Robust Mixture Modeling

G. J. McLachlan, S. K. Ng, and R. W. Bean
Department of Mathematics &
Institute for Molecular Bioscience
University of Queensland, 4072
Brisbane, Australia

Sponsor: Section on Physical and Engineering
Sciences

Keywords: finite mixture models; EM algorithm;
multiresolution kd-trees; ¢ distributions; mixtures of
factor analyzers

Abstract: Finite mixture models are being in-
creasingly used to model the distributions of a wide
variety of random phenomena and to cluster datasets.
We shall focus on the use of normal mixture models to
cluster datasets of continuous multivariate data. We
shall consider a robust approach to clustering by mod-
eling the data by a mixture of ¢ distributions. With
this t-mixture model-based approach, the normal dis-
tribution for each component in the mixture model
is embedded in a wider class of elliptically symmetric
distributions with an additional parameter called the
degrees of freedom. The advantage of the t-mixture
model is that, although the number of outliers needed
for breakdown is almost the same as with the normal
mixture model, the outliers have to be much larger.
We also consider the use of the ¢ distribution for the ro-
bust clustering of high-dimensional data via mixtures
of factor analyzers. Finally, we consider the robust fit-
ting of normal mixtures using multiresolution kd-trees.

1 Introduction

Finite mixtures of distributions have provided a math-
ematical-based approach to the statistical modeling of
a wide variety of random phenomena. Because of their
usefulness as an extremely flexible method of model-
ing, finite mixture models have continued to receive
increasing attention over the years, from both a prac-
tical and theoretical point of view; see, for example,
McLachlan and Basford (1988) and McLachlan and
Peel (2000). Mixture distributions have been applied

to data with two main purposes in mind: (i) to pro-
vide an appealing semiparametric framework in which
to model unknown distributional shapes, as an alter-
native to, say, the kernel density method; (ii) to use
the mixture model to provide a model-based cluster-
ing. In both situations, there is the question of how
many components to include in the mixture.

Frequently, in practice, the clusters in the data are
essentially elliptical, so that it is reasonable to consider
fitting mixtures of elliptically symmetric component
densities. Within this class of component densities,
the multivariate normal density is a convenient choice
given its computational tractability. Also, any con-
tinuous distribution can be approximated arbitrarily
well by a finite mixture of normal densities with com-
mon variance (or covariance matrix in the multivariate
case).

For many applied problems, the tails of the normal
distribution are often shorter than required. Also, the
estimates of the component means and covariance ma-
trices can be affected by observations that are atypical
of the components in the normal mixture model being
fitted. The problem of providing protection against
outliers in multivariate data is a very difficult problem
and increases in difficulty with the dimension of the
data (Rocke and Woodruff, 1997; Kosinski, 1999). In
this paper, we consider the use of mixtures of ¢ dis-
tributions as a more robust approach to the fitting of
mixture models.

Recently, Hennig (2004) has provided an in-depth
study of breakdown points (including their definitions)
for maximum likelihood estimators of g-component loc-
ation-scale mixtures for both fixed and unfixed g. As
he notes, the addition of gross outliers is almost harm-
less from the theoretical point of view in mixture esti-
mation with g unfixed, because outliers can be accom-



modated by including more components in the mix-
ture model. He goes on to point out that breakdown
can occur if the added points lie inside the range of
the original data, as it may lead to a solution with a
smaller number of clusters than the original number of
components g. In this study, we consider the robust-
ness of normal mixture models in the case of a fixed
number of components g.

2 Model-Based Clustering

We firstly consider the use of normal mixture models
as a device for the clustering of multivariate data.

2.1 Clustering via Mixture Models

In recent times much attention has been given in the
statistical literature to the use of finite mixture models
as a device for clustering; see, for example, McLach-
lan and Peel (2000). With this approach, the observed
datayy, ... y,, are assumed to have come from a mix-
ture of a finite number, say g, of groups Gy, ..., Gy
in some unknown proportions 7y, ..., mg. The mixing
proportions 7; lie between zero and one, and sum to
one. The feature vector Yis taken to have the density
fi(y) in group G; (i = 1, ..., g). Thus uncondition-
ally with respect to its group of origin, the feature
vector Y has the mixture density

= Zm’fz'(y)

In this mixture framework, the posterior probability
that an observation with feature vector y; belongs to
the ith component of the mixture is given by

=mifi(y;)/ f(y;)

(1)

7i(y;) (2)
fori=1,...,¢.

On specifying a parametric form f;(y,; 6;) for each
component density, we can fit this parametric mixture
model

Zﬂz fil y],

by maximum likelihood via the expectation-maximiz-
ation (EM) algorithm of Dempster, Laird, and Rubin
(1977); see also McLachlan and Krishnan (1997). Here
U= (Wl )T is the vector of unknown
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parameters, where w consists of the elements of the 6;
known a priori to be distinct. In order to estimate ¥
from the observed data, it must be identifiable. This
will be so if the representation (1) is unique up to a
permutation of the component labels.

The actual fitting of finite mixture models by max-
imum likelihood via the EM algorithm. Let ¥ denote
the estimate of ¥ so obtained. Then

g
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is the estimated posterior probability that the jth ob-
servation with feature vector y; belongs to the ith
component of the mixture (i =1, ..., ¢; j =1, ..., n).
The mixture approach gives a probabilistic cluster-
ing in terms of these estimated posterior probabili-
ties of component membership. An outright partition-
ing of the observations into g nonoverlapping clusters
Ci, ..., Oy is effected by assigning each observation to
the component to which it has the highest estimated
posterior probability of belonging. Thus the ith clus-
ter C; contains those observations assigned to group
G;.

2.2 Cluster Analysis with No A Prior:
Metric

Many clustering methods assume that the similarity
measure or metric is known a priori. Often the Eu-
clidean metric is used as with k-means clustering. How-
ever, it is more appropriate to use a distance function
(metric) that depends on the shape of the clusters. For
example, if a cluster is multivariate normal with mean
p and covariance matrix X, the appropriate distance
between a point y and the center p of the cluster is
the squared Mahalanobis distance

Sy, p; X) = (y—p)'x" (5)

between y and p. The difficulty is that the shape of
the clusters is not known until the clusters have been
identified, and the clusters cannot be effectively iden-
tified unless the shapes are known. Indeed, as noted
by Hansen and Tukey (1992), “The shakiest part of
any clustering procedure is the choice of the metric.”
To avoid reliance on any a priori metric, Coleman
et al. (1999) advocate the use of affine invariant clus-
tering algorithms. This means that the clustering pro-
duced on the transformed data Cy + a is the same

(y —n)



as on the untransformed data y. Here C is a non-
singular matrix. It means that the clustering is in-
variant under location (translations of the data), scale
(stretchings of the data), and rotation (orientations of
the data). Thus affine-invariant metrics are particu-
larly appropriate for use in clustering, since the results
do not depend on irrelevant factors such as the units
of measurement or the orientation of the clusters in
space. Hartigan (1975, Page 63) has commented that
“Invariance under this general class of linear transfor-
mations seems less compelling than invariance under
the change of measuring units of each of the variables.”

Essentially, affine invariance of clustering is equiv-
alent to assuming that the metric is quadratic but oth-
erwise unspecified; that is, the distance between any
two points y; and y, is given by

d(y1,Y2) = (Y1 — yz)TBil(?h — 1Y) (6)

with B a positive-definite symmetric matrix. Quadrat-
ic metrics can arise naturally in a number of ways, such
as with mixture models with component distributions
such as the multivariate normal or other elliptically
symmetric distributions (the ¢ distribution). Note that
Euclidean distance corresponds to the use of (6) with
B equal to the p x p identity matrix.

2.3 Normal Mixture Models

One attractive feature of adopting mixture models with
elliptically symmetric components such as the normal
or t densities, is that the implied clustering is invari-
ant under affine transformations of the data (that is,
under operations relating to changes in location, scale,
and rotation of the data). Thus the clustering process
does not depend on irrelevant factors such as the units
of measurement or the orientation of the clusters in
space.

2.4 Advantages of Model-Based Clus-
tering

The mixture likelihood-based approach to clustering is
model based in that the form of each component den-
sity of an observation has to be specified in advance.
Hawkins, Muller, and ten Krooden (1982) commented
that most writers on cluster analysis “lay more stress
on algorithms and criteria in the belief that intuitively
reasonable criteria should produce good results over a
wide range of possible (and generally unstated) mod-
els.” For example, the trace W criterion, where W is

the pooled within-cluster sums of squares and products
matrix, is predicated on normal groups with (equal)
spherical covariance matrices; but as they pointed out,
many users apply this criterion even in the face of ev-
idence of nonspherical clusters or, equivalently, would
use Euclidean distance as a metric. They strongly sup-
ported the increasing emphasis on a model-based ap-
proach to clustering. Indeed, as remarked by Aitkin,
Anderson, and Hinde (1981) in the reply to the dis-
cussion of their paper, “when clustering samples from
a population, no cluster method is, a prior: believable
without a statistical model.” Concerning the use of
mixture models to represent nonhomogeneous popula-
tions, they noted in their paper that “Clustering meth-
ods based on such mixture models allow estimation
and hypothesis testing within the framework of stan-
dard statistical theory.” Previously, Marriott (1974)
had noted that the mixture likelihood-based approach
“is about the only clustering technique that is entirely
satisfactory from the mathematical point of view. It
assumes a well-defined mathematical model, investi-
gates it by well-established statistical techniques, and
provides a test of significance for the results.” More re-
cently, a model-based approach to clustering has been
advocated by Banfield and Raftery (1993) and Fraley
and Raftery (1998, 2004).

3 Mixtures of ¢ Distributions

3.1 Extension of Normal Family

One way to broaden the normal parametric family for
potential outliers or data with longer-than-normal tails
is to adopt the two-component normal mixture density

(1-e)d(y;; 1, X) + €p(y;; p, kX), (7

where k is large and e is small, representing the small
proportion of observations that have a relatively large
variance. Huber (1964) subsequently considered more
general forms of contamination of the normal distri-
bution in the development of his robust M-estimators
of a location parameter, as to be discussed further in
Section 4.

The normal scale mixture model (7) can be written
as

/ o(y,; 1, /) dH (), (8)

where H is the probability distribution that places
mass (1 —€) at the point v = 1 and mass € at the



point 4 = 1/k. Suppose we now replace H by the
distribution of a chi-squared random variable on its
degrees of freedom v; that is, by the random variable
U distributed as

9)
, B) density function is given by

{ﬂaua—l/l“(a)} eXp(—,BU)I[o,oo) (’U.) (Oé, /3 > 0)
(10)

U ~ gamma (iv, 3v),

where the gamma («

We then obtain the ¢ distribution with location param-
eter p, positive definite inner product matrix X, and
v degrees of freedom,

fy;; m, X, v) /
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where
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denotes the Mahalanobis squared distance between y;
and p (with X' as the covariance matrix). If v > 1,
p is the mean of Yj, and if v > 2, v(v — 2)71 X is
its covariance matrix. As v tends to infinity, U con-
verges to one with probability one, and so Y; becomes
marginally multivariate normal with mean g and co-
variance matrix ¥. Hence this parameter v may be
viewed as a robustness tuning parameter. It can be
fixed in advance or it can be inferred from the data
for each component, thereby providing an adaptive ro-
bust procedure (McLachlan and Peel, 1998; McLach-
lan and Peel, 2000, Chapter 7). More recently, Kotz
and Nadarajah (2004) have written a book devoted to
the t distribution.

The t distribution does not have substantially bet-
ter breakdown behavior than the normal. The ad-
vantage of the ¢ mixture model is that, although the
number of outliers needed for breakdown is almost the
same as with the normal mixture model, the outliers
have to be much larger. This point is made more
precise by Hennig (2004) who has provided an excel-
lent account of breakdown points for ML estimation of
location-scale mixtures with a fixed number of compo-
nents g. Also, as noted by Lange et al. (1989), the use
of the t distribution is not a panacea for all forms of ro-
bustness. Data with shorter-than-normal tails, asym-
metric distributions, varying degrees of long-tailedness

among the feature variables, or with extreme outliers
will not be able to be modeled adequately by a mixture
of t distributions.

3.2 Maximum Likelihood Estimation

The mixture of ¢ distributions can be fitted by max-
imum likelihood (ML) via the EM algorithm, as de-
scribed in McLachlan and Peel (2000, Chapter 7). A
history of the development of ML estimation of a single-
component ¢ distribution may be found in Liu and Ru-
bin (1994, 1995), Liu (1997), and Meng and van Dyk
(1997).

On the M-step of the (k + 1)th iteration of the EM
algorithm, the mixing proportions are updated as

Z (k)

D)

i=1,...,9), (13)

- (k
where Tz(]) = 7i(y;; @' )) is the current estimate of
the posterior probability that observation y; belongs
to the ¢th component. The updated estimates of

and X; are given by

(k+1) Z (k) (k)y]/z (k) (k) (14)
and
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It can be seen that the EM process effectively choos-

es uﬁ’““’ and( )2' (k+1) by IRLS. The E—step( 1J1rp;iates
and

by welghted least-squares estimation. From the
form of the equation (14) derived for the MLE of p,,

we have that, as yz(k) decreases, the degree of down-

weighting of an outlier increases. For finite I/(k)

| y; |[= oo, the effect on the ith component locatlon
parameter estimate goes to zero, whereas the effect on
the ith component scale estimate remains bounded but
does not vanish.

the weights u,;
(k+1)
Z

, while the M-step chooses p;



Following the proposal of Kent, Tyler, and Vardi
(1994) in the case of a single-component ¢ distribution,

7% in (15) by

we can replace the divisor ). =1 Tij

This modified algorithm converges faster than the con-
ventional EM algorithm, as reported by Kent et al.
(1994) and Meng and van Dyk (1997) in the case of
a single-component t distribution (¢ = 1). In the lat-
ter situation, Meng and van Dyk (1997) showed that
this modified EM algorithm is optimal among EM al-
gorithms generated from a class of data augmentation
schemes. More recently, in the case of ¢ = 1, Liu
(1997) and Liu et al. (1998) have derived this modi-
fied EM algorithm using the PX-EM algorithm.

It can be seen that if the degrees of freedom v; is
fixed in advance for each component, then the M-step
exists in closed form. In this case where v; is fixed be-
forehand, the estimation of the component parameters
is a form of M-estimation; see Lange et al. (1989, p.
882). However, an attractive feature of the use of the
t distribution to model the component distributions is
that the degrees of robustness as controlled by v; can
be inferred from the data by computing its MLE. In

(k+1)

this case, it can be shown that v; is a solution of

{—w(%w) +log(3vi) + 1
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where n{) = ST, z(]k) (i=1,...,9).

With mixture models, the hkelihood equation will
usually have multiple roots corresponding to local max-
ima, and so the EM algorithm (or its variants) should
be applied from a wide choice of starting values in any
search for all local maxima. For example, one can use
random starts or partitions obtained via some other
clustering procedure such as k-means; see also Bier-
nacki (2004), Biernacki, Celeux, and Govaert (2003),
and Coleman and Woodruff (2003). In the absence
of the observed value of any known consistent estima-
tor or any other information, an obvious choice for the

root of the likelihood equation is the one corresponding
to the largest of the local maxima located (excluding
so-called spurious local maximizers).

4 Some Previous Work

Robust estimation in the context of mixture models
has been considered in the past by Campbell (1984),
McLachlan and Basford (1988, Chapter 3), and De
Veaux and Kreiger (1990), among others, using M-
estimates of the means and covariance matrices of the
normal components of the mixture model.
With M-estimation, the updated component means
(k1) are given by (14), but where now the weights

By
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i; are defined as

ult) = ¢(d¥)/d) (18)
and where

and ¥(s) =

fined as

N 50y — py/2

—1p(—s) is Huber’s (1964) v-function de-

P(s) = s,
= sign(s)a

|s|<a,

|'s[>a, (19)

for an appropriate choice of the tuning constant a. The
ith component-covariance matrix 2§’“+1) can be up-
dated as (15), where u( ) is replaced by {@b(dg-c))/d(k) 12.
An alternative to Huber s y-function is a redescend-
ing t-function, for example, Hampel’s (1973) piece-
wise linear function. However, there can be prob-
lems in forming the posterior probabilities of compo-
nent membership, as there is the question as to which
parametric family to use for the component densities
(McLachlan and Basford, 1988; Section 2.8). One pos-
sibility is to use the form of the density correspond-
ing to the y-function adopted. However, in the case
of any redescending t-function with finite rejection
points, there is no corresponding density. In Campbell
(1984), the normal density was used, while in the re-
lated univariate work in De Veaux and Kreiger (1990),
the ¢ density with three degrees of freedom was used,
with the location and scale component parameters es-
timated by the (weighted) median and mean absolute
deviations, respectively.

It can be therefore seen that the use of mixtures
of ¢ distributions provides a sound statistical basis for



formalizing and implementing the somewhat ad hoc
approaches that have been proposed in the past. It
also provides a framework for assessing the degree of
robustness to be incorporated into the fitting of the
mixture model through the specification or estimation
of the degrees of freedom v; in the ¢ component densi-
ties.

As noted in the introduction, the use of ¢ compo-
nents in place of the normal components will generally
give less extreme estimates of the posterior probabili-
ties of component membership of the mixture model.
The use of the ¢ distribution in place of the normal
distribution leading to less extreme posterior probabil-
ities of group membership was noted in a discriminant
analysis context, where the group-conditional densities
correspond to the component densities of the mixture
model (Aitchison and Dunsmore, 1975, Chapter 2). If
a Bayesian approach is adopted and the conventional
improper or vague prior specified for the mean and
the inverse of the covariance matrix in the normal dis-
tribution for each group-conditional density, it leads
to the so-called predictive density estimate, which has
the form of the ¢ distribution; see McLachlan (1992,
Section 3.5).

In other work, Markatou (1998) has provided a for-
mal approach to robust mixture estimation by apply-
ing weighted likelihood methodology in the context of
mixture models. With this methodology, an estimate
of the vector of unknown parameters is obtained as a
solution of the equation

> w(y,)dlog f(y;; ¥) /0¥ =0, (20)
j=1

where f(y;; ¥) denotes the specified parametric form
for the density of Y;. The weight function w(y;) is de-
fined in terms of the Pearson residuals; see Markatou,
Basu, and Lindsay (1998). The weighted likelihood
methodology provides robust and first-order efficient
estimators in general, and Markatou (1998) has estab-
lished these results in the context of univariate mixture
models. Also, Tibshirani and Knight (1999) have pro-
posed the technique of bootstrap “bumping,” which
can be used for resistant fitting.

One way in which the presence of atypical observa-
tions or background noise in the data has been handled
when fitting mixtures of normal components has been
to include an additional component having a uniform
distribution. The support of the latter component is
generally specified by the upper and lower extremities

of each dimension defining the rectangular region that
contains all the data points. Typically, the mixing pro-
portion for this uniform component is left unspecified
to be estimated from the data (Banfield and Raftery,
1994). As the noise (uniform) component defined in
this way can be severely affected by outliers, Hen-
nig (2004) has suggested a modified uniform approach
whereby the density constant for the noise component
is fixed beforehand using an improper prior compo-
nent.

There are other approaches to robust cluster anal-
ysis that are implemented by optimizing a target func-
tion for only part of the data. For example, (i) trimmed
k-means (Garcia-Escudero and Gordaliza, 1999) and
(ii) minimum covariance determinant procedures (Haw-
kins, 2000; Rocke and Woodruff, 2000).

5 Mixtures of Factor Analyzers

A normal mixture model without restrictions on the
component-covariance matrices may be viewed as too
general for many situations in practice, particularly
with high dimensional data. In exploring high-dimen-
sional data sets for group structure, it is typical to
rely on principal component analysis. However, the
latter is a global linear method, and may not always
be appropriate for finding group structure in a space
spanned by the leading principal components. One
approach for reducing the number of parameters is to
work in a lower dimensional space by adopting mix-
tures of factor analyzers (McLachlan and Peel, 2000,
Chapter 8). The mixture of factor models as given
below provides a global nonlinear approach to dimen-
sion reduction as it postulates a finite mixture of lin-
ear submodels (factor models) for the distribution of
the full observation vector given the (unobservable)
factors. Thus, it is a local dimensionality reduction
method.

The mixture of factor analyzers model is given by

Zﬂ-z y_;ap‘za )7

fy;; @ (21)

where

Yi=BiB] + Di(i=1,"--,9) (22)

B; is a p x ¢ matrix and D; is a diagonal matrix.
This model can be fitted by an alternating expect-

ation—conditional maximization (AECM) algorithm.



On the first cycle, the missing data are declared to
be the component-label vectors in order to update the
estimates of 7; and p, as follows

=3 n (23)
j=1
“gk-i-l) _ Ti(f)yj/ Z Ti(](v) (24)
j=1 j=1
fore=1,---,g.

On the second cycle, the missing data are declared
also to be the unobservable factors in order to update
the estimates of B; and D; as follows

k k k )T A (k k k _
Bz( +1) _ Vi( +1/2)%_( )(%( ) Vi( +1/2)%_( ) ‘H%( +1/(2)))1
25

Dz(k—H) — diag{Vz-(kH/?) - ‘/;(k+1/2),yz(k)Bz(k+1)T}

(26)
where
A = (B®B®T 4 1R (2
W = 12" B, (28)
and Vi(kﬂ/m is given by
Zyzl Ti(yj;ql(k+1/2))(yj _ ;é'““))(yj _ M§k+1))T
2?21 Ti (?!j; ¢k+1/2))
(20)

An alternative way of proceeding is to adopt some
prior distribution for the D; as, for example, in the
Bayesian approach of Fokoué and Titterington (2003).

We can make this model less sensitive to outliers
by introducing in (24) and (29) weights similar to the
ug-“) in the fitting of mixtures of ¢ components. This
can be viewed as an ad hoc approach to the fitting
of the mixture of factor analyzers model in which the
errors in the factor submodels are taken to have a ¢
distribution located at the origin.

6 Stem-Cell Approach

Cuesta-Albertos, Matran, and Mayo-Iscar (2004) have
proposed the use of so-called stem-cell estimators to

improve the robustness of estimators in the mixture
model. Their method is applicable in the case where
the number of clusters is known a priori. This latter
knowledge makes the task of robust cluster analysis
much easier than in the general case where there is no
knowledge on the number of clusters in the data. We
shall see this in the examples below. Their algorithm
is started from the 50%-trimmed k-means solution.

To demonstrate their method, Cuesta-Albertos et
al. (2004) considered a core data set on which they
compared their method with the results obtained by
fitting mixtures of ¢ and normal mixtures started from
the nontrimmed k-means. The core data set consisted
of 600 data points generated from a mixture of g =
3 normal groups as considered in Ueda and Nakano
(1998). The parameters of this model are:

M1 = (0 3)T7:u2 = (3 0)T7/1’3 = (_3 O)Ta

).

2 05
2= ( 0.5 0.5

1 0
2 = ( 0 0.1 )
2 -05
s = ( -0.5 0.5 )

In their first example for which the 600 core data
points were considered uncontaminated, they found
that their method gave similar results to the ¢ and nor-
mal mixture models started from the nontrimmed k-
means solution, as summarized in Figure 1. However,
they found that their method gave different results to
the ¢t and normal mixture models in their second and
third examples in which contamination was introduced
into the core data points, as illustrated in Figures 2
and 3. In the first case of contamination (Example
2), the 600 points were contaminated by adding 20
points obtained from the uniform distribution on the
distribution uniform on the square [—5, 5] x [—8, 8]. In
their second contamination case (Example 3), the 600
points were contaminated by adding 20 points from
distribution uniform on the square [0.5,1.5] X [—8, —7].
However, when we fitted the ¢ mixture model from the
50% k-means solution, it gave similar results to the
stem-cell method of Cuesta-Albertos et al. (2004).

These examples demonstrate that knowledge about
the true number of clusters can be crucial in robust



Figure 1: Simulation of 600 points of a mixture of three
2-dimensional Gaussian distributions as described in
Example 1. Curves represent the 95% level ellypses
of the true distribution (thin ones) and the estimated
distributions (cyan and black-thick ones). Estimations
on the left hand side graphic (that practically coincide)
were made with the ¢ and normal mixture models,
while the one on the right hand side was made with the
stem-cell procedure. Different colors denote the ini-
tial three-clusters as obtained with the non-trimmed
3-means (left-hand side) and with the 50% trimmed
3-means (right-hand side).

cluster analysis. If we know beforehand that the main
body of points constitute the true clusters, then it
would be wise to consider fitting the mixture model of
t components from a clustering obtained by some ro-
bust method such as trimmed k-means. But without
this knowledge, it may not be appropriate to employ
such a clustering procedure initially, particularly in the
case where there may be interest in finding break-away
clusters. For example, if we fit a mixture of g = 4
t components to the contaminated data in Example
3 above, starting from the nontrimmed k-means so-
lution, we obtain four clusters of which three corre-
spond to the main body of points and the fourth to
the smaller number of break-away points.

7 Robust Estimation via Multi-
resolution kd-trees

In this section, we consider a robust implementation of
normal mixture models based on multiresolution kd-
trees (mrkd-trees). Here kd stands for k-dimensional
where, in our notation, ¥ = p, the dimension of an
observation y;.

7.1 kd-Trees for Mixture Models

Multiresolution kd-tree-based approaches have been
adopted to speed up the EM algorithm (Moore, 1999;

Figure 2: Simulation of 600 points of a mixture of three
2-dimensional Gaussian distributions plus 20 contam-
inated observations generated as described in Exam-
ple 2, first contaminated case. Curves represent the
95% level ellypses of the true distribution (thin ones)
and the estimated distributions. Estimation on the
left-hand side graphic represented by the yellow (resp.
violet) colour was made with the ¢ and normal mix-
ture models, while the one on the right hand side was
made with the stem-cell procedure. Different colours
on the points denote the initial three-clusters as ob-
tained with the non-trimmed 3-means (left-hand side)
and with the 50% trimmed 3-means (right-hand side).
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Figure 3: Simulation of 600 points of a mixture of three
2-dimensional Gaussian distributions plus 20 contami-
nated observations generated as described in Example
3, second contaminated case. Curves represent the
95% level ellypses of the true distribution (thin ones)
and the estimated distributions. Estimations on the
left-hand side graphic represented by the cyan colour
were made with the ¢ and normal mixture models (they
practically coincide). The one on the right-hand side
was made with the stem-cell procedure. Different sym-
bols denote the initial three-clusters as obtained with
the non-trimmed 3-means (left-hand side) and with
the 50% trimmed 3-means (right-hand side).



Ng and McLachlan, 2004). Basically, this approach
builds a multiresolution data structure (partition) to
summarize the data at all resolutions of interest si-
multaneously. With the mrkd-tree approach, “close-
by” observations are grouped into tree-nodes and the
conditional expectations of the sufficient statistics are
simplified by treating all the data points in a node to
have the same posterior probabilities 7;(y; !P(k)) calcu-
lated at the mean g (Ng and McLachlan, 2004). The
method thus speeds up the EM algorithm roughly a
factor of n/ny, where ny, is the number of leaf-nodes
(the smallest possible partitions this mrkd-tree offers).
In practice, the leaf nodes should be very small in or-
der that the approximation using 7;(g; %*)) be appli-
cable. However, in this situation, ny will be close to
n, and hence there is very little computational gain
over the standard EM algorithm. Thus, a further
(pruning) step is proposed by Moore (1999) to iden-
tify those nodes in which the difference between the
minimum and maximum values of the posterior prob-
abilities is small. Such nodes are then treated as if
they are “pseudo” leaf nodes and hence their descen-
dants need not be searched at this iteration and time
is saved (Ng and McLachlan, 2004).

7.2 Robust Estimation via a Sparse and
Incremental mrkd-Tree Algorithm

Recently, a sparse and incremental (SPIEM) mrkd-
tree algorithm has been proposed to further increase
the speedup factor, while without the compromise on
the “quality” of the clustering result (Ng and McLach-
lan, 2004). The latter is justified by the experimental
results showing that mrkd-tree-based algorithms can
converge to essentially the same maximum log likeli-
hood value as the EM algorithm. With the SPIEM
mrkd-tree algorithm, the nodes at a predetermined
level, say L, of the mrkd-tree are divided into B blocks
and a “partial” E-step is implemented by searching
down from only a block of nodes at level L at a time
before the next M-step is performed. Here the number
of blocks B is chosen based on the simple rule proposed
by Ng and McLachlan (2003a). The argument for im-
proved convergence rate is that the algorithm exploits
new information more quickly, rather than waiting for
a complete scan of all nodes before parameters are up-
dated by an M-step. Moreover, component-posterior
probabilities that are below a specified threshold are
held fixed while those for the remaining components
in the mixture are updated. Thus, instead of consid-

ering all g components, it is possible to “freeze” those
7:(; P that are close to zero (say, less than 0.005)
and save time; see Ng and McLachlan (2004).

Robust fitting of normal mixtures has been con-
sidered by Campbell (1984) using Huber’s (1964) M-
estimators, where reduced weights are given to obser-
vations that are atypical of a component on the M-step
of the EM algorithm. With the mrkd-trees structure,
it is proposed to perform a robust estimation for nor-
mal mixtures by identifying tree-nodes as three differ-
ent types. Different weights are then given on them
in the calculation of parameters (Ng and McLachlan,
2003b). Let npr denote the number of pseudo leaf
nodes. The ugkﬂ) and the Egk“) are updated as fol-
lows:

npr (k) (k) —
m=1 Tim "mUim Ym

n _(k k ’
S A e
and ZEHI) is given by
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(31)

where fi(,lfl) denotes 7;(g,,; %*), nm is the number of
(k)

data points in the mth pseudo-leaf node, and u;,, is

(k)

obtained from (18), but where now d;;’ is replaced by

dz(fn) which uses y,, instead of y;.

It is noted that the categorization of tree-nodes
does not induce an extra burden of computation over
the original SPTEM mrkd-tree algorithm, as the com-
putations involved can be readily obtained by using
only the mrkd-tree code of the original algorithm. The
type of each tree node is determined at the pruning
process of the mrkd-trees and is based on the “dense-
ness” of the node and the squared distance d2,, be-
tween y,, and the current estimated component mean

p, (i=1,...,9; m=1,... ,npL).

7.3 Categorization of Tree-Nodes

The first type is that the node is close to at least one of
g components. Let A; and A, denote the smallest and
the largest eigenvalues of X; (i = 1,...,g), which are,
respectively, the minimum and the maximum values
of the Mahalanobis squared distance for all points on
unit sphere. For the mth node, if the squared distance

dpn < An for some h € {1,...,g},



then data points in this node are considered to come
from the main body (inlier) of the normal mixture.
Full weight u;,, = 1 is given to this node for all i =
1,...,9.

The second type is that the node is far away from
all the component centers and is not dense. The former
condition is determined if

d2, >4\,  foralli(i=1,...,9).
The latter is determined if (1) the number of data
points in the mth node is smaller than a threshold,
say ten, and (2) the maximum diagonal element of
the sample covariance matrix S,, of data points in the
node, say in the vth dimension v € {1,... , p}, satisfies

(Sm)vv > 0.1(S) v,

where S is the global sample covariance of the whole
data set. Data points in this node are then consid-
ered to be come from the noise (outlier of the normal
mixture) and reduced weight w;, = 1/d;y, is given for
alli=1,...,9. A dense node is not considered as an
outlier automatically, because a moderate size cluster
of data points may not arise simply by chance (noise),
and could be an interesting feature of the data requir-
ing further investigation.

All nodes that are not identified as one of the above
two types form the third category. The weight w;,,
given to these nodes is based on Huber’s ¢-function
(19) with a® = x2 9 g5 (McLachlan and Basford, 1988,
Section 2.8). Thus, nodes that are atypical of a compo-
nent are being given reduced weight in the calculation
of parameters (equations (30) and (31)).

7.4 Simulated Example

The simulated data consists initially of 50000 data
points generated from a eight-component bivariate nor-
mal mixture, to which 5000 noise points were added
from a uniform distribution over the range —10 to 10
on each variate. The parameters of the mixture model
were presented in Table 1. Here, we assume equal mix-
ing proportions m; = 1/8 (i = 1,...,8). The true
grouping of the eight-component normal mixture is
shown in Fig. 4(a). We now consider the clustering
obtained by the robust estimation using the SPIEM
mrkd-tree algorithm. The clustering so obtained is
given in Fig. 4(b). It compares well with the true
grouping in Fig. 4(a). The result of fitting normal
mixture of eight components is given in Fig. 4(c) for

Table 1: Component-means and covariance matrices
of the bivariate normal mixture

Covariance matrix (X;)
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comparison. It can be seen that the eight-component
mixture fails to identify correctly some covariance ma-
trices.

Figure 4: Results for simulated normal mixture with
noise



Table 2: Computational performances for simulated
normal mixture with noise

No. of CPU time

Method iterations  (seconds)
SPIEM-mrkd-tree 12 5
EM (8 components) 44 7
EM (11 components) 134 322

A more complex mixture model may be adopted
to model the additional background noise. If the num-
ber of components is treated as unknown and a nor-
mal mixture is fitted, then the number of components
can be selected via BIC (McLachlan and Peel, 2000,
Sections 6.8-6.9). The additional three components
are attempting to model the background noise. How-
ever, estimation of some covariance matrices is still
affected by the noise. In comparing the computational
performance of these algorithms, the same initializa-
tion procedure was used in this simulation study. Ten
trials of k-means with two iterations were performed
for each model to initialize the EM-based algorithms
(McLachlan and Peel, 2000, p. 98). The number of
iterations and the CPU time (in seconds) required for
various models are presented in Table 2. The results
presented in Figure 4 and Table 2 indicate that the
SPIEM mrkd-tree algorithm is able to speed up the
implementation of the EM algorithm and at the same
time provide robust estimation without much extra
computational burden compared to the fitting of nor-
mal mixture models.
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