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Abstract: Finite mixture models are being increasingly used to model the
distributions of a wide variety of random phenomena and to cluster data sets;
see, for example, McLachlan and Peel (2000a). We consider the use of normal
mixture models to cluster data sets of continuous multivariate data, concen-
trating on some of the associated computational issues. A robust version of this
approach to clustering is obtained by modelling the data by a mixture of ¢ dis-
tributions (Peel and McLachlan, 2000). The normal and ¢ mixture models can
be fitted by maximum likelihood via the EM algorithm, as implemented in the
EMMIX software of the authors. We report some recent results of McLachlan
and Ng (2000) on speeding up the fitting process by an an incremental version
of the EM algorithm. The problem of clustering high-dimensional data by use
of the mixture of factor analyzers model (McLachlan and Peel, 2000b) is also
considered. This approach enables a normal mixture model to be fitted to
data which have high dimension relative to the number of data points to be
clustered.

1 Introduction

Finite mixtures of distributions have provided a mathematical-based
approach to the statistical modelling of a wide variety of random phe-
nomena, see, for example, McLachlan and Peel (2000a). Because of their
usefulness as an extremely flexible method of modelling, finite mixture
models have continued to receive increasing attention over the years,
both from a practical and theoretical point of view. For multivariate
data of a continuous nature, attention has focussed on the use of multi-
variate normal components because of their wide applicability and com-
putational convenience. They can be easily fitted iteratively by maxi-
mum likelihood (ML) via the expectation-maximization (EM) algorithm
of Dempster et al. (1977); see also McLachlan and Krishnan (1997).

With a normal mixture model-based approach to clustering, it is as-
sumed that the data to be clustered are from a mixture of an initially
specified number g of multivariate normal densities in some unknown
proportions 71, ..., mg. That is, each data point is taken to be a real-
ization of the mixture probability density function (p.d.f.),
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where ¢(y; p;, 2;) denotes the p-variate normal density probability func-
tion with mean p; and covariance matrix 3;. Here the vector ¥ of un-
known parameters consists of the mixing proportions 7;, the elements of
the component means p;, and the distinct elements of the component-
covariance matrices ;.

Once the mixture model has been fitted, a probabilistic clustering of
the data into g clusters can be obtained in terms of the fitted posterior
probabilities of component membership for the data. An outright as-
signment of the data into g clusters is achieved by assigning each data
point to the component to which it has the highest estimated posterior
probability of belonging; see, for example, Bock (1996) for an account
of some of the issues in cluster analysis. In this paper, we consider the
use of normal and ¢ mixture models to cluster data sets of continuous
multivariate data, focussing on some of the associated computational
issues.

2 Maximum likelihood estimation
2.1 Application of EM algorithm

We let ¥ be the vector of unknown parameters in the mixture model. It
thus consists of the mixing proportions and the unspecified parameters
in the component densities. The maximum likelihood estimate of ¥ is
obtained as an appropriate root of the likelihood equation

dlog L(¥)/0% = 0, 2)

where L(®¥) denotes the likelihood function for ¥ formed from the ob-
served random sample y, ..., y,. Solutions of (2) corresponding to
local maxima can be found by application of the EM algorithm. The
latter is applied in the framework where an observation y; is concep-
tualized to have arisen from one of the components and the indicator
variable denoting its component of origin is taken to be missing. The
E-step of the EM algorithm thus involves replacing these unobservable
indicator variables by their conditional expectations given the observed
data (the posterior probabilities of component membership), since the
complete-data log likelihood is linear in them. For normal component
densities, the estimates of their means p; and covariance matrices ¥; can
be updated in closed form on the M-step; see, for example, McLachlan
and Peel (2000a, Chapter 3).

As the likelihood equation (2) tends to have multiple roots corresponding
to local maxima, the EM algorithm needs to be started from a variety of
initial values for the parameter vector ¥ or for a variety of initial parti-
tions of the data into g groups. The latter can be obtained by randomly
dividing the data into g groups corresponding to the g components of



the mixture model. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar
at least in large samples. One way to reduce this effect is to first select
a small random subsample from the data, which is then randomly as-
signed to the g components. The first M-step is then performed on the
basis of the subsample. The subsample has to be sufficiently large to
ensure that the first M-step is able to produce a nondegenerate estimate
of the parameter vector ¥.

Coleman et al. (1999) have considered using a combinatorial search for
a good starting point from which to apply the EM algorithm. They
compared two local searches with a hierarchical agglomerative approach
where the objective function to be minimized was taken to be the de-
terminant of the pooled within-cluster covariance matrix.

2.2 Mixtures of ¢t distributions

For many applied problems, the tails of the normal distribution are
often shorter than appropriate. Also, the estimates of the component
means and covariance matrices can be affected by observations that are
atypical of the components in the normal mixture model being fitted.
In this paper, we consider the fitting of mixtures of (multivariate) ¢
distributions. The ¢ distribution provides a longer tailed alternative to
the normal distribution. Hence it provides a more robust approach to
the fitting of normal mixture models, as observations that are atypical
of a normal component are given reduced weight in the calculation of
its parameters; see McLachlan and Peel (1998), Peel and McLachlan
(2000), and McLachlan and Peel (2000a, Chapter 7).

The t density with location parameter p, positive definite matrix X, and
v degrees of freedom is given by
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where

Sy, ;)= (y - )= (y — p) (4)
denotes the Mahalanobis squared distance between y and p (with X as
the covariance matrix). If v > 1, p is the mean of Y, and if v > 2,
v(v —2)713 is its covariance matrix. As v tends to infinity, ¥ becomes
marginally multivariate normal with mean pu and covariance matrix .
The family of ¢ distributions provides a heavy-tailed alternative to the
normal family. McLachlan and Peel (2000a, Chapter 7) have provided a
detailed account how the EM algorithm and a multicycle ECM variant
can be used to undertake ML estimation of a mixture of ¢ distributions.



3 Speeding up the EM algorithm
3.1 Incremental EM (IEM) algorithm

As the EM algorithm updates the posterior probabilities of component
membership for each observation before the next M-step is performed,
it can take some time to implement for large data sets. Hence variants
of the EM algorithm have been considered for reducing the computation
time. With the incremental EM (IEM) algorithm as proposed by Neal
and Hinton (1998), the n available observations are divided into B (B <
n) blocks and the E-step is implemented for only a block of observations
at a time before the next M-step is performed. In this way, each data
point y, is visited after B partial E-steps and B (full) M-steps have been
performed; that is, after one “pass” or scan of the IEM algorithm. The
argument for improved rate of convergence is that the TEM algorithm
exploits new information more quickly rather than waiting for a complete
scan of the data before parameters are updated by an M-step. The
theoretical justification for the IEM algorithm has been provided by
Neal and Hinton (1998).

In implementing the M-step for normal components (or for other compo-
nent densities belonging to the exponential family), it is computationally
advantageous to work in terms of the current conditional expectations
of the sufficient statistics. This is because the latter can be expressed
partly in terms of their values on the previous iteration of the current
scan and on the previous scan, so that their updating is confined effec-
tively to a block of observations on a given E-step; see McLachlan and
Peel (2000a, Chapter 12).

The choice of the number of blocks B so as to optimize the convergence
time of the IEM algorithm is an interesting problem. McLachlan and
Ng (2000) have investigated the tradeoff between the additional compu-
tation on one scan of the IEM algorithm and the fewer number of scans.
Their results suggest using B ~ n?/® as a simple guide. The optimal
choice will depend on the number of unknown parameters. McLachlan
and Ng (2000) suggest modifying this guide to B ~ n!/? in the case of
component-covariance matrices specified to be diagonal and to B ~ n3/8
for component-covariance matrices restricted to be equal.

Thiesson et al. (1999) suggest a search method to choose the number
of blocks. For a given number of blocks B, they propose to run the
IEM algorithm for two scans (the first scan involves a full E-step) and
calculate the ratio

T = (L2 - Ll)/t,

where L1 and Ly are the log likelihood values after the first and the
second complete scan of the data respectively, and ¢ is the time required
for the second scan which involves the partial E-step. The procedure



is repeated for various numbers of blocks B and the choice of B is the
value that maximizes r.

3.2 Sparse versions of the EM and IEM algorithms

In fitting a mixture model to a data set by maximum likelihood via the
EM algorithm, the current estimates of the posterior probabilities for
some components of the mixture for a given data point y; are often
close to zero. Neal and Hinton (1998) proposed a sparse version of the
EM algorithm for which only those component-posterior probabilities
that are above a specified threshold (say, C) are updated. After running
this sparse EM (SPEM) algorithm a number of iterations (say, k1), a
full EM step is then performed on which the posterior probabilities of
component membership of all the observations are updated. A sparse
version of the IEM algorithm (SPIEM) can be formulated by combining
the sparse E-step of the SPEM algorithm and the partial E-step of the
IEM algorithm.

McLachlan and Ng (2000) considered the choice of values for the thresh-
old C and the number of iterations k; for the SPIEM algorithm. Their
simulations suggest taking C' = 0.005 and k; = 5. In their simulations,
it was found that the use of the SPIEM algorithm reduced the time to
convergence of the standard EM algorithm by a factor ranging from 18%
to 71%, depending on the situation. Of course in situations where the
EM algorithm is quick to converge, there may be only a little reduc-
tion in the time to convergence; indeed, in some instances, the time to
convergence may actually be increased.

4 Mixtures of factor analyzers

One approach for reducing the number of unknown parameters in the
forms for the component-covariance matrices ¥; is to adopt the mixtures
of factor analyzers model, as considered in McLachlan and Peel (2000a,
2000b). This model was originally proposed by Ghahramani and Hinton
(1997) for the purposes of visualizing high dimensional data in a lower
dimensional space to explore for group structure; see also Tipping and
Bishop (1997) who considered the related model of mixtures of principal
component analyzers for the same purpose. With the mixture of factor
analyzers model, the ¢th component-covariance matrix ¥; has the form

> =BB'+D; (i=1,...,9), (5)

where B; is a p X ¢ matrix of factor loadings and D); is a diagonal matrix.
It assumes that the component-correlations between the observations
can be explained by the conditional linear dependence of the latter on ¢
latent or unobservable variables specific to the given component. If ¢ is



chosen sufficiently smaller than p, the representation (5) imposes some
constraints on the component-covariance matrix 3; and thus reduces
the number of free parameters to be estimated.

Note that in the case of ¢ > 1, there is an infinity of choices for B;,
since (5) is still satisfied if B; is replaced by B;C;, where C; is any
orthogonal matrix of order gq. One (arbitrary) way of uniquely specifying
B; is to choose the orthogonal matrix C; so that BiTD; lBi is diagonal
(with its diagonal elements arranged in decreasing order); see Lawley
and Maxwell (1971, Chapter 1). Assuming that the eigenvalues of B; B}
are positive and distinct, the condition that BZTDi_lBi is diagonal as
above imposes 1¢(g — 1) constraints on the parameters. Hence then the
number of free parameters for each component-covariance matrix is

pg+p— 3q(qg—1).

5 Example: Clustering of microarray data

We now apply the t-mixture model to cluster some n = 1290 observa-
tions of p = 26 dimensions. These data were produced by DNA microar-
ray experiments. ¢DN A microarrays consist of thousands of different
cDN A clones spotted onto known locations on glass microscope slides.
These slides/microarrays then are hybridized with differentially labelled
DN A populations made from the m RN As of two samples. The primary
data obtained are ratios of fluorescence intensity (red/green), represent-
ing the ratios of concentrations of mRN A molecules that hybridized to
each of the cD N As represented on the array. The data set analyzed here
is a subset of the data considered in Perou et al. (2000). It contains the
log ratios on 1290 gene expressions for 26 tissues on human mammary
epithelial cells growing in culture and in primary human breast tumours.

In Figure 1, we display the two-cluster solution obtained by fitting a
mixture of ¢ = 2 t-components. The clusters are displayed in the two-
dimensional space constructed using the first two principal components
of the data, where we have imposed the 95% asymptotic confidence
region for an observation about its component mean. The corresponding
solution from fitting a two-component normal mixture model is given in
Figure 2. It can be seen on comparing the two figures that the use of the
t-mixture model results in a clustering that appears to be less affected
by atypical observations in the data. The latter cause the estimates of
the component-variances, and hence the elliptical confidence regions, to
be inflated when normal components are adopted.
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Figure 1: Plot of two-component normal mixture-based solution; (im-
plied) cluster memberships denoted by o and x.
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Figure 2: Plot of two-component ¢ mixture-based solution; (implied)
cluster memberships denoted by o and x.
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