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Table 1. Relative Mean Squared Errors of Estimated Correlation Using
AMCD with « = .75 With Respect to NNVE for Various Levels
of Contamination in the Bivariate Normal and the Bivariate
Skewed-Normal Scenarios

Bivariate normal Bivariate skew-normal

%MSE scenario; correlation = 0 scenario; correlation = — .5
0% outliers 8.37 6.39
5% outliers 8.82 6.02

33% outliers 2.27 1.46

50% outliers 1.61 1.26

67% outliers .64 .29

comparing it to the RMCD estimator. The choice of the trim-
ming constant of the MCD is nonstandard: « = .75, meaning
that the MCD will be based on that subset containing 25% of
the data having the smallest value for the determinant of its
covariance matrix. This choice of @ will give us more protec-
tion against percentages ol scattered outliers =50%. But on
the other hand. we will be less well protected against clus-
ters of outliers having little or no dispersion. This behavior
under contamination is therefore similar to that of the NNVE.
Table 1 reports the relative MSEs (%MSE) of the RMCD pro-
cedure with e = .75 with respect to NNVE, using the same
simulation setup as in Tables 2 and 3 of Wang and Raltery.
We only present here the relative MSE for the estimator of
the correlation coefficient. Indeed, we think that it is far more
importani to have an accurate estimate of the shape of the
covariance matrix than of its size. Many procedures in multi-
variate analysis are even size invariant and use only the cor-
relation structure of the data.
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From Table | we see that the NNVE is outperforming the
RMCD in practically all situations. An exception is the case
with =50% of outliers, for which the RMCD with «« = .75 per-
forms better. This modest simulation study confirms that the
NNVE has good properties at finite samples, but is also shows
us that NNVE is not the only robust covariance matrix esti-
mator that can cope with a large amount of scattered outliers.
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Comment

We congratulate the authors on their interesting article and
their new NNVE procedure for the robust estimation of a
covariance matrix by exploiting the NNC cleaning method of
Byers and Raftery (1998). The detection of outliers in mul-
tivariate data is a difficult but very important problem. The
NNC method for removing much clutter from a dataset as in,
for instance. the linear minefield example, is very impressive.
Its adaptation to robust estimation by the artificial introduc-
tion of extra outlying points is novel. In this discussion, we
focus on the performance of NNVE relative to the approach
based on a mixture model analysis using normal and r com-
ponents via the EMMIX software (McLachlan, Peel, Basford,
and Adams 1999).

Geoffrey J. McLachlan is Professor and Karyn L. Hamaty is Research
Assistant, Department of Mathematics, University of Queensland, Brishane,
4072 Australia (E-mail: gim@ maths.ug.edian).

1. SPURIOUS CLUSTERS

In Section 2.2 the authors state that “when a mixture model
is fit to data that have only one component in reality, the max-
imum likelihood estimator (MLE). when it exists. tends to
falsely indicate that there are two compoenents.” It is true that
bimodality in histograms of linear combinations of multivari-
ate observations does not always imply that the data have been
sampled from a mixture distribution. This point was illustrated
in the seminal paper of Day (1969) on normal mixture models
in which he demonstrated the presence of spurious clusters in
a dataset. Following his approach, McLachlan and Peel (2002,
sec. 1.8) generated a random sample of size n = 50 from a
spherically symmetric p = 10-dimensional normal distribution.
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Figure 1. Histogram of First Canonical Variate for 10-Dimensional
Simulated Normal Dataset of Size n = 50.

They then plotted the histogram of the univariate projections
o N @’ x,, where

a= 2—|(fl’| - I:'-:)’

and ., and 3 are the estimates obtained from fitting
a mixture of two 10-dimensional normal components with
means p, and p, and common covariance matrix X. That
is, these univariate projections are the first canonical variates
when two multivariate normal groups with means fx, and f,
and common covariance matrix X are imposed on the data.
Their plot is given in Figure 1. The bimodal nature of the his-
togram suggests that the data have not come from a single
normal distribution.

However, this spurious clustering can be detected in prac-
tice. For example. the likelihood ratio test statistic A can be
applied to the simulated data represented in Figure | to test
the null hypothesis H, of a single normal component against
the alternative of a two-component normal mixture with equal
covariance matrices. The value of =2 logA was found to be
31.41. As is well known, regularity conditions do not hold
for the likelihood ratio test statistic for this test to have its
usual null chi-squared distribution. However, the resampling
approach advocated by McLachlan (1987) can be used to the
assess the p value. Using this approach with B = 199 repli-
cations, McLachlan and Peel (2002) assessed the p value to
be approximately 47%. Hence the null hypothesis of a single
normal component would be retained at any conventional level
of significance. Note that as g = 1 under H,. the null distri-
bution of A does not depend on any unknown parameters, and
so the B replications of —2 log A generated here are actual,
not bootstrap, replications. Thus if we were to reject the null
hypothesis H,, if the test value of —2 log A were greater than,
say, the bth largest replicated value of this statistic, then this
test would be of exact size o =1 —b/(B-+1).

2. MIXTURE ANALYSIS VIA NORMAL
AND t COMPONENTS

Concerning the application of NNVE to the Hertzsprung—
Russell and the Australian Athletes datasets, we now con-
sider the analysis of these two sets using mixtures of normal
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and ¢ components. Normal mixture models provide a model-
based approach to clustering; (see, e.g., McLachlan and Bas-
ford 1988; McLachlan and Peel 2000). However, a single out-
lier can break down the parameter estimation for at least one
of the components. McLachlan and Peel (1998) und Peel and
McLachlan (2000) suggested using mixtures of ¢ components
as an alternative, because the r components are less sensitive
to outliers, having longer tails than the normal. The 7 density
with location parameter p, positive definite matrix X, and »
degrees of freedom is given by

T T2 3|2
f(-‘-'ill-):-l’)z Lopyn -" | ) (”
(mw)T(5){148(x, p; X)/p}20i7)
where
Sl X)) =(x—p) T (x—p) 2)

denotes the Mahalanobis squared distance between x and p
(with X as the covariance matrix). If v > 1, p is the mean
of X, and if v > 2, w(r—2)"'X is its covariance matrix. As
v tends to infinity, X becomes marginally multivariate normal
with mean p and covariance matrix .

The ¢ distribution does not have substantially better break-
down behavior than the normal (Tyler, 1994). The advantage
of the r mixture model is that, although the number of out-
liers needed for breakdown is almost the same as with the
normal mixture model, the outliers have to be much larger.
This point is made more precise in Hennig (2002) who has
provided an excellent account of breakdown points for max-
imum likelihood estimation of location-scale mixtures with
a fixed number of components g. Of course as explained in
Hennig (2002), mixture models can be made more robust by
allowing the number of components g to grow with the num-
ber of outliers.

Hertzsprung-Russell Data

We first consider the Hertzsprung—Russell dataset. Fitting
a single 1 component to it via the expectation-maximization
algorithm reveals the presence of six outliers, as indicated by
six observations having very small weights in the iterative
computation of the estimates. Table 1. reports the results on
the next stage of fitting a mixture of g = 2 normal components
with unrestricted covariance matrices and a mixture of g =21
components with unrestricted scale matrices and degrees of
freedom », and »,. It can be seen from Table 1 that these
two mixture models lead to estimates of the covariance matrix
similar to that given by NNVE.

Table 1. Covarlance Estimates for the Star Data

NNVE t mixture Normal mixture
0115 0343 0116 .0348 0116 0345
0343 .2390 .0348 .2403 .0345 2392

NOTE: Mixture madel estimates ara those for the covariances of the component correspond-
ing to the main body of the data.
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Australian Athletes Data

The authors also analyzed the Australian Athletes dataset to
illustrate the relative performance of NNVE where there is a
lack of elliptical symmetry in the data. We use this dataset to
demonstrate how we might use a mixture analysis based on
f and normal component distributions to assess whether the
data consist of one major cloud. This approach can be viewed
as complementary or even as an alternative to the procedure
proposed by the authors for determining whether the signal
consists of more than one data cloud.

Because the fitting of a single t component to these n = 202
five-dimensional observations clearly revealed many outliers
and a bad fit, we proceeded to fit a mixture of g =21 com-

ponents, It gave a clustering of the data into 2 clusters of

almost the same size (105 and 97). with the first 100 obser-
vations and 5 of the last 102 observations comprising the first
cluster. This clustering has (almost) recovered the sex of the
athletes, as it is known that the first 100 observations are on
females and the last 102 are on males. The estimated degrees
of freedom #, and #, for the two components are 17.62 and
5.59. The small value of P, suggests that the data on the males
have longer tails than the normal distribution. A subsequent
inspection showed that several observations x; on the males
had very small values for their weights with respect to the
second component, suggesting that there are several outliers
among the male data. The fitting of g =3 normal components
(1 components were assessed as not being necessary in the
case of three components) produced a clustering in which the
males were partitioned into the second and third clusters of
size 69 and 32 (with another male being put in the first clus-
ter corresponding to the females). The estimates of the mean
and covariance matrix for the second and third components
showed that the smaller cluster of males has a greater mean
for all five variables than for the larger cluster of males and
a greater variance for all but the third variable. The differ-
ences are appreciable for the fourth and fifth variables (LBB
and FERR). The p value obtained via resampling for the like-
lihood ratio test of ¢ =2 versus g = 3 normal components
was found to be significant at the 5% level. The subsequent
test of ¢ = 3 versus g =4 normal components was not signifi-
cant (p = .45). This mixture model analysis has thus revealed
that this set is comprised of data from essentially three nor-
mal populations and so the estimation of a single covariance
matrix in the sense that the signal consists of one major cloud
would be inappropriate.

3. RELATIVE EFFICIENCY OF NEAREST-NEIGHBOR
VARIANCE ESTIMATION

Wang and Raftery (2002) conducted a simulation study to
evaluate the relative performance of their NNVE method in
estimating the covariance matrix on the basis of a sample of
n = 500 bivariate observations drawn from a mixture in pro-
portions 7 and 7, = | — r; of two normals with mean 0
and covariance matrix X and 10X, where ¥ = diag(4, 25) for
7, = 0% (no outliers), 5%, 33%. 50%. and 67%. Five hundred
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Table 2. Monte Carlo Averages, Standard Errors, MSEs, and Relative
MSEs of Estimated Covariance for Various Levels of Contamination
in the Bivariate Simulated Example

NNVE Normal mixture
4.0 25.0 0 4.0 25.0 0

33% outliers

Mean 3.86 23.08 =01 3.99 25.08 .02
SE .35 247 .53 .35 2.09 .66
MSE 14 8.37 .28 12 4.37 44
%MSE 1.00 1.00 1.00 .86 52 1.57
50% outliers

Mean 4.06 23.72 —-.01 4.00 24.89 .02
SE 48 2.63 | 43 2.80 73
MSE .23 8.53 50 18 7.84 53
%MSE 1.00 1.00 1.00 .78 92 1.06
67% outliers

Mean 4.76 26.44 ai 4.01 25.39 —.03
SE 7.38 40.39 223 .58 3.42 94
MSE 54.87 1,630.42 4.99 34 11.82 .88
% MSE 1.00 1.00 1.00 .01 .01 .18

NOTE: Each dataset has 500 observations. Each relative MSE was calculated by dividing
the MSE by that of NNVE as given in Table 2 of the article.

simulation trials were performed for each level of the propor-
tion of outliers 7,. To illustrate the efficiency of the NNVE in
estimating X, we performed a simulation experiment with the
same number of trials for the same population configurations
with 7, = 33%. 50%. and 67%, but with % estimated by fit-
ting by maximum likelihood a mixture of g = 2 normal com-
ponents with unrestricted means and covariance matrices. The
estimate X of X% was taken to be the estimate of the covari-
ance matrix for the component corresponding to the popula-
tion with X as its covariance matrix. The results are displayed
in Table 2. Comparing the MSEs of the estimates for each of
the three distinct elements of X. it can be seen in the cases of
33% and 50% outliers that the (simulated) relative efficiency
of NNVE ranges between 52% and 92% for the estimation of
the two variances and is >100% for the covariance. However,
in the case of 67% outliers, the relative efficiency is extremely
low, only 1% for the two variances.
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