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Abstract Finite mixture models are being commonly used in a wide range of ap-
plications in practice concerning density estimation and clustering. An attractive
feature of this approach to clustering is that it provides a sound statistical frame-
work in which to assess the important question of how many clusters there are in
the data and their validity. We consider the applications of normal mixture models
to high-dimensional data of a continuous nature. One way to handle the fitting of
normal mixture models is to adopt mixtures of factor analyzers. However, for ex-
tremely high-dimensional data, some variable-reduction method needs to be used
in conjunction with the latter model such as with the procedure called EMMIX-
GENE. It was developed for the clustering of microarray data in bioinformatics, but
is applicable to other types of data. We shall also consider the mixture procedure
EMMIX-WIRE (based on mixtures of normal components with random effects),
which is suitable for clustering high-dimensional data that may be structured (cor-
related and and replicated) as in longitudinal studies.

1 Introduction

Clustering procedures based on finite mixture models are being increasingly pre-
ferred over heuristic methods due to their sound mathematical basis and to the inter-
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pretability of their results. Mixture model-based procedures provide a probabilistic
clustering that allows for overlapping clusters corresponding to the components of
the mixture model. The uncertainties that the observations belong to the clusters are
provided in terms of the fitted values for their posterior probabilities of component
membership of the mixture. As each component in a finite mixture model corre-
sponds to a cluster, it allows the important question of how many clusters there are
in the data to be approached through an assessment of how many components are
needed in the mixture model. These questions of model choice can be considered in
terms of the likelihood function.

Scott and Symons (1971) were one of the first to adopt a model-based approach
to clustering. Assuming that the data were normally distributed within a cluster, they
showed that their approach is equivalent to some commonly used clustering criteria
with various constraints on the cluster covariance matrices. However, from an esti-
mation point of view, this approach yields inconsistent estimators of the parameters.
This inconsistency can be avoided by working with the mixture likelihood formed
under the assumption that the observed data are from a mixture of classes corre-
sponding to the clusters to be imposed on the data, as proposed by Wolfe (1965)
and Day (1969). Finite mixture models have since been increasingly used to model
the distributions of a wide variety of random phenomena and to cluster data sets;
see, for example, McLachlan and Peel (2000).

2 Definition of Mixture Models

We let Y denote a random vector consisting of p feature variables associated with
the random phenomenon of interest. We let y1 ��������� yn denote an observed random
sample of size n on Y . With the finite mixture model-based approach to density
estimation and clustering, the density of Y is modelled as a mixture of a number (g)
of component densities fi

�
y � in some unknown proportions π1 ��������� πg. That is, each

data point is taken to be a realization of the mixture probability density function
(p.d.f.),

f
�
y; Ψ �	�

g

∑
i 
 1

πi fi
�
y � � (1)

where the mixing proportions πi are nonnegative and sum to one. In density estima-
tion, the number of components g can be taken sufficiently large for (1) to provide
an arbitrarily accurate estimate of the underlying density function. For clustering
purposes, each component in the mixture model (1) corresponds to a cluster. The
posterior probability that an observation with feature vector y j belongs to the ith
component of the mixture is given by

τi
�
y j �	� πi fi

�
y j ��� f

�
y j � (2)

for i � 1 �
������� g. A probabilistic clustering of the data into g clusters can be obtained
in terms of the fitted posterior probabilities of component membership for the data.
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An outright partitioning of the observations into g (nonoverlapping) clusters
C1 ��������� Cg is effected by assigning each observation to the component to which
it has the highest estimated posterior probability of belonging. Thus the ith cluster
Ci contains those observations y j with ẑi j � 1, where ẑi j � 1 if i � h � , and zero
otherwise, and

h � � argmax
h

τ̂h
�
y j � ; (3)

τ̂i
�
y j � is an estimate of τi

�
y j � . As the notation implies, ẑi j can be viewed as an esti-

mate of zi j which, under the assumption that the observations come from a mixture
of g groups G1 �
������� Gg, is defined to be one or zero according as the jth observation
y j does or does not come from Gi

�
i � 1 ��������� g; j � 1 �
������� n � .

3 Maximum Likelihood Estimation

On specifying a parametric form fi
�
y j; θi � for each component density, we can fit

this parametric mixture model

f
�
y j ; Ψ ���

g

∑
i 
 1

πi fi
�
y j; θi � (4)

by maximum likelihood (ML). Here Ψ � �
ωT � π1 ��������� πg � 1 � T is the vector of un-

known parameters, where ω consists of the elements of the θi known a priori to be
distinct. In order to estimate Ψ from the observed data, it must be identifiable. This
will be so if the representation (4) is unique up to a permutation of the component
labels. The maximum likelihood estimate (MLE) ofΨ � Ψ̂ , is given by an appropriate
root of the likelihood equation,

∂ logL
�
Ψ ��� ∂Ψ � 0 � (5)

where L
�
Ψ � denotes the likelihood function for Ψ ,

L
�
Ψ ���

n

∏
j 
 1

f
�
y j ; Ψ � �

Solutions of (5) corresponding to local maximizers of logL
�
Ψ � can be obtained via

the expectation-maximization (EM) algorithm of Dempster et al. (1977); see also
McLachlan and Krishnan (1997). Let Ψ̂ denote the estimate of Ψ so obtained.
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4 Choice of Starting Values for the EM Algorithm

McLachlan and Peel (2000) provide an in-depth account of the fitting of finite mix-
ture models. Briefly, with mixture models the likelihood typically will have multiple
maxima; that is, the likelihood equation will have multiple roots. Thus the EM al-
gorithm needs to be started from a variety of initial values for the parameter vector
Ψ or for a variety of initial partitions of the data into g groups. The latter can be
obtained by randomly dividing the data into g groups corresponding to the g com-
ponents of the mixture model. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar at least in
large samples. Nonrandom partitions of the data can be obtained via some clustering
procedure such as k-means.

The choice of root of the likelihood equation in the case of homoscedastic nor-
mal components is straightforward in the sense that the ML estimate exists as the
global maximizer of the likelihood function. The situation is less straightforward
in the case of heteroscedastic normal components as the likelihood function is un-
bounded. Usually, the intent is to choose as the ML estimate of the parameter vector
Ψ the local maximizer corresponding to the largest of the local maxima located.
But in practice, consideration has to be given to the problem of relatively large local
maxima that occur as a consequence of a fitted component having a very small (but
nonzero) variance for univariate data or generalized variance (the determinant of the
covariance matrix) for multivariate data. Such a component corresponds to a clus-
ter containing a few data points either relatively close together or almost lying in
a lower-dimensional subspace in the case of multivariate data. There is thus a need
to monitor the relative size of the fitted mixing proportions and of the component
variances for univariate observations, or of the generalized component variances for
multivariate data, in an attempt to identify these spurious local maximizers.

5 Clustering Via Normal Mixtures

Frequently, in practice, the clusters in the data are essentially elliptical, so that it is
reasonable to consider fitting mixtures of elliptically symmetric component densi-
ties. Within this class of component densities, the multivariate normal density is a
convenient choice given its computational tractability.

Under the assumption of multivariate normal components, the ith component-
conditional density fi

�
y; θ i � is given by

fi
�
y; θ i �	� φ

�
y; µ i � Σ i � � (6)

where θ i consists of the elements of µ i and the 1
2 p

�
p � 1 � distinct elements of

Σ i
�
i � 1 �
������� g � . Here

φ
�
y; µ i � Σ i ���

�
2π � � p

2 �Σ i � � 1 � 2 exp ��� 1
2

�
y � µi � T Σ � 1

i

�
y � µi ��� � (7)
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One attractive feature of adopting mixture models with elliptically symmetric
components such as the normal or t-densities, is that the implied clustering is invari-
ant under affine transformations of the data; that is, invariant under transformations
of the feature vector y of the form,

y � Cy � a � (8)

where C is a nonsingular matrix. If the clustering of a procedure is invariant under
(8) for only diagonal C, then it is invariant under change of measuring units but not
rotations.

It can be seen from (7) that the mixture model with unrestricted component-
covariance matrices in its normal component distributions is a highly parameterized
one with 1

2 p
�
p � 1 � parameters for each component-covariancematrix Σ i

�
i � 1 ���������

g � . As an alternative to taking the component-covariance matrices to be the same or
diagonal, we can adopt some model for the component-covariance matrices that is
intermediate between homoscedasticity and the unrestricted model, as in the ap-
proach of Banfield and Raftery (1993). They introduced a parameterization of the
component-covariance matrix Σ i based on a variant of the standard spectral decom-
position of Σ i.

The mixture model with normal components (6) is sensitive to outliers since it
adopts the multivariate normal family for the distributions of the errors. An obvious
way to improve the robustness of this model for data which have longer tails than
the normal or atypical observations is to consider using the multivariate t-family of
elliptically symmetric distributions; see McLachlan and Peel (1998, 2000). It has an
additional parameter called the degrees of freedom that controls the length of the
tails of the distribution. Although the number of outliers needed for breakdown is
almost the same as with the normal distribution, the outliers have to be much larger.

6 Factor Analysis Model for Dimension Reduction

As remarked earlier, the g-component normal mixture model with unrestricted
component-covariance matrices is a highly parameterized model with 1

2 p
�
p � 1 �

parameters for each component-covariance matrix Σ i
�
i � 1 ��������� g � . As discussed

above, Banfield and Raftery (1993) introduced a parameterization of the component-
covariance matrix Σ i based on a variant of the standard spectral decomposition of
Σ i

�
i � 1 �
������� g � . However, if p is large relative to the sample size n, it may not be

possible to use this decomposition to infer an appropriate model for the component-
covariance matrices. Even if it is possible, the results may not be reliable due to
potential problems with near-singular estimates of the component-covariance ma-
trices when p is large relative to n.

A common approach to reducing the number of dimensions is to perform a prin-
cipal component analysis (PCA). But as is well known, projections of the feature
data y j onto the first few principal axes are not always useful in portraying the
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group structure. A global nonlinear approach to dimension reduction can be ob-
tained by postulating a finite mixture of linear submodels for the distribution of the
full observation vector Y j given the (unobservable) factors. see Hinton et al. (1997),
McLachlan and Peel (1998), and McLachlan et al. (2003). The mixture of factor
analyzers model is given by

f
�
y j; Ψ ���

g

∑
i 
 1

πiφ
�
y j; µ i � Σ i � � (9)

where the ith component-covariance matrix Σ i has the form

Σ i � BiB
T
i � Di

�
i � 1 �
������� g � (10)

and where Bi is a p � q matrix of factor loadings and Di is a diagonal ma-
trix

�
i � 1 ��������� g � . The parameter vector Ψ now consists of the mixing proportions

πi and the elements of the µ i, the Bi, and the Di. With this approach, the number of
free parameters is controlled through the dimension of the latent factor space. By
working in this reduced space, it allows a model for each component-covariance ma-
trix with complexity lying between that of the isotropic and full covariance structure
models without any restrictions on the covariance matrices. The mixture of factor
analyzers model can be fitted by using the alternating expectation–conditional max-
imization (AECM) algorithm of Meng and van Dyk (1997).

A formal test for the number of factors can be undertaken using the likelihood
ratio λ , as regularity conditions hold for this test conducted at a given value for
the number of components g. For the null hypothesis that H0 : q � q0 versus the
alternative H1 : q � q0 � 1, the statistic � 2logλ is asymptotically chi-squared with
d � g

�
p � q0 � degrees of freedom. However, in situations where n is not large rel-

ative to the number of unknown parameters, we prefer the use of the BIC crite-
rion. Applied in this context, it means that twice the increase in the log likelihood� � 2logλ � has to be greater than d logn for the null hypothesis to be rejected.

The mixture of factor analyzers model is sensitive to outliers since it uses normal
errors and factors. Recently, McLachlan et al. (2007) have considered the use of
mixtures of t analyzers in an attempt to make the model less sensitive to outliers.

7 Some recent extensions for high-dimensional data

The EMMIX-GENE program of McLachlan et al. (2002) has been designed for the
normal mixture model-based clustering of a limited number of observations that
may be of extremely high-dimensions. It was called EMIX-GENE as it was de-
signed specifically for problems in bioinformatics that require the clustering of a
relatively small number of tissue samples containing the expression levels of possi-
bly thousands of genes. But it is applicable to clustering problems outside the field of
bioinformatics involving high-dimensional data. In situations where the sample size
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n is very large relative to the dimension p, it might not be practical to fit mixtures
of factor analyzers to data on all the variables, as it would involve a considerable
amount of computation time. Thus initially some of the variables may have to be
removed. Indeed, the simultaneous use of too many variables in the cluster analysis
may serve only to create noise that masks the effect of a smaller number of vari-
ables. Also, the intent of the cluster analysis may not be to produce a clustering of
the observations on the basis of all the available variables, but rather to discover and
study different clusterings of the observations corresponding to different subsets of
the variables; see, for example, Soffritti (2003) anad Galimberti and Soffritti (2007).

Therefore, the EMMIX-GENE procedure has two optional steps before the final
step of clustering the observations. The first step considers the selection of a subset
of relevant variables from the available set of variables by screening the variables on
an individual basis to eliminate those which are of little use in clustering the obser-
vations. The usefulness of a given variable to the clustering process can be assessed
formally by a test of the null hypothesis that it has a single component normal dis-
tribution over the observations. A faster but ad hoc way is to make this decision on
the basis of the interquartile range. Even after this step has been completed, there
may still remain too many variables. Thus there is a second step in EMMIX-GENE
in which the retained variables are clustered (after standardization) into a number of
groups on the basis of Euclidean distance so that variables with similar profiles are
put into the same group. In general, care has to be taken with the scaling of variables
before clustering of the observations, as the nature of the variables can be intrinsi-
cally different. Also, as noted above, the clustering of the observations via normal
mixture models is invariant under changes in scale and location. The clustering of
the observations can be carried out on the basis of the groups considered individu-
ally using some or all of the variables within a group or collectively. For the latter,
we can replace each group by a representative (a metavariable) such as the sample
mean as in the EMMIX-GENE procedure.

8 Mixtures of Normal Components with Random Effects

Up to now, we have considered the clustering of data on entities under two assump-
tions that are commonly adopted in practice; namely,

(a)there are no replications on any particular entity specifically identified as such;
(b)all the observations on the entities are independent of one another.

These assumptions should hold for the clustering of, say, tissue samples consist-
ing of the expression levels of many (possibly thousands) of genes, although the
tissue samples have been known to be correlated for different tissues due to flawed
experimental conditions. However, condition (b) will not hold for the clustering of
gene profiles, since not all the genes are independently distributed, and condition
(a) will generally not hold either as the gene profiles may be measured over time or
on technical replicates. While this correlated structure can be incorporated into the
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normal mixture model (9) by appropriate specification of the component-covariance
matrices Σi, it is difficult to fit the model under such specifications. For example, the
M-step may not exist in closed form.

Accordingly, Ng et al. (2006) have developed the procedure called EMMIX-
WIRE (EM-based MIXture analysis With Random Effects) to handle the clustering
of correlated data that may be replicated. They adopted conditionally a mixture of
linear mixed models to specify the correlation structure between the variables and to
allow for correlations among the observations. It also enables covariate information
to be incorporated into the clustering process.

To formulate this procedure, we consider the clustering of n gene profiles y j
�
j �

1 �
������� n � , where we let y j �
�
yT

1 j ��������� yT
m j � T contain the expression values for the

jth gene profile and

yt j �
�
y1t j �
������� yrtt j � T

�
t � 1 �
������� m �

contains the rt replicated values in the tth biological sample
�
t � 1 ��������� m � on the

jth gene. The dimension p of y j is given by p � ∑m
t 
 1 rt .

With the EMMIX-WIRE procedure, the observed p-dimensional vectors y1 �
������� yn
are assumed to have come from a mixture of a finite number, say g, of components in
some unknown proportions π1 �
������� πg, which sum to one. Conditional on its mem-
bership of the ith component of the mixture, the profile vector y j for the jth gene�

j � 1 �
������� n � , follows the model

y j � Xβ i � Ubi j � Vci � ε i j � (11)

where the elements of β i are fixed effects (unknown constants) modelling the condi-
tional mean of y j in the ith component

�
i � 1 �
������� g � . In (11), bi j (a qb-dimensional

vector) and ci (a qc-dimensional vector) represent the unobservable gene- and tissue-
specific random effects, respectively. These random effects represent the variation
due to the heterogeneity of genes and samples (corresponding to bi �

�
bT

i1 ��������� bT
in � T

and ci, respectively). The random effects bi and ci, and the measurement error vec-
tor

�
εT

i1 �
������� εT
in � T are assumed to be mutually independent, where X , U , and V

are known design matrices of the corresponding fixed or random effects, respec-
tively. The presence of the random effect ci for the expression levels of genes in the
ith component induces a correlation between the profiles of genes within the same
cluster.

With the LMM, the distributions of bi j and ci are taken, respectively, to be multi-
variate normal Nqb

�
0 � H i � and Nqc

�
0 � θciIqc � , where H i is a qb � qb covariance matrix

and Iqc is the qc � qc identity matrix. The measurement error vector ε i j is also taken
to be multivariate normal Np

�
0 � Ai � , where Ai � diag

�
W ξ i � is a diagonal matrix

constructed from the vector
�
W ξ i � with ξ i �

�
σ2

i1
�
������� σ2

iqe
� T and W a known p � qe

zero-one design matrix.
We let Ψ � �

ψT
1 �
������� ψT

g � π1 �
������� πg � 1 � T be the vector of all the unknown param-
eters, where ψ i is the vector containing the unknown parameters β i, the distinct el-
ements of H i, θci, and ξ i of the ith component density

�
i � 1 ��������� g � . The estimation

of Ψ can be obtained by the ML approach via the EM algorithm, proceeding con-
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ditionally on the tissue-specific random effects ci as formulated in Ng et al. (2006).
The E- and M-steps can be implemented in closed form. In particular, an approxi-
mation to the E-step by carrying out time-consuming Monte Carlo methods is not
required. A probabilistic or an outright clustering of the genes into g components
can be obtained, based on the estimated posterior probabilities of component mem-
bership given the profile vectors and the estimated tissue-specific random effects ĉi

for i � 1 �
������� g; see Ng et al. (2006).
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