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Summary. Finite mixture models are being commonly used in a wide range of
applications in practice concerning density estimation and clustering. An attractive
feature of this approach to clustering is that it provides a sound statistical framework
in which to assess the important question of how many clusters there are in the data
and their validity. We review the application of normal mixture models to high-
dimensional data of a continuous nature. One way to handle the fitting of normal
mixture models is to adopt mixtures of factor analyzers. They enable model-based
density estimation and clustering to be undertaken for high-dimensional data, where
the number of observations n is not very large relative to their dimension p. In
practice, there is often the need to reduce further the number of parameters in the
specification of the component-covariance matrices. We focus here on a new modified
approach that uses common component-factor loadings, which considerably reduces
further the number of parameters. Moreover, it allows the data to be displayed in
low-dimensional plots.
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1 Introduction

Clustering procedures based on finite mixture models are being increasingly pre-
ferred over heuristic methods due to their sound mathematical basis and to the
interpretability of their results. Mixture model-based procedures provide a proba-
bilistic clustering that allows for overlapping clusters corresponding to the compo-
nents of the mixture model. The uncertainties that the observations belong to the
clusters are provided in terms of the fitted values for their posterior probabilities
of component membership of the mixture. As each component in a finite mixture
model corresponds to a cluster, it allows the important question of how many clus-
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ters there are in the data to be approached through an assessment of how many
components are needed in the mixture model. These questions of model choice can
be considered in terms of the likelihood function; see, for example, McLachlan (1982)
and McLachlan and Peel (2000).

2 Definition of Mixture Models

We let Y denote a random vector consisting of p feature variables associated with
the random phenomenon of interest. We let y, ..., y,, denote an observed random
sample of size n on Y. With the finite mixture model-based approach to density
estimation and clustering, the density of Y is modelled as a mixture of a number (g)
of component densities f;(y; ;) in some unknown proportions i, ..., 7y, where
fi(y; 0:) is specified up to an unknown parameter vector @; (¢ = 1, ..., g). That
is, each data point is taken to be a realization of the mixture probability density
function (p.d.f.),

Py ) = 3w filws 60, M

where the mixing proportions 7; are nonnegative and sum to one. In density estima-
tion, the number of components g can be taken sufficiently large for (1) to provide
an arbitrarily accurate estimate of the underlying density function.

The vector of all unknown parameters is given by ¥ = (w”, w1, ..., 7g_1)7,
where w consists of the elements of the @; known a priori to be distinct. For an
observed random sample, y,, ..., ¥, the log likelihood function for ¥ is given by

log L(®) = Y _log f(y;; ). (2)

j=1

The maximum likelihood (ML) estimate of &, ‘ﬁ, is given by an appropriate root of
the likelihood equation,

Olog L(¥)/0¥ = 0. 3)

Solutions of (3) corresponding to local maximizers of log L(¥) can be obtained via
the expectation-maximization (EM) algorithm (Dempster et al., 1977). In the event
that the EM sequence is trapped at some stationary point that is not a local or global
maximizer of log L(¥) (for example, a saddle point), a small random perturbation
of ¥ away from the saddle point will cause the EM algorithm to diverge from the
saddle point; see McLachlan and Krishnan (2008).

For clustering purposes, each component in the mixture model (1) corresponds
to a cluster. The posterior probability that an observation with feature vector y;
belongs to the ith component of the mixture can be expressed by Bayes’ theorem as

mifi(y;; 6:)
Z:l 7rhfh('!/j§ 6:)

7i(y;; &) = (¢=1,...,9;5=1,...,n). (4)
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fori =1, ..., g. A probabilistic clustering of the data into g clusters can be obtained
in terms of the fitted posterior probabilities of component membership for the data.

An outright partitioning of the observations into g nonoverlapping clusters
Ci, ..., (4 is effected by assigning each observation to the component to which
it has the highest estimated posterior probability of belonging. Thus the ith clus-
ter C; contains those observations assigned to group G;. That is, C; contains those
observations y; with 2;; = (2;); = 1, where

=0, otherwise. (5)

As the notation implies, 2;; can be viewed as an estimate of z;; which, under the
assumption that the observations come from a mixture of g groups Gi, ..., Gg, is
defined to be one or zero according as the jth observation does or does not come
fromG;(i=1,...,¢g;5=1,...,n).

3 Choice of Starting Values for the EM Algorithm

McLachlan and Peel (2000) provide an in-depth account of the fitting of finite mix-
ture models. Briefly, with mixture models the likelihood typically will have multiple
maxima; that is, the likelihood equation will have multiple roots. Thus the EM al-
gorithm needs to be started from a variety of initial values for the parameter vector
¥ or for a variety of initial partitions of the data into g groups. The latter can be
obtained by randomly dividing the data into g groups corresponding to the g com-
ponents of the mixture model. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar at least in
large samples. Nonrandom partitions of the data can be obtained via some cluster-
ing procedure such as k-means. Also, Coleman et al. (1999) have proposed some
procedures for obtaining nonrandom starting partitions.

The choice of root of the likelihood equation in the case of homoscedastic normal
components is straightforward in the sense that the ML estimate exists as the global
maximizer of the likelihood function. The situation is less straightforward in the
case of heteroscedastic normal components as the likelihood function is unbounded.
Usually, the intent is to choose as the ML estimate of the parameter vector ¥
the local maximizer corresponding to the largest of the local maxima located. But
in practice, consideration has to be given to the problem of relatively large local
maxima that occur as a consequence of a fitted component having a very small (but
nonzero) variance for univariate data or generalized variance (the determinant of
the covariance matrix) for multivariate data. Such a component corresponds to a
cluster containing a few data points either relatively close together or almost lying in
a lower-dimensional subspace in the case of multivariate data. There is thus a need
to monitor the relative size of the fitted mixing proportions and of the component
variances for univariate observations, or of the generalized component variances for
multivariate data, in an attempt to identify these spurious local maximizers.
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4 Clustering via Normal Mixtures

Frequently, in practice, the clusters in the data are essentially elliptical, so that
it is reasonable to consider fitting mixtures of elliptically symmetric component
densities. Within this class of component densities, the multivariate normal density
is a convenient choice given its computational tractability.

Under the assumption of multivariate normal components, the ith component-
conditional density f;(y; 6;) is given by

fily; ;) = é(y; p;, %), (6)

where ; consists of the elements of p; and the ip(p + 1) distinct elements of
¥i(t=1,...,g). Here

d(y; 1y, Zi) = (27) " 5|27 exp{—L(y — 1) " =y — )} (7)

One attractive feature of adopting mixture models with elliptically symmetric
components such as the normal or ¢-densities, is that the implied clustering is invari-
ant under affine transformations of the data; that is, invariant under transformations
of the feature vector y of the form,

y—> Cy+a, (8)

where C is a nonsingular matrix. If the clustering of a procedure is invariant under
(8) for only diagonal C, then it is invariant under change of measuring units but
not rotations. But as commented upon by Hartigan (1975), this form of invariance
is more compelling than affine invariance.

It can be seen from (7) that the mixture model with unrestricted component-
covariance matrices in its normal component distributions is a highly parameterized
one with 1p(p+1) parameters for each component-covariance matrix 3; (i =1, ... ,
g)- As an alternative to taking the component-covariance matrices to be the same
or diagonal, we can adopt some model for the component-covariance matrices that
is intermediate between homoscedasticity and the unrestricted model, as in the
approach of Banfield and Raftery (1993). They introduced a parameterization of
the component-covariance matrix X; based on a variant of the standard spectral
decomposition of X;.

The mixture model with normal components (7) is sensitive to outliers since
it adopts the multivariate normal family for the distributions of the errors. An
obvious way to improve the robustness of this model for data which have longer
tails than the normal or atypical observations is to consider using the multivariate
t-family of elliptically symmetric distributions; see McLachlan and Peel (1998) and
McLachlan and Peel (2000, Chapter 7). It has an additional parameter called the
degrees of freedom that controls the length of the tails of the distribution. Although
the number of outliers needed for breakdown is almost the same as with the normal
distribution, the outliers have to be much larger; see Hennig (2003, 2004).
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5 Some Recent Extensions for High-Dimensional Data

The EMMIX-GENE program of McLachlan et al. (1999) is an extension of the EM-
MIX program of McLachlan et al. (2002) for the normal mixture model-based clus-
tering of a limited number of observations that may be of extremely high-dimensions.
It was called EMMIX-GENE as it was designed specifically for problems in bioin-
formatics that require the clustering of a relatively small number of tissue samples
containing the expression levels of possibly thousands of genes. But it is applicable
to clustering problems outside the field of bioinformatics involving high-dimensional
data. In situations where the number of variables p is large, it might not be practical
to fit mixtures of factor analyzers to data on all the variables, as it would involve a
considerable amount of computation time. Thus initially some of the variables may
have to be removed. Indeed, the simultaneous use of too many variables in the cluster
analysis may serve only to create noise that masks the effect of a smaller number of
variables. Also, the intent of the cluster analysis may not be to produce a clustering
of the observations on the basis of all the available variables, but rather to discover
and study different clusterings of the observations corresponding to different subsets
of the variables.

Therefore, the EMMIX-GENE procedure has two optional steps before the final
step of clustering the observations. The first step considers the selection of a subset
of relevant variables from the available set of variables by screening the variables
on an individual basis to eliminate those which are of little use in clustering the
observations. The usefulness of a given variable to the clustering process can be
assessed formally by a test of the null hypothesis that it has a single component
normal distribution over the observations (McLachlan et al., 2002). A faster but ad
hoc way is to make this decision on the basis, say, of the sample interquartile range;
if a variable has a distribution that is a mixture of normals, then its interquartile
range will be greater than that for a single normal population. Even after this step
has been completed, there may still remain too many variables. Thus there is a
second step in EMMIX-GENE in which the retained variables are clustered (after
standardization) into a number of groups on the basis of Euclidean distance so that
variables with similar profiles are put into the same group. In general, care has
to be taken with the scaling of variables before clustering of the observations, as
the nature of the variables can be intrinsically different. Also, as noted above, the
clustering of the observations via normal mixture models is invariant under changes
in scale and location. The clustering of the observations can be carried out on the
basis of the groups considered individually using some or all of the variables within
a group or collectively. For the latter, we can replace each group by a representative
(a metavariable) such as the sample mean as in the EMMIX-GENE procedure.

6 Factor Analysis Model for Dimension Reduction

As remarked earlier, the g-component normal mixture model with unrestricted
component-covariance matrices is a highly parameterized model with p(p + 1)
parameters for each component-covariance matrix X; (¢ =1, ..., g). As discussed
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above, Banfield and Raferty (1993) introduced a parameterization of the component-
covariance matrix X; based on a variant of the standard spectral decomposition of
Yi(i=1, ..., g). However, if p is large relative to the sample size n, it may not be
possible to use this decomposition to infer an appropriate model for the component-
covariance matrices. Even if it is possible, the results may not be reliable due to
potential problems with near-singular estimates of the component-covariance matri-
ces when p is large relative to n.

A common approach to reducing the number of dimensions is to perform a
principal component analysis (PCA). But as is well known, projections of the feature
data y; onto the first few principal axes are not always useful in portraying the
group structure; see the example in McLachlan and Peel (2000, Section 8.2). A
global nonlinear approach can be obtained by postulating a factor-analytic model
for each component-covariance matrix of the full feature vector Y;; see Hinton et
al. (1997), McLachlan and Peel (2000), and McLachlan et al. (2003). This leads to
the mixture of factor analyzers (MFA) model given by

f(yj§ v) = Zwi¢(yj; My Xi), 9)

i=1
where the ¢th component-covariance matrix X; has the form
¥;=B;B{+D; (i=1,...,9) (10)
and where B; is a p x ¢ matrix of factor loadings and D; is a diagonal matrix (s =

1,...,9).

This MFA approach with the factor-analytic representation (10) on X; is equiv-
alent to assuming that the distribution of the difference Y'; — p; can be modelled
as

Y; —p;, =BU;j + e with prob. m; (i=1,...,9) (11)
for j =1, ..., n, where the (unobservable) factors U1, ... , U;y, are distributed in-
dependently N (0, I,), independently of the e;;, which are distributed independently
N(0, D;), where D; is a diagonal matrix (=1, ..., g).

The parameter vector ¥ now consists of the mixing proportions m; and the
elements of the pu,;, the B;, and the D;. With this approach, the number of free
parameters is controlled through the dimension of the latent factor space. By working
in this reduced space, it allows a model for each component-covariance matrix with
complexity lying between that of the isotropic and full covariance structure models
without any restrictions on the covariance matrices. The mixture of factor analyzers
model can be fitted by using the alternating expectation—conditional maximization
(AECM) algorithm of Meng and van Dyk (1997).

A formal test for the number of factors can be undertaken using the likelihood
ratio A, as regularity conditions (Rao, 1973) hold for this test conducted at a given
value for the number of components g. For the null hypothesis that Ho : ¢ = qo
versus the alternative Hi : ¢ = qo + 1, the statistic —2log A is asymptotically chi-
squared with d = g(p — qo) degrees of freedom. However, in situations where n is not
large relative to the number of unknown parameters, we prefer the use of the BIC
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criterion (Schwarz, 1978). Applied in this context, it means that twice the increase
in the log likelihood (—2log A) has to be greater than dlogn for the null hypothesis
to be rejected.

The mixture of factor analyzers model is sensitive to outliers since it uses normal
errors and factors. Recently, McLachlan et al. (2007) have considered the use of
mixtures of ¢ analyzers in an attempt to make the model less sensitive to outliers.
In some other recent work, Montanari and Viroli (2007) have considered the use of
mixtures of factor analyzers with covariates.

As 2q(q — 1) constraints are needed for B; to be uniquely defined, the number
of free parameters in (10) is

pa+p—3q(a—1). (12)
Thus with this representation (10), the reduction in the number of parameters for
Ei is
r=3p(p+1)—pg—p+3za(a—1)
=3:{e-0"-w+o} (13)

assuming that ¢ is chosen sufficiently smaller than p so that this difference is positive.
The total number of parameters is

di=(9—1)+2g9p+g{pg — a(a—1)}. (14)

Even with this MFA approach, the number of parameters still might not be
manageable, particularly if the number of dimensions p is large and/or the num-
ber of components (clusters) g is not small. In the sequel, we focus on how the
MFA approach can be modified to provide a greater reduction in the number of
parameters.

7 Mixtures of Common Factor Analyzers (MICFA)

Baek and McLachlan (2008) have proposed the Mixtures of Common Factor Ana-
lyzers (MCFA) approach whereby the distribution of Y'; is modelled as

Y; = AU;; + ey with prob. m; (i=1,...,9) (15)
for j = 1, ..., n, where the (unobservable) factors U1, ..., U;, are distributed
independently N(§;, £2;), independently of the e;;, which are distributed indepen-
dently N(0, D), where D is a diagonal matrix (i =1,...,g). Here Aisap X g

matrix of factor loadings. The representation (15) is not unique, as it still has the
same form if A were to be postmultiplied by any nonsingular matrix. Hence the
number of free parameters in A is

pa—q . (16)

To see that the MCFA model as specified by (15) is a special case of the MFA
approach as specified by (11), we note that we can rewrite (15) as
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Y; = AUij + e;;
=A§ + AU — &) +eij
=p,+AKK; \(Uj; — &)+ ey

= M; + BlUZ] + e;j, (17)
where
w; = A§,, (18)
B; = AK;, (19)
Ui = K;'(Uij — &), (20)

and where the U7; are distributed independently N(0, I,). The covariance matrix
of U;; is equal to I,, since K; can be been chosen so that

-1 1T .
KoK =1, (i=1,...,9). (21)

On comparing (17) with (11), it can be seen that the MCFA model is a special
case of the MFA model with the additional restrictions that

M :Agz (i:]_, 79); (22)
B;=AK; (i=1,...,9), (23)

and
D;=D (i=1,...,9). (24)

The latter restriction of equal diagonal covariance matrices for the component-
specific error terms (D; = D) is sometimes imposed with applications of the MFA
approach to avoid potential singularities with small clusters (see McLachlan et al.,
2003). It follows from (23) that the ith component-covariance matrix X; has the
form

¥, =B;B/+D (i=1,...,09). (25)

Concerning the restriction (23) that the matrix of factor of loadings is equal to
AK; for each component, it can be viewed as adopting common factor loadings
before the use of the transformation K; to transform the factors so that they have
unit variances and zero covariances. Hence this is why Baek and McLachlan (2008)
called this approach mixtures of common factor analyzers. It is also different to
the MFA approach in that it considers the factor-analytic representation of the
observations Y'; directly, rather than the error terms Y; — pu,.

With the the restrictions (22) and (25) on the component mean p; and covariance
matrix X;, respectively, the total number of free parameters is

dr=(9—1)+p+alp+g)+iga(a+1) — ¢ (26)

As the MFA approach allows a more general representation of the component-
covariance matrices and places no restrictions on the component means it is in this
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sense preferable to the MCFA approach if its application is feasible given the values
of p and g. If the dimension p and/or the number of components g is too large, then
the MCFA provides a more feasible approach at the expense of more distributional
restrictions on the data. In empirical results some of which are to be reported in
the sequel we have found the performance of the MCFA approach is usually at least
comparable to the MFA approach for data sets to which the latter is practically
feasible. The MCFA approach also has the advantage in that the latent factors in
its formulation are allowed to have different means and covariance matrices and are
not white noise as with the formulation of the MFA approach. Thus the (estimated)
posterior means of the factors corresponding to the observed data can be used to
portray the latter in low-dimensional spaces.

The MCFA approach is similar in form to the approach proposed by Yoshida
et al. (2004, 2006) who also imposed the additional restrictions that the common
diagonal covariance matrix D of the error terms is spherical,

D =1, (27)

and that the component-covariance matrices of the factors are diagonal. We shall
call this approach MCUFSA (mixtures of common uncorrelated factor spherical-
error analyzers). The total number of parameters with this approach is

ds=(g—1)+pg+1+29q— 1q(qg+1). (28)

8 Fitting of Factor-Analytic Models

The fitting of mixtures of factor analyzers as with the MFA approach has been
considered in McLachlan et al. (2003), using a variant of the EM algorithm known
as the alternating expectation-conditional maximization algorithm (AECM). With
the MCFA approach, we have to fit the same mixture model of factor analyzers
but with the additional restrictions (23) and (25) on the component means g, and
covariance matrices X;. The implementation of the EM algorithm for this model was
developed in Baek and McLachlan (2008). In the EM framework, the component
label z; associated with the observation y; is introduced as missing data, where
zij = (z;); is one or zero according as y; belongs or does not belong to the ith
component of the mixture (i =1, ...,g; 7 =1, ..., n). The unobservable factors
wu;; are also introduced as missing data in the EM framework.

As part of the E-step, we require the conditional expectation of the component
labels z;; (i =1, ..., g) given the observed data point y; (j =1, ..., n) . It follows
that

Eg{Zi; | y;} = prg{Zi = 1| y;}
=Ti(yj;!p) (i=17"'7g;j=15---7n)1 (29)
where 7; (yj; W) is the posterior probability that y; belongs to the ith component
of the mixture. From (4), it can be expressed under the MCFA model as
_ mdly; AL, A:AT 4 D)
Y=t 7rh¢(yj§ AEy,, AR,A" + D)

Ti ('.'Jj§ v) (30)
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fori=1,...,9; j=1,... ,n.

We also require the conditional distribution of the unobservable (latent) factors
U;; given the observed data y; (j =1, ..., n). The conditional distribution of U;
given y; and its membership of the ith component of the mixture (that is, zi; = 1)
is multivariate normal,

Uij ly;, zij =1 ~ N(&;, 24y), (31)
where
& =&+ (y; — AE) (32)
and
2y = (I, — 7] A2, (33)
and where
~; =(A2;A" + D) 'AQ;. (34)

We can portray the observed data y; in g-dimensional space by plotting the
corresponding values of the ;5, which are estimated conditional expectations of the
factors U, corresponding to the observed data points y;. From (31) and (32),

E(Uij|y;, zi5 =1) = §;;
=&+ ’YiT('yj — Ag). (35)
We let i;; denote the value of the right-hand side of (35) evaluated at the maximum

likelihood estimates of &;,~,, and A. We can define the estimated value 4; of the
Jjth factor corresponding to y; as

w; ZZTi(yﬁ@)ﬂij (G=1...,n). (36)

i=1

An alternative estimate of the posterior expectation of the factor corresponding to
the jth observation y; is defined by replacing 7i(y;; ¥) by 2i; in (36).
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