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ABSTRACT
Motivation: This paper introduces the software EMMIX-
GENE that has been developed for the specific purpose
of a model-based approach to the clustering of microar-
ray expression data, in particular, of tissue samples on a
very large number of genes. The latter is a nonstandard
problem in parametric cluster analysis because the dimen-
sion of the feature space (the number of genes) is typically
much greater than the number of tissues. A feasible ap-
proach is provided by first selecting a subset of the genes
relevant for the clustering of the tissue samples by fitting
mixtures of t distributions to rank the genes in order of in-
creasing size of the likelihood ratio statistic for the test of
one versus two components in the mixture model. The im-
position of a threshold on the likelihood ratio statistic used
in conjunction with a threshold on the size of a cluster
allows the selection of a relevant set of genes. However,
even this reduced set of genes will usually be too large for
a normal mixture model to be fitted directly to the tissues,
and so the use of mixtures of factor analyzers is exploited
to reduce effectively the dimension of the feature space of
genes.
Results: The usefulness of the EMMIX-GENE approach
for the clustering of tissue samples is demonstrated on two
well-known data sets on colon and leukaemia tissues. For
both data sets, relevant subsets of the genes are able to be
selected that reveal interesting clusterings of the tissues
that are either consistent with the external classification of
the tissues or with background and biological knowledge
of these sets.
Availability: EMMIX-GENE is available at http://www.
maths.uq.edu.au/∼gjm/emmix-gene/
Contact: gjm@maths.uq.edu.au

1 INTRODUCTION

The analysis of gene expression microarray data using
clustering techniques has an important role to play in
the discovery, validation, and understanding of various
classes and subclasses of cancer; see, for example, Eisen
et al. (1998), Ben-Dor et al. (1999, 2000), Alon et al.

(1999), Golub et al. (1999), Hastie et al. (2000), Moler
et al. (2000), Nguyen and Rocke (2001), and Xing and
Karp (2001), among others. The clustering algorithm we
present here, called EMMIX-GENE, can be applied to
the problem of clustering tissue samples on the basis
of genes and to the problem of clustering genes on the
basis of tissues. For the clustering of genes, the EMMIX-
GENE software makes use of existing options from the
EMMIX program of McLachlan et al. (1999). The tissue
space and the gene space are generally of quite different
dimensionality (10–102 tissues versus 103–104 genes).
The clustering of the genes on the basis of the tissues
is therefore a standard cluster analysis problem that can
be effected by using existing software to fit normal
mixture models. But unless the genes are assumed to be
uncorrelated within a cluster, the clustering of the tissue
samples on the basis of all the genes is nonstandard
since the dimension of each tissue sample (the number
of genes) is so much greater than the number of tissues.
This dimensionality problem is handled with the EMMIX-
GENE approach by fitting mixtures of factor analyzers,
which allow for nonzero component-correlations between
the genes. Given the very large number of genes in a
typical tissue sample, EMMIX-GENE initially considers
a reduction in the number of genes to be used in the
clustering process.

The EMMIX-GENE approach is to be illustrated in the
clustering of two well-known data sets in the microarray
literature, the colon data analyzed initially in Alon et
al. (2000), and the leukaemia data first analyzed in
Golub et al. (1999).

2 NORMAL MIXTURE MODELS
Before we proceed to present the EMMIX-GENE ap-
proach, we shall briefly summarize the normal mixture
model and the extensions to mixtures of t distributions
and to mixtures of factor analyzers. Finite mixtures of
distributions have provided a sound mathematical-based
approach to the statistical modelling of a wide variety of
random phenomena; see, for example, McLachlan and
Peel (2000a). For multivariate data of a continuous nature,
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attention has focused on the use of multivariate normal
components because of their computational convenience.
We let x1, . . . , xn denote n p-dimensional observations.
With a normal mixture model-based approach to cluster-
ing of these data, it is assumed that each observation x j is
from a mixture of an initially specified number g of mul-
tivariate normal densities in some unknown proportions
π1, . . . , πg . That is, x j is taken to be a realization of a
random vector X having the mixture probability density
function (p.d.f.) f (x;Ψ) defined by,

f (x;Ψ) =
g∑

i=1

πiφ(x; µi ,Σi ), (1)

where φ(x; µi ,Σi ) denotes the p-variate normal density
probability function with mean µi and covariance matrix
Σi (i = 1, . . . , g). Here the vector Ψ of unknown parame-
ters consists of the mixing proportions πi , the elements of
the component means µi , and the distinct elements of the
component–covariance matrices Σi (i = 1, . . . , g).

Under the assumption that x1, . . . , xn are independent
observations, the log likelihood function for the parameter
vector Ψ can be formed by summing over the log mixture
density at each point x j to give

log L(Ψ) =
n∑

j=1

log f (x j ;Ψ). (2)

The maximum likelihood estimate of Ψ is obtained as an
appropriate root of the likelihood equation

∂ log L(Ψ)/∂Ψ = 0. (3)

Solutions of (3) corresponding to local maxima can
be found iteratively by application of the Expectation–
Maximization (EM) algorithm of Dempster et al. (1977);
see also McLachlan and Krishnan (1997). The EM
algorithm is applied in the framework where each obser-
vation x j is conceptualized to have arisen from one of
the components and the indicator variable denoting its
component of origin is taken to be missing. The so-called
complete-data log likelihood is formed on the basis of
these indicator variables in addition to the observed
data x1, . . . , xn . On the E-step, the complete-data log
likelihood is averaged over the conditional distribution
of the indicator variables given the observed data, using
the current estimate of the parameter vector. Since the
complete-data log likelihood is linear in these indicator
variables, the E-step of the EM algorithm simply involves
replacing them by the current values of their conditional
expectations, which are the so-called posterior probabili-
ties of component membership. The posterior probability
that the j th data point belongs to the i th component of the
mixture is written here as τi (x j ;Ψ) and is given by

τi (x j ;Ψ) = πiφ(x j ; µi ,Σi )/ f (x j ;Ψ)

for i = 1, . . . , g and j = 1, . . . , n. On the M-step, the es-
timates of the component mixing proportions, means, and
covariance matrices are updated by using the current val-
ues for the posterior probabilities in place of the indica-
tor variables in the usual closed-form expressions for the
sample proportions, means, and covariance matrices. The
E- and M-steps are alternated repeatedly until convergence
of the EM sequence of iterates. The EM algorithm has re-
liable global convergence in that regardless of the starting
point, the likelihood (2) is increased after each EM itera-
tion and that convergence is to a local maximum, assuming
that the process is not attracted to a spike in the likelihood
function.

Once the mixture model has been fitted, a probabilistic
clustering of the data into g clusters can be obtained in
terms of the fitted posterior probabilities of component
membership for the data, τ(x j ; Ψ̂), where Ψ̂ denotes
the maximum likelihood estimate of Ψ. An outright
assignment of the data into g clusters is achieved by
assigning each data point to the component to which it has
the highest estimated posterior probability of belonging.
The likelihood ratio statistic λ can be used to test for
the smallest number of components in the mixture model
compatible with the data. However, the situation is not
straightforward since regularity conditions do not hold
for the asymptotic null distribution of −2 log λ to be
chi-squared; nor do they hold for the justification of the
Bayesian Information Criterion (BIC), although it still
appears to provide a useful informal guide in practice
(McLachlan and Peel, 2000a, Chapter 6). A formal test can
be carried out using a resampling approach as proposed in
McLachlan (1987).

2.1 Mixtures of t distributions
The use of t component distributions is employed in
the gene-selection stage of the EMMIX-GENE program
in order to provide some protection against atypical
observations, which are prevalent in microarray data.
With the t mixture model-based approach, the normal
distribution for the i th component in the mixture is
embedded in a wider class of elliptically symmetric
distributions with an additional parameter called the
degrees of freedom νi . As νi tends to infinity, the t
distribution approaches the normal distribution. Hence
this parameter νi may be viewed as a robustness tuning
parameter. It can be fixed in advance or it can be inferred
from the data for each component thereby providing an
adaptive robust procedure.

The t density with location parameter µi , positive
definite inner product matrix Σi , and νi degrees of
freedom is given by


(
νi +p

2 )|Σi |−1/2

(πνi )
1
2 p
(

νi
2 ){1 + δ(x, µi ;Σi )/νi } 1

2 (νi +p)
,
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where

δ(x, µi ;Σi ) = (x − µi )
TΣ−1

i (x − µi )

denotes the Mahalanobis squared distance between x
and µi . If νi > 1, µi is the mean of X, and if νi > 2,
νi (νi − 2)−1Σi is its covariance matrix.

McLachlan and Peel (2000a, Chapter 7) have provided
a detailed account how the EM algorithm and a multicycle
Expectation–Conditional Maximization (ECM) variant
can be used to undertake maximum likelihood estimation
of a mixture of t distributions with unspecified degrees of
freedom νi . If νi is fixed in advance for each component,
then the M-step exists in closed form with the component
means and covariance matrices updated effectively using
weighted least squares.

3 MIXTURES OF FACTOR ANALYZERS
3.1 Single-component factor model
Factor analysis is commonly used for explaining correla-
tions between variables in multivariate observations. It can
be used also for dimensionality reduction. In a typical fac-
tor analysis model, each observation X j is modelled as

X j = µ + BU j + e j ( j = 1, . . . , n), (4)

where U j is a q-dimensional (q < p) vector of latent
or unobservable variables called factors and B is a
p × q matrix of factor loadings (parameters). The U j
are assumed to be independent and identically (i.i.d.)
as N (0, Iq), independently of the errors e j , which are
assumed to be i.i.d. as N (0, D), where D is a diagonal
matrix,

D = diag(σ 2
1 , . . . , σ 2

p),

and where Iq denotes the q × q identity matrix. Thus,
conditional on the u j , the X j are independently distributed
as N (µ + Bu j , D). Unconditionally, the X j are i.i.d.
according to a normal distribution with mean µ and
covariance matrix

Σ = BBT + D. (5)

If q is chosen sufficiently smaller than p, the represen-
tation (5) imposes some constraints on the component–
covariance matrix Σ and thus reduces the number of free
parameters to be estimated. Note that in the case of q > 1,
there is an infinity of choices for B, since (5) is still satis-
fied if B is replaced by BC, where C is any orthogonal ma-
trix of order q. One (arbitrary) way of uniquely specifying
B is to choose the orthogonal matrix C so that BTD−1B
is diagonal (with its diagonal elements arranged in de-
creasing order). Assuming that the eigenvalues of BBT

are positive and distinct, the condition that BTD−1B is
diagonal as above imposes 1

2q(q − 1) constraints on the

parameters. Hence then the number of free parameters is
pq + p − 1

2q(q − 1).
With the factor analysis model (4), we avoid having to

compute the inverses of iterates of the estimated p × p
covariance matrix Σ that may be singluar for large p
relative to n. This is because the inversion of the current
value of the p × p matrix (BBT + D) on each iteration can
be undertaken using the result that

(BBT + D)−1 = D−1 − D−1B

×(Iq + BTD−1B)−1BTD−1, (6)

where the right-hand side of (6) involves only the inverses
of q × q matrices, since D is a diagonal matrix. The
determinant of (BBT + D) can then be calculated as

|BBT + D| = |D|/|Iq − BT(BBT + D)−1B|.
Unlike the principal components model, the factor anal-
ysis model (4) enjoys a powerful invariance property:
changes in the scales of the feature variables in x j , appear
only as scale changes in the appropriate row of the matrix
B of factor loadings.

3.2 Mixtures of factor models
As the single-factor analysis model (4) provides only a
global linear model for the representation of the data in
a lower-dimensional subspace, the scope of its application
is limited. A global nonlinear approach can be obtained
by postulating a finite mixture of linear submodels for
the distribution of the full observation vector X j given
some (unobservable) factors, as advocated in McLachlan
and Peel (2000a,b). This model was originally proposed
by Ghahramani and Hinton (1997) for the purposes of
visualizing high dimensional data in a lower dimensional
space to explore for group structure.

The mixture of factor analyzers model is given by (1),
where now the i th component–covariance matrix Σi has
the form

Σi = Bi BT
i + Di (i = 1, . . . , g), (7)

where Bi is a p × q matrix of factor loadings and Di is
a diagonal matrix (i = 1, . . . , g). The parameter vector
Ψ now consists of the elements of the µi , the Bi , and the
Di , along with the mixing proportions πi (i = 1, . . . , g).
McLachlan and Peel (2000a, Chapter 8) have described
how a variant of the EM algorithm, the Alternating
Expectation–Conditional Maximization (AECM) algo-
rithm of Meng and van Dyk (1997), can be used to fit the
mixture of factor analyzers by maximum likelihood.

At the final values of the iterates for the parameters, the
maximum likelihood estimate of the diagonal matrix Di
satisfies

D̂i = diag(V̂i − B̂i B̂T
i ), (8)

415



G.J.McLachlan et al.

where V̂i is the i th component sample covariance matrix
with the observations weighted by the final values of
the i th component posterior probabilities. It can be seen
from (8) that some of the estimates of the elements of the
diagonal matrix Di will be close to zero if effectively not
more than q observations are unequivocally assigned to
the i th component of the mixture on the basis of the fitted
posterior probabilities of component membership. This
will lead to spikes or near singularities in the likelihood.
One way to avoid this is to impose the condition of a
common value D for the Di ,

Di = D (i = 1, . . . , g). (9)

4 DIMENSION REDUCTION
In the standard setting of a model-based cluster analysis,
the n observations to be clustered are taken to be
independent realizations where the sample size n is much
larger than the dimension p of each observation,

n � p. (10)

It is also assumed that the sizes of the clusters to be
produced are sufficiently large relative to p to avoid
any singular estimates of the within-cluster covariance
matrices.

We now consider the cluster analysis of microarray data
collected on N genes from M experiments, which can be
represented in the form of a N × M data matrix A whose
i th row contains the expression levels for the i th gene in
the M tissue samples. Typically, N is typically larger than
M . Thus for the problem of clustering N genes on the
basis of the M tissues, we have n = N and p = M , and
so condition (10) for a standard cluster analysis will be
satisfied usually. The condition of independent data will
not hold given that not all the genes in a given tissue
sample are independently distributed. But in practice we
can proceed with the standard clustering methodology,
ignoring any correlations between genes in the same tissue
sample.

We now consider the problem of clustering the M tissues
on the basis of the N genes. For this problem, we have
n = M and p = N , and so the sample size n will be
typically small relative to the dimension p, thus causing
estimation problems with the normal mixture model. This
is because the g-component normal mixture model (1)
with unrestricted component–covariance matrices is a
highly parameterized model with 1

2 p(p+1) parameters for
each component–covariance matrix Σi (i = 1, . . . , g). It
therefore cannot be fitted directly to the tissues on the basis
of all the p = N genes. The EMMIX-GENE program
handles this high-dimensional problem by using mixtures
of factor analyzers, where Σi is specified by (7) and (9).
A reduction in the number of parameters is achieved by

taking the number of factors q to be appropriately small.
Although the model under (9) can be fitted provided q is
less than the sample size n, q needs to be sufficiently small
to ensure that the estimates of the component–covariance
matrices are not highly variable. Hence q may not be able
always to be taken sufficiently large to model adequately
the full correlation structure of the genes in the lower q-
dimensional factor space.

Thus in practice we may wish to work with a subset of
the available genes, particularly as the fitting of a mixture
of factor analyzers will involve a considerable amount
of computation time for an extremely large number of
genes. Also, the intent of the cluster analysis may not
be to produce a clustering of the tissues on the basis
of all the available genes, but rather to discover and
study different clusterings of the tissues corresponding to
different subsets of the genes. Indeed, the simultaneous
use of too many genes in the cluster analysis may serve
only to create noise that masks the effect of a smaller
number of genes. Therefore, the EMMIX-GENE program
has two optional stages before the final stage of clustering
the tissues. The first stage considers the selection of a
subset of relevant genes from the available set of genes.
The second stage then considers the grouping of the
retained set of genes into a specified number (N0) of
groups. The third and final stage of the EMMIX-GENE
approach concerns the clustering of the tissues by fitting
mixtures of factor analyzers. It can be undertaken on the
basis of (i) all or a selected subset of the available genes,
(ii) all or some of the gene-group means, or (iii) all or some
of the genes within a specified gene group.

4.1 Selection of relevant genes
We now describe the screening process used by EMMIX-
GENE to select relevant genes for clustering the tissue
samples into two clusters corresponding to, say, healthy
and unhealthy tissues. This selection is undertaken in the
absence of tissue samples that are of known classification
with respect to the disease. The relevance of a gene
for distinguishing between healthy and unhealthy tissue
samples can be assessed on the basis of the value of
−2 log λ, where λ is the likelihood ratio statistic for testing
g = 1 versus g = 2 components in the mixture model. In
order to reduce the effect of atypically large observations
on the value of λ, we fit mixtures of t components
with their degrees of freedom inferred from the data.
However, the use of t components in place of normal
components still does not eliminate the effect of outliers
on inference of the number of groups in the tissue samples.
For example, suppose that for a given gene there is no
genuine grouping in the tissues, but that there are a small
number of gross outliers. Then a significantly large value
of λ might be obtained, with one component representing
the main body of the data (and providing robust estimates
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Fig. 1. Histogram of gene 1758 (H20819) with mixture of g = 2
fitted t components.
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Fig. 2. Histogram of gene 474 (T70046) with mixture of g = 2 fitted
t components.

of their underlying distribution) and the other representing
the outliers. That is, although the t mixture model may
provide robust estimates of the underlying distribution, it
does not provide a robust assessment of the number of
groups in the data.

Suppose now that for a given gene there are two groups
in the tissue samples. If there are no outliers present in
the tissue samples, we should obtain a significant value of
λ with the two components of the fitted t mixture model
corresponding to the two groups. But if there are outliers
present, then the two components of the fitted t mixture
model may still correspond to the two groups or it may
happen that one component corresponds to the main body
of the data and the other component to the outliers. An
illustration of the former case is given in Figure 1 and of
the latter case in Figures 2 and 3, using the data on two
genes in 62 tissue samples from the colon cancer data of
Alon et al. (1999).

In light of the above, the EMMIX-GENE software
automatically assesses the relevance of each of the N
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Fig. 3. Histogram of gene 474 (T70046) with mixture of g = 3 fitted
t components.

genes by fitting one- and two-component t mixture models
to the expression data over the M tissues for each gene
considered individually. If −2 log λ is greater than a
specified threshold b1,

−2 log λ > b1 (11)

then the gene is taken to be relevant provided that

smin � b2, (12)

where smin is the minimum size of the two clusters
implied by the two-component t mixture model and b2 is
a specified threshold.

If (11) holds but (12) does not for a given gene, then
the three-component t mixture model is fitted to the
tissue samples on this gene, and the value of −2 log λ

calculated for the test of g = 2 versus g = 3; see
Figure 3. If (11) holds for this value of −2 log λ, the
gene is selected as being relevant (provided at least two
of the three clusters implied by the g = 3 solution have
sizes not less than b2). Although the null distribution of
−2 log λ for g = 2 versus g = 3 is not the same as for
g = 1 versus g = 2 components, it would appear to be
reasonable here to use the same threshold (11). The null
distribution of −2 log λ for the test of the null hypothesis
H0 : g = g0 versus the alternative hypothesis H1 : g = g1
is unknown (for finite sample sizes) for normal or t
components; see McLachlan and Peel (2000a, Chapter 6).
Some simulations we performed for g = 1 versus g = 2
for t components suggest that the 90th percentile is
around 9. In the examples to be discussed next, we took
b1 = 8. Concerning the lower bound on the minimum
cluster size smin, we arbitrarily took b2 = 8. In fitting
the two- and three-component t mixture models to the
tissue samples, we need to provide a starting point for the
parameter estimate, or equivalently, the grouping of the
data. This can be done by the user specifying a number
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of random starts and a number of k-means-based starts. In
our analyses to be presented later, we used four random
and four k-means-based starts.

4.2 Grouping of genes
Concerning the end problem of clustering the tissue sam-
ples on the basis of the genes considered simultaneously,
we could examine the univariate clusterings provided
by each of the selected genes taken individually. But
this would be rather tedious when a large number of
genes have been selected. Thus with the EMMIX-GENE
approach, there is a second (optional) stage for clustering
the genes into a user-specified number (N0) of groups
by fitting a mixture of g = N0 normal distributions with
covariance matrices restricted to being equal to a multiple
of the (p × p) identity matrix. That is, if the mixing
proportions were fixed at 0.5, then it would be equivalent
to using k-means and grouping the genes in terms of
Euclidean distance between them. One could attempt to
make a more objective choice of the number N0 of groups
by using, say, the likelihood ratio criterion or BIC. There
is an extra complication here since the genes are not
independently distributed within a tissue sample.

The groups of genes are ranked in terms of the like-
lihood ratio statistic calculated on the basis of the fitted
mean of a group over the tissues for the test of a single
versus two t components. A heat map of genes in a group
versus the tissues is provided for each of the groups where,
in each group, the tissues can be left in their original or-
der or rearranged according to their cluster membership
obtained by fitting a univariate t mixture model on the ba-
sis of the group mean. Alternatively, one could cluster the
tissues by fitting a two-component mixture of factor ana-
lyzers on the basis of the genes within the group.

We have found in our analyses of microarray data sets
that the means of the groups into which the genes have
been clustered as above provide a useful representation
of the genes in a lower dimensional space (the dimension
of this space is equal to the number of groups N0). If we
cluster the tissues on the basis of the group means only, we
are ignoring the relative sizes of the groups. This might
have some impact on the accuracy of predictions if the
aim were to construct a classifier for assigning the tissues
to externally existing classes. For instance, one group
may contain many genes that are useful in distinguishing
between healthy and unhealthy. Thus if the genes within
this group act independently, then there would be a loss
in accuracy in using only the mean of this group and not
making use of its size. But as the genes have been clustered
into groups by working in terms of Euclidean distance
(after normalization of the data), the impact of ignoring
the size of the groups should be limited. This is because
the genes within a group should in the main be at least
moderately correlated with each other, as the Euclidean

distance between any two genes is equal to 2(1−r), where
r denotes the sample correlation between them.

5 IMPLEMENTATION
We illustrate the implementation of the EMMIX-GENE
approach by applying it to two well-known data sets, the
colon data of Alon et al. (1999) and the leukaemia data of
Golub et al. (1999).

5.1 Clustering of colon tissues
Alon et al. used Affymetrix oligonucleotide arrays to
monitor absolute measurements on expressions of over
6500 human gene expressions in 40 tumour and 22
normal colon tissue samples. These samples were taken
from 40 different patients so that 22 patients supplied
both a tumour and normal tissue sample. Alon et al.
(1999) focussed on the 2000 genes with highest minimal
intensity across the samples, and it is these 2000 genes that
comprise our data set. The microarray data matrix A for
this set thus has N = 2000 rows and M = 62 columns. In
Alon et al. (1999), the tissues are not listed consecutively,
but here we have rearranged the data so that the tumours
are labelled 1–40 and the normals 41–62. Before we
considered the clustering of this set, we processed the data
by taking the (natural) logarithm of each expression level
in A. Then each column of this matrix was standardized to
have mean zero and unit standard deviation. Finally, each
row of the consequent matrix was standardized to have
mean zero and unit standard deviation.

5.1.1 Clustering on basis of 446 genes. On the first
stage of EMMIX-GENE, we selected 446 genes as
relevant. It will be seen that the clustering of the tissue
samples depends to a large extent as to which genes
are selected for the feature variables to be used in the
mixture model. In this sense, there may not be interest
in attempting to find a clustering of the tissue samples
on the basis of all the 2000 genes or even a reduced set
such as the 446 genes deemed to be relevant. If there were
still such interest, then one way to proceed is to fit a two-
component mixture of factor analyzers to the tissues on the
basis of, say, the 446 selected genes. We fitted mixtures of
g = 2 factor analyzers for various levels of the number q
of factors ranging from q = 2 to q = 8, but there was little
difference between the clustering results. The clustering
corresponding to the largest of the local maxima obtained
gave the following clustering for q = 6 factors,

C1 = {1–12, 20, 25, 41–52}
∪{13–39, 21–24, 26–40, 53–62}. (13)

Getz et al. (2000) and Getz (2001) reported that there
was a change in the protocol during the conduct of the
microarray experiments. The 11 tumour tissue samples
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(labelled 1–11 here) and 11 normal tissue samples (41–51)
were taken from the first 11 patients using a poly detector,
while the 29 tumour tissue samples (12–40) and normal
tissue samples (52–62) were taken from the remaining
29 patients using total extraction of RNA. It can be seen
from (13) that this clustering C1 almost corresponds to the
dichotomy between tissues obtained under the ‘old’ and
‘new’ protocols.

We also considered the clustering of the 62 tissue
samples on the basis of the top 50 genes in the retained
set of 446 genes. Fitting mixtures of factor analyzers with
q = 6 factors, using 50 random and 50 k-means starts, we
obtained the following clustering,

C2 = {1–26, 29, 31, 32, 34, 38, 41–52}
∪{27–28, 30, 33, 35–37, 39, 40, 53–62}.

This clustering not only splits the tissue samples obtained
under ‘old’ and ‘new’ protocols, but it also splits some of
the ‘new’ tumour samples and some of the ‘new’ normal
tissue samples.

5.1.2 Clustering on basis of gene groups. We now con-
sider the clustering of the tissue samples after the retained
set of 446 genes has been clustered into N0 = 20 groups
on the second stage of the EMMIX-GENE approach. A
heat map of the genes in a group versus the tissues (and the
heat map for the leukaemia data) may be viewed at http:
//www.maths.uq.edu.au/∼gjm/emmix-gene/map.html. In
Figure 4, we have plotted the 18 genes in the first group
G1 for the 62 tissues, with the latter arranged in order
of the 40 tumours followed by the 22 normal tissues. In
Figure 5, we give the corresponding plot of the 24 genes
in the second group of genes G2.

The clustering of the tissues on the basis of the 18
genes in G1 using q = 4 factors in the mixture of factor
analyzers model resulted in a partition C3 of the tissues
that is fairly similar to C2, namely

C3 = {1–26, 29–32, 41–52, 55–56}
∪{27–28, 33–40, 53–54, 57–62}.

The clustering of the tissues on the basis of the 24 genes
in G2 resulted in a partition of the tissues in which one
cluster contains 37 tumours (1–29, 31–32, 34–35, 37–40)
and 3 normals (48, 58, 60), and the other cluster contains
3 tumours (30, 33, 36) and 19 normals (41–47, 49–57, 59,
61–62). Calling this clustering C4, we have that

C4 = {1–29, 31–32, 34–35, 37–40, 48, 58, 60}
∪{30, 33, 36, 41–47, 49–57, 59, 61–62}.

It can be seen from Figure 4 that the clustering of the
tissues on the basis of the genes in group G1 gives two
clusters with large intercluster differences between the
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Fig. 4. Plot of 18 genes in group G1 on the 40 tumour and 22 normal
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Fig. 5. Plot of 24 genes in group G2 on the 40 tumour and 22 normal
tissues.

tissues. The clusters are also quite cohesive, but this is
accentuated by the fact that we are using genes that were
put into the same group by carrying out the grouping
effectively in terms of Euclidean distance between genes.
Likewise, Figure 5 shows that the clustering of the
tissues on the basis of the genes in group G2 gives two
cohesive clusters with a large intercluster differences. But
it appears that the first clustering is stronger in terms of
the likelihood ratio statistic λ formed from the individual
genes in the groups and on their means. This clustering C4
produced by the second group of genes G2 is quite similar
to the external classification, as its error rate is only 6.
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It can be seen from Figure 5 that the genes in group G2
tend to be more highly expressed in the normal tissues
than in the tumours. Alon et al. (1999) and Ben-Dor
et al. (2000) noted that the normal colon biopsy also
included smooth muscle tissue from the colon walls. As
a consequence, smooth muscle-related genes showed high
expression levels in the normal tissue samples compared
to the tumour samples, which generally had a low
muscle content. Ben-Dor et al. (2000) identified a large
number of muscle-specific genes as being characteristic
of normal colon samples. We note that two of these
genes (J02854 and T60155) are in group G2, while group
G2 also contains two genes (M63391 and X74295) that
Ben-Dor et al. (2000) suspected of being expressed in
smooth muscle.

The six tissues that are misallocated under this second
clustering (tumour tissues 30, 33, and 36 and normal
tissues 48, 58, and 60) occur among those tissues that
have been misallocated in other cluster and discriminant
analyses of this data set. Tissues 30, 33, and 36 are
taken from tumour tissue on patients labelled 30, 33,
and 36 in Alon et al. (2000), while tissues 48, 58,
and 60 are taken from normal tissue on patients 8, 34,
and 36. These six tissues have been misallocated in
previous analyses even in a discriminant analysis context
where use is made of the external classification of these
tissues. For example, with the support vector machine
classifier formed in Chow et al. (2001) using the known
classification of tissues, these six tissues along with
tumour tissue 35 were misallocated in the (leave-one-
out) cross-validation of this classifier. There is thus some
doubt as to the validity of the so-called ‘true’ classification
of these six tissues, which was determined by biopsy.
An inspection of Figure 5 reveals that at least for the
24 genes in this plot, tumour tissues 30, 33 and 36
are very similar to the normal ones, while the normal
tissues 48, 58, and 60 are very similar to the tumours.
As explained in Chow et al. (2001), misclassification
might be due to, say, simple error during sample handling,
RNA preparation, data acquisition, and data analysis.
They also noted that the normal tissues could have been
misclassified because pathologically ‘normal’ regions of
the colon could have substantial tumour-like properties
from a molecular standpoint.

Applying a hierarchical procedure to cluster the 62
tissues on the basis of the 2000 genes, Alon et al. (1999)
observed that the topmost division in the dendrogram
divides the samples into two groups that misallocates
three normal and five tumour tissues (tissues 2, 30, 33,
36, 37, 48, 52 and 58). The method used by Alon et al.
(1999) can be viewed as fitting a normal mixture model
with common spherical component–covariance matrices
(although the variance was not estimated from the data;
it was varied deterministically during the fitting process).

Also, Alon et al. (1999) did not log the data. It is of
interest to note that in fitting mixtures of diagonal normal
components to the tissues on the basis of all the genes,
the only way we could get the algorithm to converge
to a local maximum that gave an implied clustering the
same as C4 or a perturbation of it (that is, similar to the
external classification) was to use the unlogged data and
to impose the condition of common spherical component–
covariance matrices. Hence when the data are logged (as
is appropriate), or when Euclidean distance is not used
as the metric, the smooth muscle-related genes have a
diminished capacity in the presence of other genes to
distinguish between normal and tumour tissues.

5.1.3 Clustering on basis of group means. We also
clustered the 62 tissues on the basis of the N0 = 20 fitted
group means obtained above by fitting a mixture of g = 2
factor analyzers for various levels of the number of factors
q. The largest local maximum so located with q = 8
factors gives a clustering (C5) that is similar to C2 and
C3 with

C5 = {1–23, 25, 26, 41–52, 58}
∪{24, 27–40, 53–57, 59–62}.

5.2 Leukaemia tissues
The EMMIX-GENE approach is applied now to the
clustering of the leukaemia tissues of Golub et al. (1999),
who studied gene expressions on two types of acute
leukaemias: Acute Lymphoblastic Leukaemia (ALL)
and Acute Myeloid Leukaemia (AML). Gene expression
levels were measured using Affymetrix high density
oligonucleotide arrays containing N = 7129 genes on
M = 72 tissues, comprising 47 cases of ALL (38 B-cell
and 9 T-cell ALL) and 25 cases of AML. We have rear-
ranged the order of the tissues so that the first 47 columns
of the microarray data matrix A refer to the ALL cases and
the next 25 to the AML cases. We followed the processing
steps of Dudoit et al. (2001) of: (i) thresholding: floor of
100 and ceiling of 16 000; (ii) filtering: exclusion of genes
with max / min � 5 and (max – min) � 500, where max
and min refer respectively to the maximum and minimum
expression levels of a particular gene across a tissue sam-
ple; (iii) the natural logarithm of the expression levels was
taken (Dudoit et al., 2001, used base 10 logarithms). This
left us with 3731 genes. As with the normalization of the
colon data in the previous example, we first standardized
the columns of the matrix of the logged microarray data
to have mean zero and unit standard deviation, and then
we standardized the rows of this matrix to have mean zero
and unit standard deviation. This preprocessing of the
genes resulted in 3731 genes being retained.

We reduced this set further to 2015 genes by eliminating
genes not considered to be relevant on the first stage of
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the EMMIX-GENE approach. Proceeding to the second
stage, we summarized the expression levels on these
2015 selected genes by clustering them into a number of
groups (N0 = 40). It was found that Groups 1 and 3
provide clusterings that are most similar to the external
classification of the tissues. We subsequently confirmed
this by fitting a two-component mixture factor analyzer
with q = 6 factors to the tissues on the basis of the genes
in Groups 1–3, respectively. The errors of allocation of
the implied clustering corresponding to the largest local
maximum located in each case were equal to 13, 35, and 6,
respectively.

We also considered the clustering of the 72 tissue
samples on the basis of the 40 fitted group means and
the top fifty genes of the 2015 genes. To cluster the 72
tissues on the basis of the 40 group means, we fitted
a mixture of g = 2 components with q = 8 factors.
The local maximizer chosen from 50 random and 50
k-means-based starts gave a clustering with one tissue
(number 69) misallocated.

We also fitted the same model to cluster the 72 tissues
on the basis of the top fifty genes. Again using 50 random
and 50 k-means-based starts, we obtained a clustering in
which ten tissues were misallocated. This error dropped to
one, when we started the mixture of factor analyzers from
the true classification.

The 47 ALL tissues in these leukaemia data consist of
9 T-cell and 38 B-cell types. Given the existence of these
three subclasses among the 72 tissues (25 AML, 9 T-cell
ALL, and 38 B-cell ALL), Chow et al. (2001) considered
the clustering of the 72 tissues into three groups. We
decided to cluster the 72 tissues into three groups by fitting
a three-component mixture factor analyzer with q = 6
factors. When this model was fitted from the 25–9–38 split
of the tissues, it converged to a local maximizer that gives
this split of the tissues apart from one B-cell ALL tissue
that is put in the cluster corresponding to the T-cell ALL
tissues. However, when we fitted the same model using 50
random and 50 k-means-based starts, we obtained a larger
local maximum that gives a quite different split of the
tissues into three clusters. One cluster consisted of the 25
AML cases plus 10 B-cell ALL cases; a second consisted
of the 9 T-cell cases plus 5 B-cell ALL cases; the third
cluster consisted of the remaining 23 B-cell ALL cases.

6 DISCUSSION
There has been increasing emphasis on a mixture
model-based approach to clustering as it provides a
sound mathematical-based method. However, in using
this approach with mixtures of normal components that
have nondiagonal covariance matrices, the number of
observations to be clustered needs to be sufficiently large
in number relative to their dimension in order to prevent
singular estimates of the component–covariance matrices

occurring during the estimation process. Unfortunately,
this is not the case with the problem of clustering tissues
on the basis of gene expression levels, as the latter are
typically much larger than the number of tissues to be
clustered. In this paper, we have shown how we can han-
dle this clustering problem by adopting mixtures of factor
analyzers to model the distribution of a high dimensional
vector of gene expression data on a tissue. The proposed
approach is demonstrated on two well known data sets
in the microarray literature, the colon data of Alon et al.
(1999) and the leukaemia of Golub et al. (1999). The aim
was not to provide a detailed analysis of these sets, but
rather to highlight the potential role and usefulness of a
mixture model-based approach to the clustering of mi-
croarray expression data. In particular, we demonstrated
how mixtures of factor analyzer models can identify
various classes and subclasses among tissues on the
basis of gene expression levels. Encouraging results are
obtained in these two data sets for our proposed method
for reducing the number of genes. For the leukaemia data
set, the EMMIX-GENE approach yielded a two-cluster
partition of the tissues that is consistent with the two
types of acute leukaemia. However, for both data sets, we
found clusterings of the tissues that do not correspond
to the external (clinical) classification of the tissues, but
do have an interpretation consistent with the biological
background. For example, for the colon data, cluster
analyses performed on the basis of various subsets of
the genes selected as being relevant by EMMIX-GENE
tended to provide strong support for a partitioning of
the tissues into two classes that split the tissue samples
obtained under ‘old’ and ‘new’ protocols. There is also
support for the splitting of some of the ‘new’ tumour
samples and some of the ‘new’ normal tissue samples,
which can be partly explained by some of these tissues
being outliers if the external classification is valid.

REFERENCES
Alon,U., Barkai,N., Notterman,D.A., Gish,K., Ybarra,S. et al.

(1999) Broad patterns of gene expression revealed by clus-
tering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96, 6745–
6750.

Ben-Dor,A., Shamir,R. and Yakhini,Z. (1999) Clustering gene
expression patterns. J. Comput. Biol., 6, 281–297.

Ben-Dor,A., Bruhn,L., Friedman,N., Nachman,I., Schummer,M. et
al. (2000) Tissue classification with gene expression profiles. J.
Comput. Biol., 7, 559–584.

Chow,M.L., Moler,E.J. and Mian,I.S. (2001) Identifying marker
genes in transcription profiling data using a mixture of feature
relevance experts. Physiol. Genomics, 5, 99–111.

Dempster,A.P., Laird,N.M. and Rubin,D.B. (1977) Maximum like-
lihood from incomplete data via the EM algorithm (with discus-
sion). J. R. Stat. Soc. B, 39, 1–38.

421



G.J.McLachlan et al.

Dudoit,S., Fridlyand,J. and Speed,T.P. (2001) Comparison of dis-
crimination methods for the classification of tumors using gene
expression data. J. Am. Stat. Assoc., to appear.

Eisen,M.B., Spellmann,P.T., Brown,P.O. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl Acad. Sci. USA, 95, 14 863–14 868.

Getz,G., Levine,E. and Domany,E. (2000) Coupled two-way clus-
tering analysis of gene microarray data. Cell Biol., 97, 12 079–
12 084.

Getz,G. (2001) Personal communication.
Ghahramani,Z. and Hinton,G.E. (1997) The EM algorithm for factor

analyzers. Technical Report No. CRG-TR-96-1. The University
of Toronto, Toronto.

Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gassenbeck,M. et
al. (1999) Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science,
286, 531–537.

Hastie,T., Tibshirani,R., Eisen,M.B., Alizadeh,A., Levy,R.,
Staudt,L., Chan,W.C., Botstein,D. and Brown,P. (2000) ‘Gene
shaving’ as a method for identifying distinct sets of genes with
similar expression patterns. Genome Biol., 1, research0003.1–
0003.21.

McLachlan,G.J. (1987) On bootstrapping the likelihood ratio test
statistic for the number of components in a normal mixture. Appl.
Stat., 36, 318–324.

McLachlan,G.J. and Krishnan,T. (1997) The EM Algorithm and
Extensions. Wiley, New York.

McLachlan,G.J. and Peel,D. (2000a) Finite Mixture Models. Wiley,
New York.

McLachlan,G.J. and Peel,D. (2000b) Mixtures of factor analyzers.
In Langley,P. (ed.), Proceedings of the Seventeenth International
Conference on Machine Learning. Morgan Kaufmann, San
Francisco, pp. 599–606.

McLachlan,G.J., Peel,D., Basford,K.E. and Adams,P. (1999) The
EMMIX software for the fitting of mixtures of normal and
t-components. J. Stat. Softw., 4.

Meng,X.L. and van Dyk,D. (1997) The EM algorithm—an old folk
song sung to a fast new tune (with discussion). J. R. Stat. Soc. B,
59, 511–567.

Moler,E.J., Chow,M.L. and Mian,I.S. (2000) Analysis of molecular
profile data using generative and discriminative methods. Phys-
iol. Genomics, 4, 109–126.

Nguyen,D.V. and Rocke,D.M. (2001) Tumor classification by
partial least squares using microarray gene expression data. In
Methods of Microarray Data Analysis. Kluwer, Dordrecht, pp.
109–124.

Xing,E.P. and Karp,R.M. (2001) CLIFF: clustering of high-
dimensional microarray data via iterative feature filtering using
normalized cuts. Bioinformatics, 17, S306–S315.

422


