The theoretical null may prevent form the use of a
too-data-dependent null which is quite far from the standard idea of a null distri-
bution. Probably, the authors have adopted this approach to use standard tools
related to statistical hypothesis testing, such as the FDR (or estimated counterpart
FDP) and FNR (resp FNP), see e.g. Farcomeni (2008). But the same tools may
be used in a standard two component mixture where no average across condi-
tions and no parametric test are adopted. Here, we may need some ordering on
the mean parameters to select differentially expressed genes; however, this ap-
proach is, from my perspective, still not convincing, since it relies on imprecise
measurements and on unverifiable hypothesis of component-specific Gaussian
components, and thus it is based on simple location change as well. A further
possibility, could be that of basing the “theoretical” null on a certain set of “con-
trol” spots, where we know that baseline (i.e. non expressed) genes are placed. In
this case, we could refer to an empirical null which is estimated from the data, but -
only on null genes, with greater flexibility in estimating measurement error vati-
ance. However, let us suppose we accept the idea of a theoretical/empitical null
vs. a non-null component; what about if u=1? Does this component represent
differentially expressed genes ot simply depicts asymmetry and/or multimodality
in the distribution of the observed p-values? How can we assess the difference is
significant, not just on the basis of model fit?

Futthermore, potential dependence across genes as well as within genes (across
experimental conditions) is not discussed at all, and this may lead to biased p-
values as well as to masked interactions within subset of genes (resp. experimental
conditions); in this respect the standard finite mixture approach could greatly help
since independence holds conditionally. As far as the computational side is con-
cerned, the choice of starting values for the EM algorithm is somewhat question-
able; in this respect, we would need to have additional information about the sen-
sitivity of the adopted algorithm to different choice for the starting values. For
example, since the mo parameter represents the prior weight for the null genes,
would a wrong choice for this parameter lead to biased values for the FNP? And
could this lead to an incotrect choice for the selection threshold? Results from
the BRCA data are somewhat different from those obtained by Efron (2008); this
could be due to the choice of the empirical null (which is the effect of the BIC
selection?), to the adopted modelling approach, or to different data being ana-
lyzed as detailed in §10. However, the results for the BRCA data are quite close to
those obtained by other authors, and a large portion of selected genes seems to
be shared by more than one analysis.

The second section somewhat modifies the perspective, and discusses the use
of linear mixed effects model with gene and component-specific random effects.
The focus is still on the comparison of genes expression profiles between two or
more expetrimental conditions. Here, gene-specific random effects allow for
within-gene (i.e. across experimental conditions) correlation, while component-
specific effects allow for cotrelation between genes within the same component.
Fixed effect parameters are used to discriminate between non-differentially ex-
pressed and differentially expressed genes. The approach is quite well-established
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and a number of software routines (among others those contained in the EM-
MIX-WIRE of Ng ez al. (2006)) can be used for parameter estimation. The model
can also be extended to the biclustering context, i.e. to those cases where unsu-
pervised classification of both genes and experimental conditions is needed. This
extension could be pursued by appropriate specification of the matrix V which is
actually attached to cluster-specific random effects; a similar extension has been
discussed in Martella et al. (2008).

When the BRCA data are concerned, the estimate for mo (hete m1) is close to
that obtained using the z-scotes, and a set of 257 genes would be selected by set-
ting co=0.1, with a FNP value which is actually smallet than that obtained by
working with zeta-scores and theoretical or empitical null (in the last case is much
smaller). Even if the validity of this apptoach obviously depends on much
stronger and unverifiable distributional assumptions.

Let me thank, again, the Editor and the Authots for stimulating such an in-
sightful (I hope) discussion.

Dipartimento di Statistica, Probabilita ¢ Statistiche Applicate MARCO ALFO
Universitd di Roma “La Sapienza”
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Elia Biganzgoli

The present discussion, develops the implications trelated to translational re-
search coming from Professor Mc Lachlan’s paper. Actually, in biomedical re-
search, expectations concerning tailoring of therapies on a biological basis have
been dramatically increased following the introduction of high throughput omic
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techniques that can simultaneously evaluate the mutation/expression of large
numbers of genes. However, clinical decision-making still largely relies on classi-
cal information like pathological staging, grading and a limited number of clinical
features, without clear indications on how to integrate the results of emerging
techniques bioanalytical techniques.

Despite the strong expectations that biological markers could help in tailoring
systemic treatments, the proper application of their information remains to be
defined. A possible reason could be related to the large number of contrasting
results. Unfortunately the advent of omic studies has not yet solved this issue. A
concerning aspect of these studies, is their tendency in proposing new critetia for
tumour sub-typing and prognostic classification “from the scratch”, without re-
sorting to previous knowledge about the disease biology. This is potentially dan-
gerous since their findings are actually based on 2 limited number of subjects with
huge number of possibly inaccurate and/or imprecise measutes. Moteover, few
efforts have been done for the development of standardised critetia for the
evaluation of the petformances of diagnostic/prognostic classification ctitetia.
Consequently, there seems to be an increasing gap between the resources em-
ployed for basic and translational research on biomarkers and actual patient bene-
fits and overall social gain.

The need for integrating exploratory studies addressing relevant biological is-
sues possibly related to disease dynamics (knowledge phase) with subsequent pro-
spective clinical studies (decision phase) must be carefully considered to exploit
biological knowledge in a clinical context. It is unlikely that the physician would
apply a decision criterion without clearly understanding its biological and clinical
bases, but this is the underlying risk of developing blind “black-box” classifica-
tions based on multiple markers, by means of sophisticated statistical techniques.

According to Golub ¢z 2/ (1999) microarray studies can be relayed to general
class analysis tasks, namely: discovery, comparison and prediction. Professor Mc
Lachlan’s paper refers mainly to comparison aspects. In the prognostic paradigm,
the definition of classes was often provided on a convenience basis e.g. patients
who developed distant metastases within 5 years vs those who continued to be
disease free after a period of at least 5 years. Such a definition however introduces
additional issues not usually addressed. In particular, the probabilistic definition
of classes as in the prognostic paradigm should be addressed. Is there a possible
extension of the proposed approach to account for such an issue?

Some parts of the discussed work refer to empirical Bayes methods. Such
methods relies on sample information for the best bias-variance trade-off. A pos-
sible relevant issue could be the influence of sample size in such a context.

It is mentioned the “drawback of pooling the null statistics across the genes to
assess the null distribution (...) so the tails of the true null distribution of the test
statistic is overestimated, leading to conservative inference”. Which are the prac-
tical consequences of such an issuer Actually, although a major concern in mi-
croarray data analysis was often the control of type I error risk, the problem of
type II error control was less discussed. However, considering the features of
such kind of data, such issue could be of major relevance.
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In the application example the selected genes are compared with the 176 gene
set of the original Hedenfalk et al. (2001) paper. 107 genes were found in com-
mon of the 143 of the present study. A similar figure was found with Storey and
Tibshirani (2003) study with 101 shared among the three studies. The instability of
microatray data results is a major problem, which is particulatly evident when
linked to sampling variability. This issue was previously assessed resorting to re-
sampling techniques. Such a problem could be hardly thought to be solved on a
pure statistical basis. For such a reason, microarray studies have a major explora-
tory role, justified by analytical a statistical reasons.

The design and analysis shortcuts applied in most cases could overcome the
benefits coming from the putative information of high dimensional data sets.

A rapid increase in the number of studies on markers identified by means of
high throughput techniques at considerable expense is likely. It would therefore
be relevant to promote the application of suitable study designs and statistical
methods for the reliable assessment of data collected on biomatkers, either ge-
nomic ot traditional, and a faster translation of basic research to medical decision-
making. The paper from Professor Mc Lachlan et al. provides a substantial con-
tribution along this path.

Department of Medical Statistics and Biometry ELIA BIGANZOLI
“Ginlio A. Maccacaro”, Istituto Nazionale Tumori
Universitd degli Studi di Milano

Liuigi Palla and Ernst Wit

INTRODUCTION

We would like to congratulate the authors with a though provoking paper on
the use of mixture models in microatray studies. One of the central aspects of the
paper focusses on the estimation of the False Discovery Rate using postetior
probabilities in section 4. These estimated FDRs can then be used for approxi-
mate control. It is also possible to approach the matter from the other direction:
rathet than estimating the FDR, it would be useful to come up with a procedure
based on the posterior mixing probabilities that exactly controls the FDR. This is
what we attempt to do here.

FDR CONTROL WITH POSTERIOR MIXING PROBABILITIES

In this section we present an FDR control method via postetior mixing prob-
abilities. The quantities we work with are very similar to those used by McLachlan
et al. The setting is Bayesian, whetreby the data are regarded as fixed and knowl-
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edge about the parameters as random. Bayes theorem combines the information
enclosed in the likelthood with some prior proability summarizing the informa-
tion about the parameter distribution which is available beforehand. In our con-
text, working out the probability of the gene expression classification parameter
for gene j is defined as

4=

{l if gene ;7 is differentially expressed
v.=

0 otherwise

The vj take over the role that the null and alternative hypotheses play in classi-
cal hypothesis. Let zj be the test-statistic for the jth test. According to the Bayes-
ian paradigm the vj’s are unobservable quantities and the test-statistics zj give paz-
tial information about them. Bayesian testing can be interpreted as attaching a
proability to the statement ‘gene j is not differentially expressed’ given a certain
value z* of the corresponding test statistic zj obtained from the approptiate test
(whose choice is independent of the approach taken)

2,;(#)= Pt (v,;=0]z ,=2%),
or given that the test statistics exceedes a certain value z*,

Pr (v,=0 | z,=2%)

The latter expression is the Bayesian version of the classical p-value, which is
obtained by reversing the conditioning and conditional quantities in the probabil-

. : — e 3 =
ity statement, ie. p-value=p (z, 2z*|v;=0). In contrast to McLachlan et al,

who use the former expression, we control the FDR using the latter. This is a
formalized in the following theorem.

Theorem: Let R Dbe the set of genes whose test statistics exceed a certain cut-off

R={j |z >2z*}
where the cut-off is defined as

g* =min{z | Pr(;=0 | z, 2 2)= o

if we declare all the genes in R differentially expressed, then the FDR is con-
trolled at level « , i.e.

FDR (R) <«
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Proof:
FDR(R) = E % | 1(R>0>}

_2”_1 1 S>okop =0

= gl 24 ”,{:(j 5, } |1(R>O)

XUz, > 24
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This means that in the unlikely case that the posterior ‘inactivity’ probability
Pr (v, =0]z; 22) is known, then the FDR can be controlled in a straightforward

manner via the posterior mixing probability. The postetior probability can be
broken down into three factors by Bayes Theorem,

Pr(ng g|ﬁj=O)Pr(ﬂj=0)

Pr(v; =0[g, =g =

Pr(z;> %)
_ . 1I-FR®
"1-F(z)

whete

e Py is the fraction of non-differentially expressed genes;

e Fyis the cumulative distribution function of the best statistic under the null
hypothesis (vj = 0);

* Fis the cumulative distribution function of the test statistic in the postulation,
Le. in the microartay.

F can be formally expressed by the following mixture,
Pr(z; 22)=Pr(z; 2x]v; =0)po + Pr(z; 2x[v; =1)(1~ py) @

=(1=F ) po +(1-F()N(A~ 2o) @

where F1 is the distribution of differentially expressed genes, which is typically
not known as in the classical testing setting, while Fo is usually known if we use,
e.g. a #-test or 2 Wilcoxon rank sum test. The mixing probability po is also typicaly
unknows.
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CONCLUSION

The number of genes included in microarray experiment is typically very large,
often in the order of thousands, whereas the number of expreiments per condi-
tion is very small. In order to test for null hypothesis of no differential expression
of each gene under the two conditions, methods have been proposed for control
of the False Discovery Rate (FDR). The procedure by Benjamini and Hocjberg
(1995) to control FDR requires knowledge of p, that is the fraction of truly null
hypotheses. In practice this is conservatively assumed to equal 1.

McLachlan et al. show that some parametric assumptions make the estimation
of p, feasible. With that, the posterior probability of no differential expression

given that the calculated value of the test statistic exceeds a certain threshold # i.e.
Pr(»,= 0]t ;> t) allows one to control the FDR. Moreover, drawing several val-

ues from the simulated posteriots of the parameters leads to the construction of a
(pointwise) confidence band around the curve exptessing the control level « as a
function of the cutoff .

MRC Epidenriology Unit, Cambridge LUIGI PALLA

Department of Mathematics and Statistics ERNST WIT
University of Groningen

Reply by the Authors

We thank the discussants for their thoughtful and helpful remarks. Interest in
the topic has grown enormously in recent times, so that it was not possible in our
paper to cover all of the major issues nor the associated references, which are by
now quite extensive in number. The additional issues and references given by the
discussants are therefore most beneficial. In our btief rejoinder, we will attempt
to respond to if not always resolve the main points raised by the discussants.

Professor Alfo makes a number of insightful comments on our approach.
Firstly, he comments on our use of a parametric test (the #test) for calculating the
P-value of the test that a gene is not differentially espresse with our only giving a
brief mention of an alternative nonparametric procedure via permutation of the
tissue samples. Oure approach for estimating the local false discovery rate (FDR)
and the other associated etror rates only needs as input the P-values for non-
differential expression for the genes considered individually. We therefore did not
dwell on ways (other than to mention using permutations) in which these P-
values might be formed in situations whete the #test might not to be applicable
to the data at hand. For the real data set analysed in our paper (the Hedenfalk
data), it seems reasonable to work with the #test as noted in the analyses of this
data set by Professor Efron.
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A number of issues atise in the adoption of an empirical null distribution in
preference to the theoretical null which would be applicable if all the assumptions
on which it is based held. Some of these are either raised explicity or hinted at by
Professor Alfo. Most of them are due to identifiability problems with the estima-
tion process when the specifications on the null distribution are relaxed. Hence it
is very desitable to work with the theoretical null but, unfortunately, the “right”
theoretical null is usually not attainable in practise; see discussion on this point by
Efron (2008). On the difference between our results and those of Efron (2004)
on the adoption of an empirical null for the Hedenfalk data, we believe it is due
to differences between our data for the gene expressions.

In his final comment, Professor Alfé draws attention to the potential increase
in power using a clustering approach as, for example, with our EMMIX-WIRE
procedure (Ng ¢ o/, 2006) which, of course, does require stronger distributional
assumptions. We are currently investigating the robustness of this approach in
practice.

Professor Biganzoli makes a number of nice points, focussing on the usual de-
cision-theoretic frame-work for the subsequent formation and use of classifiers
based on microarray data. One point concerns the definition of the two classes as
adopted in the analysis of Hedenfalk data with the classes denoting the absence
ot presence of metastases in the five-year inteval following the original diagnosis
with breast cancer. On another point, we agree with Professor Biganzoli that the
control of errors other than Type I is of major relevance in the anlyses of mi-
croarray data sets.

In our paper, the values of the FDR and some other error rates were tabulated
for vatious levels of the threshold ¢ on the posterior probability of no differential
expression below which a gene is declared to be significant (that is, differentially
espressed). These estimated values for, say, the FDR allow one to select a value
of the threshold ¢ in otrder to bound the FDR. Professor Palla and Wit explicity
show how the threshold can be chosen so that the FDR is controller exactly if the
proportion of null genes and their null and non-null distributions are known.
They give an expression for the FDR from which it can be estimated in practise.
This expression has been given in some earlier studies of this problem as, for ex-
ample, in Efron (2004).

We conclude by reiterating our thanks to the contributors and to the Depart-
ment of Statistics of the University of Bologna and this journal for hosting this
forum.,
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