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Abstract

We consider the problem of assessing the number of clusters in a limited number of tissue

samples containing gene expressions for possibly several thousands of genes. It is proposed to

use a normal mixture model-based approach to the clustering of the tissue samples. One

advantage of this approach is that the question on the number of clusters in the data can be

formulated in terms of a test on the smallest number of components in the mixture model

compatible with the data. This test can be carried out on the basis of the likelihood ratio test

statistic, using resampling to assess its null distribution. The effectiveness of this approach

is demonstrated on simulated data and on some microarray datasets, as considered previously

in the bioinformatics literature.

r 2004 Elsevier Inc. All rights reserved.

AMS 2000 subject classifications: 65C60

Keywords: Microarray gene expression data; Mixture models; Clustering of tissue samples; Tests on

number of clusters; Likelihood ratio statistic; Resampling approach

ARTICLE IN PRESS

�Corresponding author. Fax: +61-7-33651477.

E-mail address: gjm@maths.uq.edu.au (G.J. McLachlan).
1Supported by a Grant of the Australian Research Council.

0047-259X/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmva.2004.02.002



1. Introduction

The analysis of gene expression microarray data using clustering techniques has an
important role to play in the discovery, validation, and understanding of various
classes and subclasses of cancer; see, for example, [2,4,6,7,9,15,17,20,28,30,40,43,46]
among several others. This paper considers a mixture model-based approach to the
clustering of tissue samples of a very large number of genes from microarray
experiments. As commented by Yeung et al. [47], ‘‘in the absence of a well-grounded
statistical model, it seems difficult to define what is meant by a ‘good’ clustering
algorithm or the ‘right’ number of clusters’’. They have advocated a model-based
approach to clustering by adopting a finite mixture model for the distribution of
each observation. In their study, they were concerned with the clustering of the genes
on the basis of the tissue samples. Here we consider the problem of clustering the
tissues on the basis of the genes, which is a more challenging problem to consider
in a mixture model framework, since the number of observations to be clustered
(the tissue samples) is typically small relative to the number of genes in each
tissue sample.
More specifically, we consider the cluster analysis of M tissue samples, each

containing N genes from a microarray experiment. These microarray data can be
represented in the form of a N � M data matrix A whose ith row contains the
expression levels for the ith gene in the M tissue samples. Typically, M is no more

than 100, while the number of genes N is of the order of 104: The expression levels
are taken to be the measured (absolute) intensities for oligonucleotide microarrays
and the ratios of the intensities for the Cy5-channel (red) images and Cy3-channel
(green) images for cDNA microarrays; see, for example, [13]. It is assumed that one
starts the clustering process with preprocessed (relative) intensities, such as those
produced by RMA (for Affy data), loess-modified log ratios, or differences of
logged/generalized-logged data; see, for example, [24,25,38,41,44].
In the standard setting of a model-based cluster analysis, the n observations

y1;y; yn to be clustered are taken to be independent realizations where the sample
size n is much larger than the dimension p of each vector yj;

nbp: ð1Þ

It is also assumed that the sizes of the clusters to be produced are sufficiently large
relative to p to avoid computational difficulties with near-singular estimates of the
within-cluster covariance matrices.
In this paper we are to consider the cluster analysis of the M tissue samples on the

basis of the N genes. For this problem, we have n ¼ M and p ¼ N; and so the sample
size n will be typically small relative to the dimension p; thus causing estimation
problems under the normal mixture model. This is because the g-component normal
mixture model (4) with unrestricted component-covariance matrices is a highly

parameterized model with 1
2
pðp þ 1Þ parameters for each component-covariance

matrix Ri ði ¼ 1;y; gÞ: It therefore cannot be fitted directly to the tissues on the
basis of all the p ¼ N genes.
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One way to handle this dimensionality problem is to ignore the correlations
between the genes and to cluster the tissue samples by fitting mixtures of normal
component distributions with diagonal covariance matrices. This is essentially
equivalent to using the k-means clustering procedure if we take the common
diagonal covariance matrix to be a multiple of the p � p identity matrix Ip and

impose the additional restriction of equal mixing proportions. However, this leads to
spherical clusters whereas, in practice, the clusters tend to be elliptical and not
necessarily parallel to the axes in the feature space.
This led McLachlan et al. [30] to develop the software called EMMIX-GENE,

which enables elliptical clusters of arbitrary orientation to be imposed on the tissue
samples. The EMMIX-GENE program handles this high-dimensional problem by
using mixtures of factor analyzers whereby the component-correlations between the
genes are explained by their conditional linear dependence on a small number q of
latent or unobservable variables specific to the given component. Before the actual
fitting of the mixtures of factor analyzers, it is recommended that the number of
genes be reduced to a manageable number by firstly screening the genes on an
individual basis to eliminate those which are of little use in clustering the tissue
samples in terms of the likelihood ratio test statistic. Then, secondly, the retained
genes are clustered into groups on the basis of Euclidean distance so that highly
correlated genes are clustered into the same group. The mixtures of factor analyzers
model can then be applied either by considering the groups of genes simultaneously
on the basis of their means or by considering the groups individually on the basis of
all or a subset of the genes in a given group.

2. Mixture model-based clustering

2.1. Normal mixtures

With a mixture model-based approach to clustering, it is assumed that the data
y1;y; yn to be clustered are from a mixture of an initially specified number g of
groups in various proportions. That is, each data point yj is taken to be a realization

of a p-dimensional random vector with mixture density

f ðyjÞ ¼
Xg

i¼1
pi fiðyjÞ; ð2Þ

where the g components correspond to the g groups. In (2), the fiðyjÞ are

densities and the pi are nonnegative quantities (the mixing proportions) that sum
to one.
On specifying a parametric form fiðyj; hiÞ for each component density, we can fit

this parametric mixture model

f ðyj; WÞ ¼
Xg

i¼1
pifiðyj ; hiÞ ð3Þ
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by maximum likelihood via the expectation-maximization (EM) algorithm of
Dempster et al. [12]; see also [31]. Here

W ¼ ðnT ; p1;y; pg�1ÞT

is the vector of unknown parameters, where n consists of the elements of the hi

known a priori to be distinct. Once the mixture model has been fitted, a probabilistic
clustering of the data into g clusters can be obtained in terms of the fitted posterior
probabilities of component membership for the data. An outright assignment of the
data into g clusters is achieved by assigning each data point to the component to
which it has the highest estimated posterior probability of belonging.
We consider here the use of mixture models with normal components. That is, the

ith component density for the jth observation yj is specified as

fiðyj; hiÞ ¼ fðyj; li;RiÞ; ð4Þ
where fðyj; li;RiÞ denotes the p-variate normal density function with mean li and

covariance matrix Ri ði ¼ 1;y; gÞ: For unrestricted component-covariance matrices
Ri; care has to be taken that the EM algorithm has converged to a local maximizer,
since the likelihood is unbounded. Also, consideration has to be given to the problem
of relatively large local maxima that occur as a consequence of a fitted component
having a very small (but nonzero) variance for univariate data or generalized
variance (the determinant of the covariance matrix) for multivariate data.
If need be, the normal mixture model can be made less sensitive to outlying

observations by using t-component densities, as in [33,34,39]. With this t-mixture
model-based approach, the normal distribution for each component in the mixture is
embedded in a wider class of elliptically symmetric distributions with an additional
parameter called the degrees of freedom. The advantage of the t-mixture model is
that, although the number of outliers needed for breakdown is almost the same as
with the normal mixture model, the outliers have to be much larger [21].
Usually, there is no a priori metric (or equivalently a user-defined distance matrix)

for a cluster analysis. In this case, one attractive feature of adopting mixture models
with elliptically symmetric components such as the normal or t densities, is that the
implied clustering is invariant under affine transformations of the data (that is, under
operations relating to changes in location, scale, and rotation of the data). Thus
the clustering process does not depend on irrelevant factors such as the units
of measurement or the orientation of the clusters in space; see [11] on the desirability
of this invariance in estimation and clustering.

2.2. Mixtures of factor analyzers

The g-component normal mixture model with unrestricted component-covariance

matrices is a highly parameterized model with 1
2
pðp þ 1Þ parameters for each

component-covariance matrix Ri ði ¼ 1;y; gÞ: A common approach to reducing the
number of dimensions is to perform a principal component analysis (PCA) and then
to perform the cluster analysis on the basis of the first few leading principal
components as, for example, in [18]. But as is well known, projections of the feature
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data yj onto the first few principal axes are not always useful in portraying the group

structure.
One approach for reducing the number of unknown parameters in the forms for

the component-covariance matrices Ri is to adopt the mixtures of factor analyzers
model, as considered in [34,35]. With the mixture of factor analyzers model, the ith
component-covariance matrix Ri has the form

Ri ¼ BiB
T
i þ Di ði ¼ 1;y; gÞ; ð5Þ

where Bi is a p � q matrix of factor loadings and Di is a diagonal matrix. Unlike the
PCA model, the factor analysis model (5) enjoys a powerful invariance property:
changes in the scales of the feature variables in yj; appear only as scale changes in the

appropriate rows of the matrix Bi of factor loadings.
The elements of the diagonal matrix Di (the uniquenesses) will be close to zero if

effectively not more than q observations are unequivocally assigned to the ith
component of the mixture in terms of the fitted posterior probabilities of component
membership. This will lead to spikes or near singularities in the likelihood [37]. One
way to avoid this is to impose the condition of a common value D for the Di;

Di ¼ D ði ¼ 1;y; gÞ: ð6Þ

In our experience with microarray data sets, we have found that the choice of the
number of factors q is not crucial in the clustering of the tissue samples. A formal test
for q can be undertaken using the likelihood ratio l; as regularity conditions hold for
this test conducted at a given value for the number of components g: For the null
hypothesis that H0 : q ¼ q0 versus the alternative H1 : q ¼ q0 þ 1; the statistic
�2 log l is asymptotically chi-squared with d ¼ gðp � q0Þ degrees of freedom.
However, in situations where n is not large relative to the number of unknown
parameters, we prefer the use of the BIC criterion of Schwarz [42]. Applied in this
context, it means that twice the increase in the log likelihood ð�2 log lÞ has to be
greater than d log n for the null hypothesis to be rejected.

3. EMMIX-GENE software

The EMMIX-GENE software is an extension of the EMMIX program, as
developed by McLachlan et al. [36] for standard clustering problems. It has the
facility to fit mixtures of factor analyzers to the tissue samples. The simultaneous use
of too many genes in the cluster analysis may serve only to create noise that masks
the effect of a smaller number of genes. Therefore, the EMMIX-GENE program has
two optional stages before the final stage of clustering the tissues. First, the genes are
screened on an individual basis to eliminate those which have little variation across
all the tissue samples in terms of the likelihood ratio test statistic. Second, the
retained genes are clustered into groups on the basis of Euclidean distance so that
highly correlated genes are clustered into the same group. The Euclidean distance
between any two genes is equal to 2ðn � 1Þð1� rÞ; where r denotes the sample
correlation between them, since it is assumed that the genes (that is, the rows of the
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data matrix A) have been standardized to have mean zero and unit standard
deviation. This normalization of the gene-expression profiles does not affect the
clustering of the tissues because, as discussed in Section 2, the clustering algorithm
used here is invariant under affine transformations. The third and final stage of the
EMMIX-GENE approach concerns the clustering of the tissues by fitting mixtures
of factor analyzers. It can be undertaken on the basis of (i) all or a selected subset of
the available genes, (ii) all or some of the gene-group means, or (iii) all or some of the
genes within a specified gene group.

4. Likelihood ratio test for the number of clusters

With a mixture model-based approach to clustering, the question of how many
clusters there are can be considered in terms of the number of components of the
mixture model being used. It is sensible in practice to approach the latter question
of the number of components g in a mixture model in terms of an assessment of
the smallest number of components compatible with the data, as discussed in
[34, Section 6.1]. In the above formulation of the mixture model for clustering, there
is a one-to-one correspondence between the mixture components and the groups. In
those cases where the underlying population consists of groups in which the feature
vector is unable to be modelled by a single component (normal) distribution but
needs a normal mixture, the components in the fitted g-component normal mixture
model and the consequent clusters will correspond to g subgroups rather than to the
smaller number of actual groups represented in the data.
A guide to the final choice of g can be obtained from monitoring the increase in

the log likelihood as g is increased from a single component. Unfortunately, it is
difficult to carry out formal tests at any stage of this sequential process for the need
of an additional component, since, as is well known, regularity conditions fail to
hold for the likelihood ratio test statistic �2 log l to have its usual asymptotic null
distribution of chi-squared with degrees of freedom equal to the difference between
the number of parameters under the null and alternative hypotheses. Here l denotes
the likelihood ratio; see [34, Section 6.9]. A formal test of the null hypothesis H0 :
g ¼ g0 versus the alternative H1 : g ¼ g1 ðg14g0Þ can be undertaken as in [29]. He
proposed a resampling approach to the assessment of the P-value of the likelihood
ratio test statistic in testing

H0 : g ¼ g0 vs: H1 : g ¼ g1 ð7Þ
for a specified value of g0: Previously, Aitkin et al. [1] had adopted a resampling
approach in the context of a latent class analysis; see also [5,23].
Bootstrap samples are generated from the mixture model fitted under the null

hypothesis of g0 components. That is, the bootstrap samples are generated from the
mixture model with the vector W of unknown parameters replaced by its maximum

likelihood estimate (MLE) #Wg0 computed by consideration of the log likelihood

formed from the original data under H0: The value of �2 log l is computed for each
bootstrap sample after fitting mixture models for g ¼ g0 and g1 in turn to it. The
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process is repeated independently a number of times B; and the replicated values of
�2 log l formed from the successive bootstrap samples provide an assessment of the
bootstrap, and hence of the true, null distribution of �2 log l: It enables an
approximation to be made to the achieved level of significance P corresponding to
the value of �2 log l evaluated from the original sample. The rth-order statistic of
the B bootstrap replications can be used to estimate the quantile of order r=ðB þ 1Þ:
A preferable alternative would be to use the rth-order statistic as an estimate of the
quantile of order ð3r � 1Þ=ð3B þ 1Þ [22].
In general, the use of the estimate #Wg0 ; in place of the unknown value of W under

the null hypothesis, will affect the accuracy of the P-values assessed on the basis of
the bootstrap replications of �2 log l: McLachlan and Peel [32] performed some
simulations to demonstrate this effect. They observed that there was a tendency for
the resampling approach using bootstrap replications to underestimate the upper
percentiles of the null distribution of �2 log l; and hence underestimate the P-value
of tests based on this statistic.

5. Some other methods for assessing the number of clusters

Before we proceed to report some results on the likelihood ratio test with
resampling for assessing the number of clusters, we briefly consider some other
methods for this problem.
Dudoit and Fridlyand [13] proposed a prediction-based method for assessing the

number of clusters in the data, which they called Clest. It is concerned with the
reproducibility or predictability of the clusters. For a fixed number of clusters g; it
proceeds by repeatedly dividing the original sample into two sets, a training or
learning set SL;b and a test set ST;b on a given replication b: A clustering of SL;b is

obtained and a classifier is found on the basis of this clustering as if the cluster labels
were the true class labels. This classifier is then applied to the test set ST;b and the

predicted group labels are compared using some external index ab: This procedure is
repeated B times to give a1;y; aB and their median mg: The null distribution of mg is

approximated by the bootstrap under the uniformity hypothesis whereby the data
are sampled from a uniform distribution in p-dimensional space. If m�

g;1;y;m�
g;Bo

denote the Bo bootstrap values corresponding to mg so obtained, we let %m�
g denote

their sample mean and o�
g is taken to be the proportion of these Bo bootstrap

samples that are at least as large as mg (the assessed P-value). Finally, let

d�
g ¼ mg � %m�

g:

To complete the definition of the Clest procedure, we need the set J; which is
defined as

J ¼ f2pgpgmax;o�
gpomax; d�

gXdming;

where gmax is the maximum value of g to be considered and omax and dmin are preset
thresholds. The ad hoc choice in [13] for omax and dmin was 0.05 each. If this set J is
empty, the number of clusters is estimated as one ðĝ ¼ 1Þ: Otherwise, let the number
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of clusters is estimated by

ĝ ¼ arg max
g

d�
g :

Dudoit and Fridlyand [13] applied their test procedure using the partitioning around
medoids (PAM) method of Kaufman and Rousseeuw [26], a linear normal-based
classifier with diagonal group covariance matrices, and the external index of Fowlkes
and Mallows [16]. They compared the performance of their Clest procedure with
six other methods using simulated data and gene-expression data from four
published cancer microarray studies. The six methods were the silhouette criterion of
Kaufman and Rousseeuw [26], the gap/gapPC statistics of Tibshirani et al. [45], and
the criteria proposed by Caliński and Harabasz [10], Krzanowski and Lai [27], and
Hartigan [19].

6. Simulation results

We now report the results of some simulation experiments performed to compare
the likelihood ratio test statistic (LRT) under the normal mixture model with the
Clest procedure [13] for the choice of number of clusters. We used the same eight
population models as adopted by Dudoit and Fridlyand [13] to compare their
Clest procedure with six other criteria, using the same number of replications (50)
per model. From their simulations, Dudoit and Fridlyand [13] concluded that Clest
was the most robust and accurate. Hence we extracted only the performance of
the Clest procedure from [13] to compare with the LRT in Table 1 obtained from
our simulations.
The eight models can be described briefly as follows, where Y ij ðj ¼ 1;y; niÞ

denote the ni observations generated independently in group Gi ði ¼ 1;y; gÞ:
Model 1: ðg ¼ 1; p ¼ 10; n ¼ 200), where Y ij is from the uniform distribution over

the unit hypercube in 10 dimensions.
Model 2: ðg ¼ 3; p ¼ 2; n1 ¼ 25; n2 ¼ 25; n3 ¼ 50Þ; where

Y ijBNðli; I2Þ

and where

l1 ¼ ð0; 0ÞT ; l2 ¼ ð0; 5ÞT and l3 ¼ ð5;�3ÞT :

Model 3: ðg ¼ 4; p ¼ 10; ni ¼ 25 or 50 with probability 0.5 each), where

Y ijBNðli; I10Þ

and where

li ¼ ðwT
i ; 0T

7 Þ
T

and wi is a realization of the random variable W i distributed as

W iBNð03; 25I3Þ:
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Here 07 denotes a seven-dimensional vector of zeros. Any simulation where the
Euclidean distance between the two closest observations belonging to different
clusters is less than 1 is discarded.

Model 4: ðg ¼ 4; p ¼ 10; ni ¼ 25 or 50 with probability 0.5 each), where

Y ijBNðli; I10Þ

and where li ¼ wi and wi is a realization of the random variable W i distributed as

W iBNð010; 3:6I10Þ:

Any simulation where the Euclidean distance between the two closest observations
belonging to different clusters is less than 1 is discarded.

ARTICLE IN PRESS

Table 1

Estimating the number of clusters in simulated data

Model Method Number of clusters

1� 2 3 4

1 Clest 48 2 0 0

1 LRT 50 0 0 0

1 2 3� 4

2 Clest 0 1 49 0

2 LRT 0 0 49 0

1 2 3 4�

3 Clest 0 1 20 29

3 LRT 0 0 0 47

1 2 3 4�

4 Clest 0 0 1 49

4 LRT 0 0 0 50

1 2� 3 4

5 Clest 0 44 0 6

5 LRT 0 50 0 0

1 2� 3 4

6 Clest 0 43 7 0

6 LRT 0 50 0 0

1 2� 3 4

7 Clest 26 15 6 3

7 LRT 0 46 0 0

1 2 3� 4

8 Clest 0 16 34 0

8 LRT 0 1 48 1

The true number of groups is denoted by the asterisk.

G.J. McLachlan, N. Khan / Journal of Multivariate Analysis 90 (2004) 90–10598



Model 5: ðg ¼ 2; p ¼ 3; ni ¼ 100Þ; where
Y ijBNðlij ; I3Þ

and where

l1j ¼ �0:5þ 0:1ðj � 1Þ=99

and l2j ¼ l1j þ 10:

Model 6: ðg ¼ 2; p ¼ 10; ni ¼ 100Þ; where the simulated observations Y ij ¼
ðYT

1ij ;YT
2ijÞ

T are formed independently by generating the Y1ij as in Model 5 and by

generating the Y2ij as

Y2ijBNð07;D7Þ

and D7 is a 7� 7 diagonal matrix whose vth diagonal element is equal to

ðv þ 3Þ2 ðv ¼ 1;y; 7Þ:
Model 7: ðg ¼ 2; p ¼ 10; ni ¼ 50Þ; where

Y ijBNðli; I10Þ

and where l1 ¼ 010 and l2 ¼ ð2:5; 0T
9 Þ

T :
Model 8: ðg ¼ 3; p ¼ 13; ni ¼ 50Þ; where

Y ijBNðli;RÞ

and where

l1 ¼ 0; l2 ¼ ð2;�2; 2; 0T
10Þ

T and l3 ¼ ð�2; 2;�2; 0T
10Þ

T ;

R ¼
R11 O7:3

O3:7 I10

� �

and

ðR11Þuv ¼ 1:0 ðu ¼ vÞ;

¼ 0:5 ðuavÞ

for u; v;¼ 1; 2; 3: Here O3:7 denotes a 3� 7 matrix of zeros.
For each simulated sample, we fitted a g-component normal mixture model,

starting with g ¼ 1: We kept increasing g until we reached a value of g; go; such that
the LRT of H0 : g ¼ go versus H1 : g ¼ go þ 1 was not significant with the P-value
assessed by resampling as described in Section 4. The component-covariance
matrices were taken to be unrestricted for all but Models 3 and 4 for which they
were specified to be equal. For each of the eight simulation models, the value
of go obtained in this manner on the 50 simulation trials per model are displayed
in Table 1.
It can be seen in Table 1 that the relative performance of the LRT with the P-value

assessed via resampling is quite encouraging for choosing the number of clusters.
The good simulation results for this approach are to be expected since it is favored
by having multivariate normal data.
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7. Results for microarray data

We further demonstrate the effectiveness of the LRT for the choice of number of
clusters by applying it now to some microarray datasets as available in the literature
and used in the comparisons of Dudoit and Fridlyand [13].

7.1. Leukaemia data

We firstly consider the clustering of the leukaemia dataset as in [17]. It consists of
M ¼ 72 tissue samples and N ¼ 3731 genes. The 72 samples are made up of 47 cases
of acute lymphoblastic leukaemia (ALL) of which there are n1 ¼ 38 ALL B-cell cases
and n2 ¼ 9 ALL T-cell cases, along with n3 ¼ 25 cases of acute myeloid leukaemia
(AML). We followed the processing steps of Dudoit et al. [13] of (i) thresholding:
floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of genes with max=min p5
and ðmax�minÞp500; where max and min refer, respectively, to the maximum and
minimum expression levels of a particular gene across a tissue sample; (iv) the
natural logarithm of the expression levels was taken. Before we standardized the
genes (the rows of the (logged) data matrix A) to have means zero and unit standard
deviations over the tissue samples, we first standardized the arrays (the columns of
the data matrix A) to have zero means and unit standard deviations. This was done
in an attempt to remove systematic sources of variation, as discussed, for example, in
[14, p. 171].
Obviously, there are far too many genes relative to the tissue samples to fit a

normal mixture model directly to the n ¼ 72 samples on the basis of all the genes.
Thus we used the EMMIX-GENE program [30] to first remove those genes assessed
as having little discriminatory capacity across the n ¼ 72 tissue samples by fitting a
mixture of t distributions to each of the 3731 genes considered separately. This led to
2069 genes being retained where, for the retention of a gene, the threshold for the
increase in twice the log likelihood ð�2 log lÞ was set to be 8 and the minimum
cluster size was set to be 5. We then summarized the retained genes by clustering
them into No ¼ 40 groups on the basis of the 72 tissue samples by fitting in equal
proportions a mixture of 40 normal components with a common spherical

covariance matrix, s2I72:
An inspection of the heat maps in which the genes within a cluster group are

displayed for the 72 tissue samples shows that the second cluster group (containing
some 73 genes) is one of the more useful groups for revealing the differences between
the tissue samples. We therefore considered the clustering of the 72 tissue samples on
the basis of the top 40 genes in the second group of genes.
If we start the iterative fitting of a mixture of g ¼ 3 factor analyzers from the

external classification of n1 ¼ 38 B-cell ALL cases, n2 ¼ 9 T-cell ALL cases, and
n3 ¼ 25 AML cases, we obtain a solution ðS1Þ of the likelihood equation that leads
to an outright clustering C1 that corresponds almost perfectly with the external
classification. However, using 10 random starts and 10 k-means-based starts, we find
a nonspurious solution with a higher likelihood value that leads to a different
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clustering C2 of the tissues into three clusters. One cluster consists of the 25 AML
cases plus the 9 T-cell ALL cases and 2 B-cell ALL cases; the second and third
clusters contain 18 each of the remaining 36 B-cell ALL cases. These differences may
be of practical interest, but we did not pursue this here as it is outside the scope of
this study.
The two-cluster solution has the 25 AML cases plus 12 ALL cases (9 T-cell and 3

B-cell) in one cluster and the remaining 35 B-cell ALL cases in the other. We carried
out the LRT test of g ¼ 2 versus g ¼ 3 component factor analyzers via a resampling
approach using B ¼ 39 bootstrap samples. As the value of �2 log l for the original
sample is greater than the largest of the 39 bootstrap values of �2 log l; the P-value
is estimated to be less than 0.025. This suggests that there is strong support for g ¼ 3
clusters in this set.

7.2. Lymphoma data

The second dataset to be considered here concerns the case study of Alizadeh [2],
which measured the gene-expression levels using a specialized cDNA microarray, the
Lymphochip. The data consist of M ¼ 80 tissue samples and N ¼ 4062 genes. The
former consist of n1 ¼ 29 cases of B-cell chronic lymphocytic leukaemia (B-CLL),
n2 ¼ 9 cases of follicular lymphoma (FL), and n3 ¼ 42 cases of diffuse large B-cell
lymphoma (DLBCL). The missing data were imputed as in [13].
We first clustered the 80 tissue samples by fitting a mixture of g ¼ 3 factor

analyzers to the means of the 40 gene clusters produced by the EMMIX-GENE
program [30]. If we start the iterative fitting process from the aforementioned
external classification of the tissues, we obtain a solution ðS1Þ of the likelihood
equation that leads to an outright clustering ðC1Þ that corresponds perfectly with
the external classification. However, if we use 10 random and k-means-based
partitions to start the iterative fitting, we obtain a nonspurious solution ðS2Þ at which
the likelihood has greater value than for S1: The clustering C2 produced by the
solution S2 has one cluster consisting of the 29 B-CLL cases, another consisting
of the 9 FL cases and 7 DLBCL cases, and a third cluster consisting of the remaining
35 DLBCL cases. On the basis of the likelihood ratio test, it was concluded that
a mixture model of g ¼ 3 factor analyzers (with q ¼ 4 factors) is adequate for
describing the group structure in the dataset (0:075oPo0:1 using B ¼ 39 bootstrap
samples).

7.3. Melanoma data

The third dataset we considered concerns the melanoma data of Bittner et al. [8]. It
consists of M ¼ 31 tissue samples and N ¼ 3613 genes. We again used EMMIX-
GENE (with the same thresholds as for the leukaemia data) to reduce the number of
genes in this set to 571, which were then clustered into 15 groups. As an inspection of
the heat maps in which the genes within a cluster group are displayed for the 31
tissue samples shows that the first cluster group (containing some 49 genes) is one of
the more useful groups for revealing the separation of the last 19 tissues from the
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rest, we worked with this cluster of genes for our subsequent testing for cluster
structure among the 31 tissues. As noted in [13], there are no a priori classes known
for this dataset. The analysis of Bittner et al. [8] suggests that two classes may be
present, as they identified a major cluster of 19 tissues. The Clest procedure [13] also
yielded two classes, although their clustering has four tissues joined to the 19
member cluster identified in [8].
Application of the likelihood ratio test in conjunction with the fitting of a mixture

of g-factor analyzers with q ¼ 4 clusters gives a significant result (but close to the
borderline) at the 5% level (0:04oPo0:05; using B ¼ 99 bootstrap samples) for
the test of g ¼ 2 versus g ¼ 3: The two-cluster solution has the last 19 tissues along
with the 1st, 7th, 8th, and 10th tissues in one cluster with the remaining 9 tissues in
the other cluster. If we use the solution obtained from starting with the partition that
has the first 12 tissues in one group and the last 19 in another, then we obtain this
clustering, but it corresponds to a smaller local maximum.

8. Discussion

One advantage of the mixture model-based approach to cluster analysis is that it
provides a sound mathematical basis for clustering and the subsequent testing for
group structure in a dataset. A test for the smallest number of components in the
mixture model compatible with the data can be formulated in terms of the likelihood
ratio statistic. In the present context where the dimension p of the feature vector (the
number of genes) is so much greater than the number n of observations (the tissues)
to be clustered, the normal mixture model is unable to be fitted directly. This
situation is handled by using the EMMIX-GENE program [30], which has the
facility for first eliminating those genes with little variation across the tissue samples,
and then second, clustering the remaining genes into a manageable number of
groups, using essentially Euclidean distance. This assures that highly correlated
genes are put in the same cluster. The clustering of the tissue samples can then be
undertaken by considering the clusters of genes individually or collectively with each
cluster represented by its sample mean. Even with this reduction in the number of
genes, the normal mixture model of interest for the clustering of the tissue samples
may still not be able to be fitted directly. If this is the case, then we fit mixtures of
factor analyzers, whereby the component correlations between the genes are
modelled by allowing the distribution of the vector of gene expressions to depend
linearly on a small number q of latent (unobservable) variables. It is proposed with
this mixture approach that the choice of the number of clusters be made by testing
for the smallest number of components in the mixture model compatible with the
data. The test can be carried out on the basis of the likelihood ratio test statistic
�2 log l with its null distribution approximated by resampling. In this study, this
approach was implemented starting with a single-component factor analyzer and
proceeding to add a component factor analyzer into the mixture model until the test
for an additional component is nonsignificant. The performance of this approach is
demonstrated under simulation models and on microarray cancer datasets as
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considered previously in the literature. Note that we did not attempt to account for
the preprocessing in these applications of the resampling approach.
We did not consider here the related clustering problem of clustering the genes on

the basis of the tissue samples. One aim of wishing to identify those genes that have
similar gene expressions over the tissue samples might be to find genes under similar
regulatory control (assuming that coexpressed genes have similar functional roles).
A normal mixture model-based clustering of the genes on the basis of the tissue
samples is straightforward in the sense that the normal mixture model can be fitted
directly since the number of observations (the genes) is very large relative to the
number of feature variables (the tissues). However, for this problem of clustering the
genes, there is one condition of a standard cluster analysis that is not satisfied,
namely the observations to be clustered (that is, the genes) are not all independent.
We can still effect a clustering by proceeding to fit the normal mixture model as if the
genes were independently distributed. But tests concerned with the smallest number
of components in the mixture model would need to take into account the breakdown
in the independence condition [3].
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