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Abstract

We consider some of the computing issues in the fitting
of finite mixture models by maximum likelihood via the
EM algorithm. Attention is focussed on the use of mix-
tures of normal components. Some of the computing
issues to be addressed include the choice of an appro-
priate local maximizer in the case of multiple maxima,
the detection of spurious local maximizers, assessment
of convergence for an EM sequence, and the choice of
the number of components in the mixture model. We
shall describe the EMMIX algorithm for the fitting of
mixture models. This algorithm automatically under-
takes the fitting, including the specification of suitable
initial values if not supplied by the user. The EMMIX
algorithm has several options, including the provision to
carry out a resampling-based test for the number of com-
ponents in the mixture model and the standard errors of
the fitted parameters.

1 Introduction

Finite mixtures models are being increasingly used to
model the distributions of a wide variety of random
phenomena; see the monographs on mixture models
by Everitt and Hand (1981), Titterington, Smith, and
Makov (1985), McLachlan and Basford (1988), Lindsay
(1995), and Bohning (1999). The lack of homogeneity in
a data set may be naturally modelled by through a mix-
ture of distributions. Even if there is no realistic inter-
pretation of the components of the mixture model, mix-
ture distributions offer a very flexible modelling environ-
ment within a parametric framework. A g-component
mixture model for the density function f(y) of a ran-
dom vector Y has the form

g
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denote the component-density functions. Typically,
the component density function f;(y) is specified up
to a vector @; of unknown parameters, so that then
fily) = fi(y; 8:),i =1, ..., g. In many applications,
the component-density functions f;(y; 6;) are taken to
belong to the same parametric family, for example, the
normal. It can be seen from (1) that mixture models oc-
cupy an interesting niche between parametric and non-
parametric approaches to statistical estimation. As ex-
plained by Jordan and Xu (1995), mixture model-based
approaches are parametric in that parametric forms
fi(y; 0;) are specified for the component density func-
tions, but that they can also be regarded as nonpara-
metric by allowing the number of components g to grow.
Hence mixture models have much of the flexibility of
nonparametric approaches, while retaining some of the
advantages of parametric approaches, such as keeping
the dimension of the parameter space down to a reason-
able size. Mixture models therefore provide a convenient
method of density estimation that lies somewhere be-
tween parametric models and kernel density estimators;
see, for example, Cwik and Koronacki (1997) and Solka
et al. (1998) for some recent applications in this context.

One way of conceptualizing the mixture model (1)
is to view the random vector Y as arising from the
ith component of the mixture with prior probability
m, (i=1,...,9), and where the density function of Y
given membership of the ith component is f;(y; 6;) (i =
1, ..., g). Hence mixture models have direct applica-
tions in those situations where the random vector Y of
interest can be or is to be identified as coming from one
of g groups. For example, in cluster analysis applica-
tions of mixture models, the observed data are put in
to g clusters by assigning each observation to its com-
ponent of origin in the above conceptualization of the
g-component mixture model. Here the components of
the mixture model correspond to the clusters to be im-
posed on the data.

We let y,, ..., y,, denote an observed p-dimensional
sample of size n. The mixture model (1) can be fitted to



these data by maximum likelihood via the expectation-
maximization (EM) algorithm of Dempster, Laird, and
Rubin (1997); see also McLachlan and Krishnan (1997).
The log likelihood function is given by

n g
log L(®) = > _log Y mifi(y;; 64), (2)
j=1 i=1

where ¥ = (71, ..., m,_1,07)T and @ contains the ele-
ments of 81, ..., 8, known a priori to be distinct. With
the maximum likelihood approach to the estimation of
¥, an estimate is provided by an appropriate root of the
likelihood equation,

Olog L(¥)/0¥ = 0. 3)

We shall confine our attention here to the fitting of
mixture models in a non-Bayesian framework. Key pa-
pers on the Bayesian analysis of mixture models include
Diebolt and Robert (1994), Esobar and West (1995),
Richardson and Green (1997), Robert and Mengersen
(1999), and Stephens (1999); see also the papers on mix-
tures in Gilks et al. (1996).

As the likelihood equation (3) tends to have multiple
roots for mixture models, one computing issue concerns
the choice of an appropriate root. If the component-
covariance matrices are unrestricted, there can be prob-
lems with spurious local maximizers. Another issue con-
cerns determining when the EM sequence of iterates has
actually converged. A further issue concerns the choice
of the number of components in a mixture model. These
and other issues are to be considered in the context of
mixture models with normal components.

2 Normal Components

For multivariate data of a continuous nature, attention
has focussed on the use of multivariate normal compo-
nents because of their computational convenience. In
the application of the EM algorithm, the iterates on the
M-step are given in closed form. Also, in cluster anal-
ysis where a mixture model-based approach is widely
adopted, the clusters in the data are often essentially
elliptical in shape, so that it is reasonable to consider
fitting mixtures of elliptically symmetric component den-
sities. Within this class of component densities, the mul-
tivariate normal density is a convenient choice given its
above-mentioned computational tractability.

We note in passing that in those situations where the
tails of the normal distribution are often shorter than re-
quired, McLachlan and Peel (1998) have considered the
use of mixtures of (multivariate) ¢ distributions. The ¢

distribution provides a longer tailed alternative to the
normal distribution. Hence it provides a more robust
approach to the fitting of normal mixture models, as ob-
servations that are atypical of a component are given re-
duced weight in the calculation of its parameters. With
this ¢ mixture model-based approach, the normal distri-
bution for each component in the mixture is embedded in
a wider class of elliptically symmetric distributions with
an additional parameter called the degrees of freedom
v. As v tends to infinity, the ¢ distribution approaches
the normal distribution. Hence this parameter v may be
viewed as a robustness tuning parameter. It can be fixed
in advance or it can be inferred from the data for each
component thereby providing an adaptive robust proce-
dure, as explained in Lange, Little and Taylor (1989),
who considered the use of a single component ¢ distribu-
tion in linear and nonlinear regression problems.

3 Application of EM Algorithm

It is straightforward to find solutions of (3) using the
EM algorithm. For the purpose of the application of
the EM algorithm, the observed-data vector y,,, =
(¥, ..., yD)T is regarded as being incomplete. As
mentioned above, with a g-component mixture model,
each observation y; can be conceptualized as arising
from one of the g components with probability ; (i =
1,..., g). Corresponding to this, the component-label
variables z;; are consequently introduced, where z;;
is defined to be one or zero according as y; did or
did not arise from the ith component of the mixture
model (i =1,...,9;j =1,...,n). On putting z; =
(214, -- -, 2g5)T, the complete-data vector z. is therefore
given by
ze = (z],...,z)7,

where ¢, = (yT, 2D)T, ..., z, = (yL, 2I)T are inde-
pendent and identically distributed with z4, ..., z, be-
ing independent realizations from a multinomial distri-
bution consisting of one draw on g categories with re-
spective probabilities 71, ..., my. That is,

21y eeny Zn i Mult, (1, ),

where m = (my, ..., m,)T. For this specification, the

complete-data log likelihood is

9 n

log Le(®) =Y Y zijlog{mid(y;; mi, T)}. (4)
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The EM algorithm is easy to program and proceeds
iteratively in two steps, E (for expectation) and M (for



maximization). On the (k + 1)th iteration, the E-step
requires the calculation of

= E\I,(k){log LC(‘IJ) | yobs}7

the conditional expectation of the complete-data log like-
lihood log L. (), given the observed data y,,,, using the
current fit ¥* for ¥. Since log L.(¥) is a linear func-
tion of the unobservable component-label variables z;;,
the E-step is effected simply by replacing z;; by its con-
ditional expectation given y;, using ¥%) for ¥. That
is, 2;; is replaced by
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fori=1,...,9,j=1,...,n), and where 7;(y ; ‘Il(k)) is
the estimate after the kth iteration of the posterior prob-
ability that the jth entity with feature vector y; belongs
to the ith component (i =1,...,g;j5=1,...,n).

On the M-step on the (k + 1)th iteration, the intent
is to choose the value of ¥, say \Il(k+1), that maximizes
Q(¥; ¥™)_ 1t follows that on the M-step of the (k+1)th
iteration, the current fit for the mixing proportions, the
component means, and the covariance matrices is given
explicitly by

(D)
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for i« = 1,...,g, where T( )( ;) = Ti(y;; \Il(k)).

An initial value has to be speciﬁed for the vector
¥ of unknown parameters for use on the E-step on
the first iteration of the EM algorithm. Equiva-
lently, initial values must be specified for the poste-
rior probabilities of component membership of the mix-
ture, 71(y;; w0y 74 (Y55 ¥ for each y; (J =
1, ..., n) for use on commencing the EM algorithm on
the M-step the first time through. The latter posterior
probabilities can be specified as zero-one values, corre-
sponding to an outright classification of the data with

respect to the g components of the mixture. In this case,
it suffices to specify the initial partition of the data. In
a cluster analysis context it is usually more appropriate
to do this rather than to specify an initial value for ¥

A nice feature of the EM algorithm is that the mixture
likelihood L(®) can never be decreased after the EM
sequence. Hence

Le*) > L(e®),

which implies that L(¥®) converges to some L* for a
sequence of likelihood values bounded above. The E- and
M-steps are alternated repeatedly until the likelihood (or
the parameter estimates) change by an arbitrarily small
amount in the case of convergence.

4 Stopping Criterion

The stopping criterion usually adopted with the EM
algorithm is in terms of either the size of the relative
change in the parameter estimates or the log likelihood.
Bohning et al. (1994) have exploited Aitken’s accelera-
tion procedure in its application to the sequence of log
likelihood values to provide a useful estimate of its limit-
ing value. It is applicable in the case where the sequence
of log likelihood values {I(*)} is linearly convergent to
some value [*, where here for brevity of notation

1% = 1og L(®®).
Under this assumption,

IEFD 1 e (100 — 1%, (6)

for all £ and some ¢(0 < ¢ < 1). The equation (6) can
be rearranged to give

1+D g0 &~ (1= )1 —1W), (7)

for all k. It can be seen from (7) that, if ¢ is very close to

one, a small increment in the log likelihood, I(k+1) — (k)

does not necessarily mean that 1(%) is very close to I*.
From (7), we have that

[Ck+1) _ (k) o c(l(k) - l(k—l)) (8)
for all k. Following Bohning et al. (1994), Aitken’s ac-

celeration procedure can be applied to (8) to obtain the
limit I* of the sequence of log likelihood values,

" 1
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Since ¢ is unknown, it has to be estimated in (9), for
example, by the ratio of successive increments,

B = (gk+1) _q(k)y (k) g (k=1)y



This leads to the Aitken accelerated estimate of [*,
R O

1

In applications where the primary interest in on the
sequence of log likelihood values rather than the se-
quence of parameter estimates, Bohning et al. (1994)
suggest the EM algorithm can be stopped if

|15 1% < tol,

where tol is the desired tolerance. An example concerns
the resampling approach (McLachlan, 1987) to the prob-
lem of assessing the null distribution of the likelihood
ratio test statistic for the number of components in a
mixture model, as to be discussed later. The criterion
(10) is applicable for any log likelihood sequence that is
linearly convergent.

5 Choice of Local Maximizer

Let ¥ be the chosen solution of the likelihood equation.
The likelihood function L(®) tends to have multiple
local maxima for normal mixture models. In the ho-
moscedastic case of normal components with a common
covariance matrix, the likelihood function L(¥) has a
global maximum in the interior of the parameter space.
Hence in this case in the absence of any information
apart from the observed data, ¥ is usually taken to be
the root of (3) corresponding to the largest of the local
maxima located. The consistency of the global max-
imizer for finite mixture distributions has been estab-
lished under the usual regularity conditions; see Kiefer
(1978), Peters and Walker (1978), Redner (1981) and
McLachlan and Basford (1988) for further details. In the
heteroscedastic case of unrestricted component covari-
ance matrices, L(¥) is unbounded, as each data point
gives rise to a singularity on the edge of the parameter
space. But in the heteroscedastic case, attention can be
directed to local maxima in the interior of the parameter
space, since under essentially the usual regularity condi-
tions there will exist a sequence of roots of the likelihood
equation that is consistent and asymptotically efficient
and normally distributed. With probability tending to
one, these roots correspond to local maxima in the inte-
rior of the parameter space. In practice, however, consid-
eration has to be given to the problem of relatively large
local maxima that occur as a consequence of a fitted
component having a very small (but nonzero) variance
for univariate data or generalized variance (the deter-
minant of the covariance matrix) for multivariate data.
Such a component corresponds to a cluster containing

a few data points either relatively close together or al-
most lying in a lower dimensional subspace in the case
of multivariate data. There is thus a need to monitor
the relative size of the fitted mixing proportions and of
the component variances for univariate observations and
of the generalized component variances for multivariate
data in an attempt to identify these spurious local max-
imizers. Of course the possibility here that for a given
starting point the EM algorithm may converge to a spu-
rious local maximizer or may not converge at all is not
a failing of this algorithm. Rather it is a consequence of
the properties of the likelihood function for the normal
mixture model with unrestricted component-covariance
matrices in the case of ungrouped data.

There are other ways of handling spurious local max-
imizers and avoiding singularities. Hathaway (1985) has
considered a constrained formulation of this problem in
order to avoid singularities and to reduce the number of
spurious local maximizers. He showed in the case of mix-
tures of g-univariate normal components with variances
07, ..., o, that by constraining the ratio of these vari-
ances (0?/o%,i # h = 1, ..., g), that the constrained
maximum likelihood estimator of ¥ is consistent, as-
suming that the true value of ¥ lies in the constrained
parameter space. Another way is to adopt a penalty
function that penalizes small values of the component
variances (or generalized variances in the multivariate
case). In a Bayesian framework, this can be effectively
done through the adoption of an appropriate prior dis-
tribution that downweights small component variances
or generalized variances.

6 Detection of Spurious Local
Maximizers

As noted in the previous section, spurious solutions typi-
cally have a small number of points in at least one cluster
which has a relatively small generalized variance. Hence
the ratio of the fitted generalized component variances
can be a useful guide, or warning, that a spurious solu-
tion has been found. A more informative approach is to
examine the actual eigenvalues of the covariance matrix
in question, rather than the determinant (which is the
product of the eigenvalues). The individual eigenvalues
offer a much better reflection of the clusters shape, with
each eigenvalue corresponding to the variance along the
elliptical axis (eigenvector) of the cluster. In this way
the user can discern between small compact clusters and
long thin clusters.

There is also a need to monitor the distances be-
tween the fitted component means where there appear to



be spurious local maximizers. The Euclidean distances
between apparent spurious and nonspurious component
means could be calculated, but may be unreliable if the
feature variables are measured on disparate scales. In
such cases, one may want to consider the Mahalanobis
distances between the apparent spurious and nonspuri-
ous component means, using as covariance matrix an
estimate for the relevant nonspurious component. Even
then, small inter-component mean distances need not re-
flect spurious clusters, as one can have a situation where
two clusters have similar means but are quite different
in shape due to their having disparate covariance matri-
ces. Hence there is really a need to monitor the distances
between points in an apparent spurious cluster and the
points in nearby nonspurious clusters.

To illustrate the point that a relatively small compo-
nent variance does not necessarily imply a spurious solu-
tion, we consider the Galazy data set analysed in Roeder
(1990). This set contains measurements of the velocities
of 82 galaxies diverging away from our own galaxy. In
Figure 1, we give the plot of the six-component solu-
tion corresponding to the largest of the local maximizers
found, along with the data in histogram form. The esti-
mated component variances are given in Table 1.

Figure 1: Plot of fitted six-component normal mixture
density for Galaxy data set

From Table 1, we have a seemingly spurious solution
(the two small clusters centred around 16 and 26.98),
corresponding to components 2 and 5, which have rela-
tively very small variances. However, on closer exami-
nation, it seems reasonable that the clusters in question
may be legitimate, with their points not belonging to
the main two clusters in the centre of the data set. This
can only be confirmed if more observations become avail-
able. For this data set, Richardson and Green (1997)

~2
Component G;

1 0.178515
0.001849
0.849564
1.444820
0.00030
0.454717

S U LN

Table 1: Estimated component variances for the Galazy
data set

concluded that the number of components ranged from
5 to 7, while McLachlan and Peel (1997) provided sup-
port for g = 6 components.

Another property of spurious solutions is that the EM
algorithm converges to them very rarely and often only
when a particular starting point is given. This reflects
a very localised peak in the likelihood function. This is
a tell-tale sign that a spurious solution has been found.
This idea is very useful since legitimate solutions such as
the one seen in the Galazy data set example above will
not have this property. However, for extremely large
data sets, especially when there are maybe not enough
clusters fitted, the repeatability aspect might not be not
as useful.

7 Number of Components

In most applications of mixture models, consideration
has to be given to the number of components g to be used
in the mixture model. In the context of mixture models
being used specifically for density estimation, the choice
of the number of components g arises with consideration
as to whether the mixture model has sufficient compo-
nents to provide an adequate fit to the observed data.
In a cluster analysis, the choice of the number of compo-
nents in the mixture model relates to the question of how
many clusters there are in the data. In an exploratory
data analysis, as assessment of whether g is greater than
one is concerned with whether any apparent separation
detected in the data is a reflection of a genuine grouping
or is merely due to random fluctuations in the data.

In all these contexts, it is common to approach the
choice of the number of components by testing for the
smallest value of g compatible with the data. This is
a difficult problem, which has attracted continuing at-
tention over the years; see, for example, Celeux and
Soromenho (1996) and Biernacki, Celeux, and Govaert
(1999a) for recent accounts of this problem. The likeli-
hood ratio statistic can be used to test for the small-
est number of components compatible with the data.
Unfortunately, as is well known these days, regularity



conditions do not hold for the the likelihood ratio test
statistic to have its usual null distribution of chi-squared
with degrees of freedom equal to the difference between
the number of parameters under the alternative and null
hypotheses.

One approach to this problem is to adopt the resam-
pling approach of McLachlan (1987) to assess the asso-
ciated P-value. With this approach, the bootstrap is
used to approximate the null distribution of the likeli-
hood ratio statistic A for testing g = go versus g = go+1
components in the mixture model, where the value gg is
specified by the user. Bootstrap samples are generated
parametrically from the gg-component normal mixture
model with ¥ set equal to the fit ¥, for ¥ under the
null hypothesis of go components. This can be carried
out using an option of the EMMIX software of McLach-
lan et al. (1999) to be described in the next section.

In other approaches to this problem of the choice for
the final value of the number of components g, several
are based on the log likelihood penalized by the sub-
traction of some penalty term depending on the number
of being parameters fitted. They include the AIC crite-
rion of Akaike (1973), the Bayesian information criterion
(BIC) of Schwarz (1987), and the approximate weight of
evidence (AWE) criterion of Banfield and Raftery (1993)
There are also, among others, the method of Windham
and Cutler (1992) based on the rate of convergence of the
EM sequence of mixture estimates and its modified ver-
sion by Polymenis and Titterington (1999), the normal-
ized entropy criterion (NEC) of Celeux and Soromenho
(1996) and its modified version by Biernacki, Celeux,
and Govaert (1999b), the MML principle of Wallace
and Dowe (1994), and the MDL principle of Rissanen
(1986,1989).

8 EMMIX Algorithm

An algorithm called EMMIX has been developed using
the EM algorithm to find solutions of (1) correspond-
ing to local maxima. In the appendix of their mono-
graph, McLachlan and Basford (1988) gave the listing
of FORTRAN programs that they had written for the
maximum likelihood fitting of multivariate normal mix-
ture models under a variety of experimental conditions.
Over the years, these programs have undergone contin-
ued refinement and development, leading to an interim
version known as the NMM algorithm (McLachlan and
Peel, 1996). Since then, there has been much further
development, culminating in the present version of the
algorithm known as EMMIX (McLachlan et al., 1999).
The EMMIX algorithm automatically provides a se-
lection of starting values for this purpose if the user

does not provide any. This algorithm automatically pro-
vides starting values for the application of the EM al-
gorithm by considering a selection obtained from three
sources: (a) random starts, (b) hierarchical clustering-
based starts, and (c) k-means clustering-based starts.
Concerning (b), the user has the option of using in ei-
ther standardized or unstandardized form, the results
from seven hierarchical methods (nearest neighbour, far-
thest neighbour, group average, median, centroid, flexi-
ble sorting, and Ward’s method). There are several al-
gorithm parameters that the user can optionally specify;
alternatively, default values are used. The program fits
the normal mixture model for each of the initial grouping
specified from the three sources (a) to (c). All these com-
putations are automatically carried out by the program.
The user only has to provide the data set the restrictions
on the component-covariance matrices (equal, unequal,
or diagonal), the extent of the selection of the initial
groupings to be used to determine starting values, and
the number of components that are to be fitted. Sum-
mary information is automatically given as output for
the final fit. However, it is not suggested that the clus-
tering of a data set should be based solely on a single
solution of the likelihood equation, but rather on the
various solutions considered collectively. The default fi-
nal fit is taken to be the one corresponding to the largest
of the local maxima located. However, the summary in-
formation can be recovered for any distinct fit.

One initial criticism of the EM algorithm was that it
does not automatically provide an estimate of the co-
variance matrix of the ML estimator, as do some other
methods, such as Newton-type methods; see McLach-
lan and Krishnan, 1997, Chapter 4). The EMMIX algo-
rithm has an option for the provision of standard errors
for the fitted parameters in the mixture model. With
this algorithm, the covariance matrix of the vector of
fitted parameters ¥ can be approximated either by an
empirical form of the expected information matrix or by
the bootstrap approach. With the latter, the bootstrap
samples can be generated either parametrically from the
g-component normal mixture model with ¥ set equal to
the fit ¥ or nonparametrically (that is, by sampling with
replacement). Given the tendency of mixture models to
have multiple local maxima at least when the sample
size n is not large relative to the number of dimensions
p, the bootstrap approach is favoured in this case for
standard error estimation over information-based meth-
ods, which are based on a quadratic approximation to
the log likelihood.

Often, in order to reduce the number of unknown
parameters, the component-covariance matrices are re-
stricted to being equal, or even diagonal as in the Au-



toClass program of Cheeseman and Stutz (1996). Less
restrictive constraints can be imposed by a reparameter-
ization of the component-covariance matrices in terms
of their eigenvalue decompositions as, for example, in
Banfield and Raftery (1993). In the latest version of
AutoClass (http://ic.arc.nasa.gov/ic/projects/bayes-gro
up/autoclass/autoclass-c-program.html), the covariance
matrices are unrestricted

Among other software for the fitting of mixture mod-
els, there are the C.A.MAN (Computer Assisted Mix-
ture Analysis) program of Bohning, Schlattman, and
Lindsay (1992) and the MIX program of Macdonald and
Pitcher (1979) for univariate mixtures. More recently,
there are MCLUST and EMCLUST, which are a suite
of S-PLUS functions for hierarchical clustering EM, and
BIC, respectively, based on parameterized normal mix-
ture models; see Banfield and Raftery (1993) and Fraley
and Raftery (1998) and the references therein. MCLUST
(http://stat.washington.edu/fraley /software.shtml) and
EMCLUST (http://stat.washington.edu/fraley /soft-
ware.shtml) are written in FORTRAN with an interface
to the S-PLUS commercial package.

Some packages for the fitting of finite mixtures have
been reviewed recently by Haughton (1997). Also, Wal-
lace and Dowe (1994) have considered the application of
their SNOB (http://www.cs.monash.edu.au/ lloyd/
tildeMML/Notes/SNOB.html) program to mixture
modelling using the minimum message length principle
of Wallace and Boulton (1968). More recently, Hunt and
Jorgensen (1999) have developed the MULTIMIX pro-
gram for the fitting of mixture models to data sets that
contain categorical and continuous variables and which
may have missing values.

9 Example

We consider now the well-known set of Iris data as origi-
nally collected by Anderson (1935) and first analysed by
Fisher (1936). It consists of measurements of the length
and width of both sepals and petals of 50 plants for each
of three types of Iris species setosa, versicolor, and wvir-
ginica. As pointed out by Wilson (1982), the Iris data
were collected originally by Anderson (1935) with the
view to seeing whether there was “evidence of continuing
evolution in any group of plants”. Her aural approach
to data analysis suggested that both the wversicolor and
virginica species should each be split into two subspecies.

Hence we focus on the clustering of the 50 observa-
tions in the Iris virginica set. We considered a clustering
of this data set into two clusters C; and Cs by fitting a
mixture of two heteroscedastic normal components. The
membership of the smaller sized cluster (C;) is reported

in Table 2 for the clustering implied by each of fifteen
solutions of the likelihood equation. Also listed in Table
2 for each of these local maximizers is the value of the
determinant of each of the two fitted covariance matrices
|X1] and |X,|, and the value of the log likelihood. The
clustering implied by the first solution S; listed in Table
2, which had been obtained previously by Wilson (1982),
has nine observations in the first cluster. This solution
can be found by running the EMMIX algorithm from
an initial partition of the data given by either Ward’s or
the farthest neighbour hierarchical clustering procedures
in standardized or unstandardized forms. It can also be
found using random starts, but our results suggest a very
large number is needed if it is to be found with a high
degree of probability in a given run. It was found that
these nine points in C lie in an extreme portion of the
scatter plot of the first two principal components using
the sample correlation matrix of the data, and can be
separated almost from the other points by a hyperplane.
However, on the question of whether there are signs of
continuing evolution in the wvirginica species, this two-
group structure would not be considered significant at
a conventional level. The value of —2log A for the test
of g =1 versus g = 2 is 43.2. The assessed P-value, as
obtained by resampling on the basis of 99 replications,
is 40%. Since g = 1 under the null hypothesis, the boot-
strap replications of —2log A are actual applications of
this test statistic.

In order to demonstrate the occurrence of multiple
maxima, some of which may be spurious, in data sets
without a strong group structure, we ran the stochastic
version of the EM algorithm (Celeux, and Diebolt, 1985)
from a 1000 random starting points, limiting attention
to solutions at which the likelihood had a greater value
than that for the first solution S;. The stochastic version
allows the EM algorithm to have a chance to escape from
the current EM sequence. But evidently in this example,
such escapes often led to convergence in the end to what
we have concluded to be spurious local maximizers. In
Table 2, we list fourteen such solutions found, labelled S»
to Sis, in order of increasing value of the corresponding
local maxima. They are a selection from the 51 distinct
local maxima found that were greater than that for Sy
and they include the six largest found. Given the imbal-
ance in the estimates of the component generalized vari-
ances for these fourteen solutions, they would appear to
be spurious. If a lower bound were placed on each of |X |
and |3, as discussed in Section 5, then only solution S;
would be retained. However, it is not suggested that
the clustering of a data set should be based solely on a
single solution of the likelihood equation, but rather on
the various solutions considered collectively. The smaller



sized clusters implied by seven of these fourteen solutions
have only five members. Hence given that the data are
of dimension p = 4, it is not surprising that the fitted
covariance matrix for the first component of the mixture
is nearly singular for each of them, with a generalized
variance equal to only 7.6 x 1078 or smaller. In this
sense, these seven solutions would be regarded as spuri-
ous. Not withstanding that, the solutions Sz, S4, Sg, and
S13 provide some support to the clustering implied by S;
in that at least four of the five members of the first clus-
ter Cy implied by these four solutions (actually all five
members except in the case of Sg) are a subset of C as
implied by S;. The first clusters Cy implied by the solu-
tions Sg to S12 have no members in common with that of
S1. Further, it can be confirmed from scatter plots and
the Mahalanobis distances between the fitted component
means that solutions Ss3, S5, S7 to Si2,S14, and S5 do
not provide as much separation between the means of
the implied clusters. Thus these solutions would appear
to be more spurious in nature rather than representing
a genuine grouping.

Another way of proceeding to reduce the prevalence of
solutions corresponding to artificially small values of the
generalized fitted variances is to restrict the covariance
matrices to be the same. Under homoscedasticity, the
first cluster implied by the maximum likelihood solution
(assuming it is the global maximizer), contains the union
of all members of the first clusters implied by the het-
eroscedastic solutions Sp, Ss2, S4, Sg, and Si3, along with
observations 9 and 36.
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Results of fitting a mixture of g = 2
heteroscedastic normal components to data

Table 2

on Iris virginica species

Solution Cluster C;  logL 3] |3, |
No.
1 6,8,18,19,23,  -36.994 1.4 x10% 3.7x1075
26,30,31,32
2 6,18,19,23.32  -36.987 7.6x107® 52x107°
3 10,13,17,21,26 -35.622 29x 1077 7.3 x107°
30,32,40,41,42
44,46,47
4 6,18,19,23,31  -35.406 6.8 x 107 6.3 x107°
5 5,18,21,32,35, -34.427 6.2x107% 72x107°
40,41,42,44,46
6 6,18,19,32,35  -34.063 1.5x10~® 5.5x1075
7 2,14,17,20,30, -33.690 3.6 x107° 9.7x10°°
32,36,43
8 2,7,13,20,30 -32.862 3.5x1071° 1.4x10~*
32,36,43
9 1,16,41,4245 -32.225 4.1x107° 88 x107°
46,49
10 1,37,41,42,49  -30.374 2.9x107'' 93 x10°°
11 20,35,42,46,47 -29.756 8.0 x 10~'' 8.0 x 1075
12 2,7,17,40,42,  -28.581 7.6x 1071 1.2x107*
43,48
13 8,19,23,30,31  -27.899 8.0x 10~'' 7.4 x1075
14 8,19,23,28.39  -25.071 1.3x10~'" 80x10°5
15 3,6,17,39,40 -23.536 8.9x 10712 1.4x10~*




