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ABSTRACT

Over one billion people in the world are anemic and

at risk for major liabilities. Previous models-pro-

posed to differentiate between disorders of anemia
on the basis of red blood cell measurements have
been limited by the need to use printed output from
automated blood sample analyses. We developed
electronic methods to capture multivariate red cell
data measured by flow cytometric blood cell count-
ing instruments and devised a general bilevel frame-

work for classification that includes (1) fitting mix- ~

ture densities to the multivariate grouped and trun-
cated distribution for each individual, and (2) dis-
crimination between patient subgroups on the basis
of distribution parameter estimates. Classification
by fitting normal density models, with leave-one-out
cross validation, achieved 97% and 99% correct clas-
sification for controls and patients, respectively.

1. INTRODUCTION

According to population estimates, over one billion
people in the world have anemia, defined as a re-
duction in the circulating red cell mass that may
diminish the oxygen-carrying capacity of the blood.
Iron deficiency anemia, attributed to an imbalance
between dietary iron supply and physiological re-
quirements for growth and reproduction, is the most
common nutritional anemia [1]. Major liabilities in-
cluding mental and motor developmental defects in
infants [2], and weakness, weight loss, and impaired
work performance in adults [3]. Other nutritional
anemias include vitamin B, deficiency and folate
deficiency. The anemia of chronic disorders found in
infectious diseases such as tuberculosis, typoid, and
smallpox and in noninfectious disorders including
rheumatoid arthritis, Hodgkin disease, metastatic

carcinoma, is usually moderate and rarely symp-
tomatic, while thalassemia, a form of severe ane-
mia caused by mutations (or deletions) in or around
the globin chain DNA and accompanied by a dis-
turbance of hemoglobin synthesis, may lead to or-
gan damage and premature death. Chronic alcohol
ingestion is often associated by anemia as a result
of poor nutrition, gastrointestinal bleeding, or the
toxic efffect of alcolohol on the production of ery-
throcytes. Alcoholics may also develop coincident

_ iron deficiency and folate deficiency [4].

Flow cytometric blood cell counting instruments
make measurements on each red cell using a laser
light scattering system. This technology provides
the red cell volume distribution, hemoglobin concen-
tration distribution, and the joint red cell volume
and hemoglobin concentration distribution. Since
different causes of anemia may result in character-
istic alterations in these distributions, we hypoth-
esized that classification based on modeling of the
multivariate distribution of red cell volume and he-
moglobin concentration would be useful for diagnos-
tic evaluation of anemia. Our study is the first to
model and classify these multivariate distributions.

Methods have been developed for detection of
two-component mixtures of lognormal distributions
and utilized to characterize and quantify subpop-
ulations of red blood cells in developing iron defi-
ciency anemia and subsequent treatment for the dis-
ease [5 — 7). While these methods have been applied
to analysis of univariate red blood cell volume dis-
tributions, no suitable statistical methods are cur-
rently available for analysis of multivariate distribu-
tions arising from multiple measurements made on a
single blood cell, such as the volume and hemoglobin
concentration of a red blood cell.

We now describe a general framework that in-
cludes the following: (1) development of techniques
to model multivariate mixtures of distributions from
grouped and truncated data, (2) description of the
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bivariate distribution of red cell volume and hemoglo-
bin concentration in patients with anemia and con-
trols, and (3) classification of patient subgroups on
the basis of distribution parameter estimates. Anal-
ysis of data from 90 healthy individuals and 146 pa-
tients with documented disorders of anemia showed
that mixture modeling on parameter estimates with
leave-one-out cross validation achieved 97% and 99%
correct classification for controls and patients, re-
spectively. We conclude that these methods pro-
vide a means for automated screening for disorders
of anemia and monitoring the response to therapy.

2. METHODS
2.1 Patients and Reference Group

This study was performed at the Western Infirmary,
Glasgow, Scotland after Institutional Review Board
approval was obtained. We collected blood samples
from a reference group of healthy individuals and pa-
tients with documented disorders of anemia. Diag-
noses and body iron status were confirmed by exam-
ination of blood films, iron studies, and red cell in-
dices. Reference ranges were as follows: hemoglobin
(HGB) 13.5-17.5 g/dL (males), 12-16 g/dL (females);
mean cell hemoglobin concentration (MCHC) 33.4-
35.3 g/dL; and mean cell volume (MCV) 80-100 fl.
We analyzed data from 90 healthy individuals and
146 patients. Patients were divided into two sub-
groups, those with microcytosis including iron defi-
ciency anemia (n==82), thalassemia (n=8) and ane-
mia of chronic disease (n=16), and those with macro-
cytosis including vitamin either B, /folate deficiency
(n=12), and alcoholic liver disease (n=28). For blood
cell analysis, we used a flow cytometric blood cell
counting instrument Technicon H*1 (Bayer Diagnos-
tics, Tarrytown, New York, USA). For each sample,
measured in duplicate, the data consisted of a cy-
togram, i.e. bivariate histogram, with a range of 0 to
200 A for cell volume and 0 to 50 g/dl for hemoglobin
concentration.

2.2 Mixture Modeling

We developed techniques to model the joint dis-
tribution of red cell volume and hemoglobin concen-
tration as a mixture of two multivariate lognormal
distributions. Finite mixture models have been fit
to univariate grouped and truncated data by max-
imum likelihood via the Expectation-Maximization
(EM) algorithm [5,8-9]. For our studies, the EM al-
gorithm was extended to evaluate multidimensional
integrals over two-dimensional regions and numeri-
cal integration techniques were employed to improve

computational efficiency [See Cadez et al. [10] and
the Appendix). For analysis of data from healthy
individuals and patients, we developed a new bilevel
modeling technique as described in the Appendix.
Results from initial analyses of data from controls
and patients with iron deficiency anemia are reported
elsewhere [11]. In brief, we first identified mixtures
of two subpopulations of cells within a single blood
sample by fitting a two-component lognormal mix-
ture model to each individual distribution. The pa-
rameter estimates from each fitted distribution were
recorded. These included the mixing weight for the
larger proportion, volume and hemoglobin concen-
tration means and variances for each component, the
estimated correlation between volume and hemoglo-
bin concentration for each component, and covari-
ances. Second, for discrimination between patient
subgroups, a supervised classifier for the parame-
ter sets of all subjects from the same disease sub-
group (control, microcytic anemia, macrocytic ane-
mia) was used to fit a normal density model to each
group.

2.8 Classification
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Classification was performed using Bayes rule for the
posterior class distribution:

p(cilz) = (1)

where p(z|c;) is a probability density function un-
der the i-th single normal subpopulation, p(c;) is
the prior for the disease (i.e. the ratio of patients
in the i-th group to the total number of patients),
and C is a normalizing constant. Both p(z|c;) and
p(c;) are estimated from the data as described in
the Appendix. To estimate the overall accuracy of
discrimination of patient subgroups, we used leave-
one-out cross validation. For this type of cross val-
idation we removed a data point from the data set
and trained the three single normal density models.
The excluded data point was then evaluated using
Bayes rule and assigned to a class. This process was
repeated for each of the data points in the data set.
The overall percent of correctly classified distribu-
tions was calculated.

C

3. RESULTS
3.1 Distribution Modeling and Classification

Figure 1 shows histograms from two representative
subjects. Each distribution represented about 40,000
red blood cells measured on a single blood sample.

Figure 1A shows the distribution from a healthy
male with estimated geometric mean cell volume



Figure 1: Red blood cell volume and hemoglobin concentration distributions.

A: Heqlthy male. Parameter estimates: mixing proportion = 1.0, geometric mean cell volume = 89 fl,
geometric mean cell hemoglobin concentration = 34.4 .

B: Developing iron deficiency anemia.Parameter estimates: mixing proportion = .58, geometric mean red
cell volume = 73.9 fl, geometric mean cell hemoglobin concentration = 28.4 g/dL; mixing proportion = .42,
geometric mean red cell volume = 80.9 fl, geometric mean cell hemoglobin concentration = 30.2 g/dL.
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Figure 2: Bivariate distribution and contour plots for red blood cell volume and hemoglobin concentration.
A, C: Alcoholic Liver Disease. Parameter estimates: mixing proportion = .95, geometric mean red cell
volume = 140 fl, geometric mean cell hemoglobin concentration = 33.0 g/dL; mixing proportion = .05,
geometric mean red cell volume = 95.9 fl, geometric mean cell hemoglobin concentration = 32.0 g/dL

B, D: By, deficiency, folate deficiency, and iron deficiency. Parameter estimates: mixing proportion
= .48, geometric mean red cell volume = 120.7 fl, geometric mean cell hemoglobin concentration = 32.4

g/dL; mixing proportion = .52, geometric mean red cell volume = 94.0 fl, geometric mean cell hemoglobin
~ concentration = 26.0 g/dL.
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Table 1: Classification of Healthy Individuals (Controls) and Patient Subgroups

Number of Cases Classified into Group

Subgroup Percent Correct ~Control Microcytosis Macrocytosis  Total
Control 96.7% 87 1 2 90
Microcytosis 100.0% 0 106 0 106
Macrocytosis 95.0% 1 1 38 40

and hemoglobin concentration of 89 fl and 34.4 g/dL
repectively. For comparison, the distribution shown
in Figure 1B is from a female with developing iron
deficiency anemia. The bivariate distribution con-
tained a hypochromic, microcytic subpopulation of
58% of cells with an estimated geometric mean red
cell volume of 73.9 fl and geometric mean hemoglobin
concentration of 28.4 g/dL, both below normal. A
hypochromic, normocytic subpopulation with esti-
mated 42% of cells had geometric mean red cell vol-
ume of 80.9 fi, within the normal range, and geomet-
ric mean hemoglobin concentration of 30.2 g/dL.

The distribution and contour plot from a female
with alchoholic liver disease with hypochromic, macro-
cytic anemia are shown in Figure 2A and 2C. The
larger subpopulation contains 95% of the cells with
an estimated geometric mean cell volume of 140 fl
and moderately reduced geometric mean hemoglobin
concentration of 33.0 g/dL. A remaining, 5% of the
cells had geometric mean volume (95.9 fl) and hemo-
globin concentration (32.0 g/dL) consistent with that
of controls. There was no correlation between vol-
ume and hemoglobin concentration. The estimated
correlation coefficient was 0 for both subpopulations
(Figure 2C). The bivariate distribution and contour
plot (Figure 2B, 2D) from a fermale patient with
By /folate deficiency represent a hypochromic, macro-
cytic, subpopulation of 48% of cells with an esti-
mated geometric mean red cell volume of 120.7 fi
and geometric mean hemoglobin concentration of
32.4 g/dL and a hypochromic, normocytic, subpop-
ulation containing concentration of 94.0 fl and 26.0
g/dL respectively. :

Table 1 gives the number and percent of all pa-
tients correctly classified using leave-one-out cross
validation. Distributions from three healthy indi-
viduals were misclassified as having anemia and one
patient with alcoholic liver disease was misclassified
as a control. These results are not unexpected, be-
cause production of red blood cells is a dynamic
process making it difficult to classify distributions
falling at the upper or lower limits of the a particu-
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Jar subgroup. The distribution shown in Figure 2B,
from a female patient with By /folate deficiency, was
misclassified as having microcytosis. Class posterior
probabilities were < .001 for classification as con-
trol, 1.0 for classification as microcytic, and < .001
for classification as macrocytic. Further review of
the patient’s medical chart revealed that in addition
to the low levels of vitamin Bi2 and red cell folate,
this patient had reduced serum ferritin values, con-
sistent with iron deficiency anemia. In this instance,
the distribution analysis picked up this anomalous
case of Bio deficiency, folate deficiency, and iron de-
ficiency:

4. DISCUSSION

We have successfully developed techniques to model
and classify multivariate distributions from grouped
and truncated red blood cell data. QOur study is
unique in using mixture models in a bilevel fashion,
first for description on an individual subject level
and then for classification on a group level. On the
individual subject level, the range of distributions in
healthy individuals with normocytic, normochromic
cells is defined, while in patients with anemia, distri-
butions containing subpopulations of cells with mi-
crocytic, normocytic, or macrocytic red blood cell
volume and hypochromic or normochromic hemoglo-
bin concentration are described. On the group level,
parameter estimates for individual mixture models
are then used to distinguish between healthy indi-
viduals and patients with anemia.

Discrimination between patient subgroups on the
basis of the distribution parameters for hemoglobin
concentration and red blood cell showed that con-
trols are well separated from other patients with
disorders of anemia (Table 1: 98% overall correct
classification). In previous studies, classification of
patients with thalassemia trait and iron deficiency
anemia [12] or vitamin B12/folate deficiency, alcohol
excess/liver disease and reticulocytosis [13] utilized
printed statistical and graphical output from flow



cytometric blood cell counting instruments. Our
study is the first to model the joint distribution of

red cell volume and hemoglobin concentration re-

flecting measurements of individual blood cells. De-
velopment of bilevel modeling techniques revealed
that within-individual mixtures of red cell subpopu-
lations form between-individual clusters on the basis
of disease category.

As described in the Appendix, the bivariate mix-
ture models for each individual can be estimated in a
straightforward and computationally efficient man-
ner, using the Expectation-Maximization algorithm.
The method can be readily implemented in software
on a standard PC workstation, or could equally well
be embedded within a flow cytometric blood cell
counting instrument. We conclude that for individ-
ual subjects, these methods may provide a means for
monitoring the response to therapy or for automated
screening for disorders of anemia.

APPENDIX

The bilevel model used in this paper consists of two
“levels.” The lower (individual) level model consists
of a two-component lognormal mixture fitted to each
of the individual cytograms. Maximum likelihood
estimates of the lognormal mixture parameters are
obtained for each individual cytogram using the EM

procedure as outlined below. Variability among pa-

rameters of different individuals is then modeled at
the higher (group) level of the hierarchy by a multi-
variate normal density function for each of the three
groups.

Modeling at the Individual Level: EM for Fit- .

ting Mixtures to Cytograms

The binned, and in some cases, truncated nature
of the cytogram data for each individual requires
that the standard EM estimation framework for fi-
nite mixtures be somewhat modified. The theory
for fitting finite mixture models to such data in the
univariate case was developed in full by McLachlan
and Jones [8]. Here we present a brief summary of
the underlying ideas. The model can be written as:

f(@;®) =) mifi(:;6), (A1)
i=1

where the m;’s are weights for the individual compo-
nents, the f;’s are the component density functions
of the mixture model parametrized by 6, and & is
the set of all mixture model parameters, ® = {=,0}.
The overall sample space H is divided into v dis-
joint subspaces H;, (bins) of which only the counts

on the first 7 bins are observed, while the counts on
last v—7 bins are missing. The (observed) likelihood
associated with this model (up to irrelevant constant
terms) is given by Jones and McLachlan [9]:

InL=3 n;jlnP;—nlnP,

=1

(4.2)

where n; is the count in bin j, n is the total observed
count n = Z;___l nj, and the Ps represent integrals
of the probability density function (PDF) over bins:

P =P, (&) = /H S @)z, (43)

P=P®) = /H f(z; ®)dz =Y P;. (A.4)
Jj=1

The form of the likelihood function above corre-
sponds to a multinomial distributional assumption
on bin occupancy.

In Cadez, Smyth et al. we provide a detailed
description of how the EM algorithm can be im-
plemented efficiently in the multidimensional case
for binned and truncated data, including the ap-
plication of the method to mixture modeling of cy-
tograms. The efficiency is achieved by leveraging a
variety of computational short-cuts at various stages
of the algorithm. For example, for any fixed sample
size, a multivariate histogram will be much sparser
than any marginal univariate counterpart, in terms
of counts per bin (i.e., marginals) and this sparseness
can in turn be taken advantage of for the purposes
of efficient numerical integration [10].

Group Level Modeiing in Parameter Space

The output of the EM mixture modeling is a set
of 11 parameters for each individual that describes
two-component distributions of red blood cells per
individual, consisting of:

e Two component mixing weights (proportions)
giving 1 independent parameter as the weights
add up to one,

e Two 2-dimensional means representing mean
volume and mean hemoglobin concentration of
each of the mixture components, yielding 4 ad-
ditional independent parameters, and

e Two 2 x 2 covariance matrices describing the
“shape” (the distribution around mean) of the
cell volume and the cell hemoglobin concentra-
tion for each of the mixture components, for
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The modeling task is to use these 11-dimensional
cytogram parameters to build a 3-component normal
mixture model, one component for each of the three
groups of interest: controls, macrocytic and micro-
cytic patients. The mixing proportions represent
the prior probabilities of belonging to each group.
Each mean contains information about the propor-
tion, means and shapes of the cell subpopulations
that are likely to be seen in a typical representative
of the respective patient group. The 11 x 11 co-
variance matrices for each group represent the natu-
ral variability among cytograms from patients within
the same group. Since the class labels are known a
priori, maximum likelihood parameter estimation for
each group can be performed in closed form directly.
For the results in this paper, the group covariance
matrices were assumed to be diagonal. Classification
of a new cytogram then consists of a two-step pro-
cedure. First, a two-component lognormal mixture
model is fit to obtain an 11-dimensional parameter
vector as described earlier. The posterior probabil-
ities of group membership are then obtained using
Bayes rule and the three 11-dimensional normal den-
sities described previously.
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