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Abstract

Finite mixture models are being commonly used in a wide range of applications in
practice concerning density estimation and clustering. An attractive feature of this
approach to clustering is that it provides a sound statistical framework in which to
assess the important question of how many clusters there are in the data and their
validity.
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1 Introduction

Clustering procedures based on finite mixture models are being increasingly
preferred over heuristic methods due to their sound mathematical basis and to
the interpretability of their results. Mixture model-based procedures provide
a probabilistic clustering that allows for overlapping clusters corresponding
to the components of the mixture model. The uncertainties that the obser-
vations belong to the clusters are provided in terms of the fitted values for
their posterior probabilities of component membership of the mixture. As each
component in a finite mixture model corresponds to a cluster, the problem of
choosing an appropriate clustering method can be recast as statistical model
choice. It also allows the important question of how many clusters there are
in the data to be approached through an assessment of how many compo-
nents are needed in the mixture model. These questions of model choice can
be considered in terms of the likelihood function.
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Scott and Symons! were one of the first to adopt a model-based approach
to clustering. Assuming that the data were normally distributed within a
cluster, they showed that their approach is equivalent to some commonly used
clustering criteria with various constraints on the cluster covariance matrices.
However, from an estimation point of view, this approach yields inconsistent
estimators of the parameters; see, for example, Bryant and Williamson? and
McLachlan?.

This inconsistency can be avoided by working with the mixture likelihood
formed under the assumption that the observed data are from a mxture of
classes corresponding to the clusters to be imposed on the data, as proposed by
Wolfe? and Day®. Finite mixture models have since been increasingly used to
model the distributions of a wide variety of random phenomena and to cluster
data sets; see, for example, the recent books by Bohning®, McLachlan and
Peel” and Friihwirth-Schnatter®, and the references therein. Earlier references
on mixture models may be found in the previous books by Everitt and Hand?,
Titterington et al.!’, McLachlan and Basford!!, and Lindsay!2.

2 Definition of Mixture Models

We let Y denote a random vector consisting of p feature variables associated
with the random phenomenon of interest. We let y,, ..., y,, denote an ob-
served random sample of size n on Y. With the finite mixture model-based
approach to density estimation and clustering, the density of Y is modelled
as a mixture of a number (g) of component densities f;(y) in some unknown
proportions 1, ..., m,. That is, each data point is taken to be a realization
of the mixture probability density function (p.d.f.),

fly: @) = gglmy), (1)

where the mixing proportions 7; are nonnegative and sum to one. In density
estimation, the number of components ¢ can be taken sufficiently large for (1)
to provide an arbitrarily accurate estimate of the underlying density function;
see, for example, Li and Barron'3. For clustering purposes, each component
in the mixture model (1) corresponds to a cluster. The posterior probability
that an observation with feature vector y; belongs to the ith component of
the mixture is given by

mi(y;) = mifi(y;)/ f(y;) (2)



fori =1, ..., g. A probabilistic clustering of the data into g clusters can be
obtained in terms of the fitted posterior probabilities of component member-
ship for the data.

An outright partitioning of the observations into g nonoverlapping clusters
Ci, ..., Oy is effected by assigning each observation to the component to
which it has the highest estimated posterior probability of belonging. Thus
the ith cluster C; contains those observations assigned to group Gj;. That is,
C; contains those observations j with 2,; = (2;); = 1, where

2’1']-:1, lf%Z(yg) z%h(yj)a (hzla R g,h;«éZ),
=0, otherwise, (3)

where 7;(y,) is an estimate of 7;(y,). As the notation implies, 2;; can be viewed
as an estimate of z;; which, under the assumption that the observations come

from a mixture of g groups G, ..., G, is defined to be one or zero according
as the jth observation does or does not come from G;(i = 1,...,¢;j =
1, ..., n).

3 Maximum Likelihood Estimation

On specifying a parametric form f;(y;; 6;) for each component density, we
can fit this parametric mixture model

g
f(ij v) = Zﬂ'z‘ fi(yj; 0;) (4)
i=1
by maximum likelihood (ML). Here ¥ = (w”, 7y, ..., my—1)7 is the vector

of unknown parameters, where w consists of the elements of the 8; known
a priori to be distinct. In order to estimate ¥ from the observed data, it
must be identifiable. This will be so if the representation (4) is unique up
to a permutation of the component labels. The maximum likelihood estimate
(MLE) of ¥, U, is given by an appropriate root of the likelihood equation,

dlog L(¥)/0¥ = 0, (5)

where L(¥) denotes the likelihood function for ¥,

n

L(®) =[] f(y;; ®).

j=1



Solutions of (5) corresponding to local maximizers of log L(¥) can be obtained
via the expectation-maximization (EM) algorithm of Dempster, Laird, and
Rubin'*; see also McLachlan and Krishnan'®. Let ¥ denote the estimate of ¥
so obtained.

4 Fitting Mixture Models Via the EM Algorithm

We consider now the ML fitting of the mixture model (4) via the EM al-
gorithm. It is straightforward, at least in principle, to find solutions of (5)
using the EM algorithm. It is easy to program for this problem and proceeds
iteratively in two steps, E (for expectation) and M (for maximization).

For the purpose of the application of the EM algorithm, the observed data
are regarded as being incomplete. The complete data are taken to be the
observed feature vectors y,, ..., y,, along with their component-indicator
vectors zi, ..., 2,, which are unobservable in the framework of the mixture
model being fitted. Consistent with the notation introduced in the last section,
the ith element z;; of z; is defined to be one or zero, according as the jth
with feature vector y; does or does not come from the ith component of the
mixture, that is, from group G; (i = 1,...,¢;j = 1, ..., n). The data are
thus conceptualized to have come from g groups G, ..., G, irrespective of
whether these groups do externally exist.

For this specification, the complete-data log likelihood is

g n g

log Le(®) => ) zjlogmi+ > i zijlog fi(y;; 05)- (6)

i=1j=1 i=1j=1
4.1 E-Step

The addition of the unobservable data to the problem (here the z;) is handled
by the E-step, which takes the conditional expectation of the complete-data
log likelihood, log L.(¥), given the observed data

Yobs — (y{’ LRI yz)Ta

using the current fit for ®. Let ¥ be the value specified initially for ¥. Then
on the first iteration of the EM algorithm, the E-step requires the computation
of the conditional expectation of log L.(®) given y, using ¥* for ¥, which
can be written as

Q(T; ¥O) = E g0 {108 Le(P) | Yops}- (7)



The expectation operator E has the subscript ¥(© to explicitly convey that
this expectation is being effected using ¥ for .

It follows that on the (k+ 1)th iteration, the E-step requires the calculation of
Q(T; \Il(k)), where ¥*) is the value of ¥ after the kth EM iteration. As the
complete-data log likelihood, log L.(¥), is linear in the unobservable data z;;,
the E-step (on the (k + 1)th iteration) simply requires the calculation of the
current conditional expectation of Z;; given the observed feature observation
Y, where Z;; is the random variable corresponding to z;;. Now

Egw(Zij | y;) =prgw{Zy =1]y,}
=7i(y;; ¥H), (8)

where, corresponding to (2),

Ty TW) =7 fi(y,; <’“’)/f(yj; Q) 9)

=) fi(y,; 0 /Zﬂ(k)f (y;; 01)

fori=1,...,9; j=1,..., n. The quantity 7;(y,; ¥™*)) is the posterior prob-
ability that the jth member of the sample with observed value y; belongs to
the 7th component of the mixture. Using (8), we have on taking the conditional
expectation of (6) given y,,, that

g9 n
Q(T; ™) =3"3"7(y;; T¥){logm + log fi(y;; 6:)}- (10)

i=1j=1
4.2 M-Step

The M-step on the (k + 1)th iteration requires the global maximization of
Q(T; \Il(k)) with respect to ¥ over the parameter space 2 to give the updated
estimate WY For the finite mixture model, the updated estimates 7r§k+1)
of the mixing proportions 7; are calculated independently of the updated es-
timate w**1 of the parameter vector w containing the unknown parameters

in the component densities.

If the z;; were observable, then the complete-data MLE of m; would be given
simply by

szézij/n (it=1,...,9). (11)



As the E-step simply involves replacing each z;; with its current conditional
expectation 7;(y;; w®) in the complete-data log likelihood, the updated es-

timate of ; is given by replacing each z;; in (11) by 7;(y;; \Il(k)) to give

n
Y =3 r(y,; W)/ (i=1...,9). (12)
j=1

Thus in forming the estimate of m; on the (k + 1)th iteration, there is a con-
tribution from each observation y; equal to its (currently assessed) posterior
probability of membership of the ith component of the mixture model.

Concerning the updating of w on the M-step of the (k + 1)th iteration, it can
be seen from (10) that w*+1) is obtained as an appropriate root of

g n
D> m(y; @ alogfz(yj, 0,)/0w = 0. (13)

i=175=1

One nice feature of the EM algorithm is that the solution of (13) often exists
in closed form, as is to be demonstrated for the normal mixture model in
Section 6.

The E- and M-steps are alternated repeatedly until the difference
log L(®*+1)) —1og L(T®)

changes by an arbitrarily small amount in the case of convergence of the
sequence of likelihood values {L(®®)}. Dempster et al.'* showed that the
(incomplete-data) likelihood function L(W¥) is not decreased after an EM it-
eration; that is,

L(®*D) > 1(w®) (14)

for £ = 0,1,2, .... Hence, convergence must be obtained with a sequence of
likelihood values {L(®*))} that are bounded above. In almost all cases, the
limiting value L* is a local maximum. In any event, if an EM sequence {¥®}
is trapped at some stationary point ¥* that is not a local or global maximizer
of L(¥) (for example, a saddle point), a small random perturbation of ¥
away from the saddle point ¥* will cause the EM algorithm to diverge from
the saddle point. Further details may be found in McLachlan and Krishnan'®
(Chapter 3).

Let ¥ bg the chosen solution of the likelihood equation. For an observed
sample, W is usually taken to be the root of (5) corresponding to the largest
of the local maxima located. That is, in those cases where L(¥) has a global



maximum in the interior of the parameter space, ¥ is the global maximizer,
assuming that the global maximum has been located.

5 Choice of Starting Values for the EM Algorithm

McLachlan and Peel” provide an in-depth account of the fitting of finite mix-
ture models. Briefly, with mixture models the likelihood typically will have
multiple maxima; that is, the likelihood equation will have multiple roots.
Thus the EM algorithm needs to be started from a variety of initial values
for the parameter vector ¥ or for a variety of initial partitions of the data
into g groups. The latter can be obtained by randomly dividing the data
into g groups corresponding to the g components of the mixture model. With
random starts, the effect of the central limit theorem tends to have the compo-
nent parameters initially being similar at least in large samples. Nonrandom
partitions of the data can be obtained via some clustering procedure such as
k-means. Also, Coleman et al.'® have proposed some procedures for obtaining
nonrandom starting partitions.

The choice of root of the likelihood equation in the case of homoscedastic
normal components is straightforward in the sense that the ML estimate ex-
ists as the global maximizer of the likelihood function. The situation is less
straightforward in the case of heteroscedastic normal components as the like-
lihood function is unbounded. It is known that as the sample size goes to
infinity, there exists a sequence of roots of the likelihood equation that is con-
sistent and asymptotically efficient. With probability tending to one, these
roots correspond to local maxima in the interior of the parameter space; see
McLachlan and Peel”. Usually, the intent is to choose as the ML estimate of
the parameter vector ¥ the local maximizer corresponding to the largest of
the local maxima located. But in practice, consideration has to be given to
the problem of relatively large local maxima that occur as a consequence of
a fitted component having a very small (but nonzero) variance for univari-
ate data or generalized variance (the determinant of the covariance matrix)
for multivariate data. Such a component corresponds to a cluster containing
a few data points either relatively close together or almost lying in a lower-
dimensional subspace in the case of multivariate data. There is thus a need
to monitor the relative size of the fitted mixing proportions and of the com-
ponent variances for univariate observations, or of the generalized component
variances for multivariate data, in an attempt to identify these spurious local
maximizers.



6 Clustering Via Normal Mixtures

Frequently, in practice, the clusters in the data are essentially elliptical, so that
it is reasonable to consider fitting mixtures of elliptically symmetric component
densities. Within this class of component densities, the multivariate normal
density is a convenient choice given its computational tractability.

6.1 Heteroscedastic Components

Under the assumption of multivariate normal components, the ¢th component-
conditional density f;(y; 6;) is given by

fi(y; 0:) = d(y; py, 24), (15)

where 6; consists of the elements of p; and the ip(p + 1) distinct elements of
3, (it=1,...,g). Here

o(y; py, Ti) = (2m) 2|57 exp{—L(y — ;)" Z; ' (y — i)} (16)

It follows that on the M-step of the (k+1)th iteration, the updates of the com-
ponent means pu; and component-covariance matrices 3; are given explicitly
by

kH Z yj/ _217}(3@ (17)
j=

and
k41 - k41 k 1
= = 3 s ) - Y T/z 2 (18)
j=1
fori =1, ..., g, where

T-Uc)zﬂ-(yj; \Il(k)) (i=1,...,¢;5=1,...,n).
The updated estimate of the ith mixing proportion 7; is given by (12).

One attractive feature of adopting mixture models with elliptically symmetric
components such as the normal or ¢-densities, is that the implied clustering



is invariant under affine transformations of the data; that is, invariant under
transformations of the feature vector y of the form,

y— Cy + a, (19)

where C' is a nonsingular matrix. If the clustering of a procedure is invariant
under (19) for only diagonal C, then it is invariant under change of measuring
units but not rotations. But as commented upon by Hartigan'?, this form of
invariance is more compelling than affine invariance.

6.2 Homoscedastic Components

Often in practice, the component-covariance matrices 3; are restricted to be-
ing the same,

=3 (i=1,...,9), (20)

where X is unspecified. In this case of homoscedastic normal components, the
updated estimate of the common component-covariance matrix X is given by

g
(k+1) ngk)zz(_kﬂ)/n’ (21)

i=1

where EEHI) is given by (18), and the updates of m; and p, are as above in

the heteroscedastic case.

6.3 Spherical Components

A further simplification is to take the component-covariance matrices to have
a common spherical form, where the covariance matrix of each component is
taken to be a (common) multiple of the p x p identity matrix I,, namely

=01, (i=1,...,9). (22)

The constraint (22) means that the clusters produced are spherical. If we also
take the mixing proportions to be equal, then it is equivalent to a “soft” version
of k-means clustering. It is a soft version as with k-means, the observations
are assigned outright at each of the iterations.



7 Spectral Representation of Component-Covariances Matrices

It can be seen from (16) that the mixture model with unrestricted group-
covariance matrices in its normal component distributions is a highly param-
eterized one with %p(p—i— 1) parameters for each component-covariance matrix
¥;(i=1, ..., g). As an alternative to taking the component-covariance matri-
ces to be the same or diagonal, we can adopt some model for the component-
covariance matrices that is intermediate between homoscedasticity and the
unrestricted model, as in the approach of Banfield and Raftery'8; see also
Fraley and Raftery!?.

Banfield and Raftery'® introduced a parameterization of the component-covar-
iance matrix 3; based on a variant of the standard spectral decomposition of
zia

P
= Z )\ivaivag;a (23)

v=1

where a1, ..., a;;, denote the eigenvectors corresponding to the eigenvalues
Ait > Xig > - dp >00f X, (i =1, ..., g). They expressed X; further as

= NANAT (24)

where A; = (a;, ..., a;,) is the (orthogonal) matrix of the eigenvectors of
3;. Conventions for normalizing \; and A; include taking A\; = A;; (the largest
eigenvalue of X;) for which then

Ai = dlag(l, )\iZ/)\ila ce ey )\zp/)\zl) (25)

Another requires | A; |= 1 for which \; =| %; |/? and

The parameter \; controls the volume of the cluster corresponding to the ith
component, A; its shape, and A; its orientation. A reduction in the number
of parameters is achieved by imposing various constraints on the A;, A;, and
the );. For example, the constraint A; = A (i =1, ..., g) imposes the same
orientation on the g clusters.

10



8 Multivariate ¢-distribution

The mixture model with normal components (16) is sensitive to outliers since
it adopts the multivariate normal family for the distributions of the errors.
An obvious way to improve the robustness of this model for data which have
longer tails than the normal or atypical observations is to consider using the
multivariate ¢-family of elliptically symmetric distributions. It has an addi-
tional parameter called the degrees of freedom that controls the length of the
tails of the distribution. Although the number of outliers needed for break-
down is almost the same as with the normal distribution, the outliers have to
be much larger. This point is made more precise in Hennig?® who has provided
an excellent account of breakdown points for ML estimation of location-scale
mixtures with a fixed number of components g.

The t-distribution for the ¢th component-conditional distribution of Y; is
obtained by embedding the normal N,(u,, ¥;) distribution in a wider class
of elliptically symmetric distributions with an additional parameter v; called
the degrees of freedom. This ¢-distribution can be characterized by letting W
denote a random variable distributed as

W; ~ gamma(%l/i, %l/i), (26)

where the gamma («, §) density function is equal to

fa(w;a, B) = {B*w*™" /T ()} exp(—Buw)fjpo0)(w) (o, B>0),  (27)

and I4(w) denotes the indicator function that is 1 if w belongs to A and is
zero otherwise. Then, if the conditional distribution of Y'; given W; = w; is
specified to be

Y| wj~ Ny, 3i/w;), (28)

the unconditional distribution of Y'; has a (multivariate) ¢-distribution with
mean p;, scale matrix 3;, and degrees of freedom v;. The mean of this ¢-
distribution is p; and its covariance matrix is {v;/(v; — 2)}X;. We write

Yj ~ tp(l“l’z'a Eia Vi)a (29)
and we let fi(y;; p;, X, ;) denote the corresponding density. As v; tends
to infinity, the t-distribution approaches the normal distribution. Hence this

parameter v; may be viewed as a robustness tuning parameter. It can be fixed
in advance or it can be inferred from the data for each component.

11



9 ML Estimation of Mixtures of ¢ distributions

McLachlan and Peel” and Peel and McLachlan?' have implemented the E-
and M-steps of the EM algorithm and its variant, the ECM (expectation—
conditional maximization) algorithm for the ML estimation of multivariate
t components. The ECM algorithm proposed by Meng and Rubin?? replaces
the M-step of the EM algorithm by a number of computationally simpler
conditional maximization (CM) steps.

In the EM framework for this problem, the unobservable variable w; in the
characterization (28) of the ¢ distribution for the ith component of the ¢ mix-
ture model and the component-indicator labels z;; are treated as being the
“missing” data.

It can be shown that the conditional expectation of W; given y, and z;; =1
can be expressed as

E{W; |y, zi5 = 1} = wi(y;; ¥),

where
vi+p
(y.: W) =
wZ(yﬁ ) vi + 5(:‘/3', By 3;) (30)
and where
§(y ms Bi) = (y; — )" 27 (y; — my) (31)

denotes the squared Mahalanobis distance between y, and p, (t=1,...9;5=
1, ..., n).

On the (k4 1)th iteration of the EM algorithm, the updated estimates of the
mixing proportion, the mean vector p;, and the scale matrix 3; are given by

a =3, (32)
7j=1
k+1 - k
uz(+)_z i' z] yg/ZT() (33)
j=1
and
n k k+1 k+1
2(lc+1) _ T( )w( )(yj - Nz( i ))(yj IJJE N ))T (34)
2 n k .
a=17é)



In the above,
(k) _ Wz(k)f(yja I’l’z(k)a Ez('k)a Vz(k))

Tz'j - f(yj; \Il(k)) (35)

is the posterior probability that y; belongs to the ith component of the mix-
ture, using the current fit ¥®) for ¥ (1=1,...,9;5=1,...,n). Also,

(k) Vi(k) +p
w.. _=

T 4oy, w3

(36)

which is the current stimate of the conditional expectation of W; given y; and
i = 1.

The updated estimate l/( +1)
as a solution of the equation

of v; does not exist in closed form, but is given

n

Z (k) logw wz(]k))

( =
)

v 4 p
)\ .

.., g) and ¥(-) is the Digamma function.

{ 1/)( l/Z)—i-log( vi)+1+

(k)
+w< +p)—log<

where ngk) =201 Tz(k) (1=1,.

Following the proposal of Kent, Tyler, and Vardi?® in the case of a single-
component ¢ distribution, we can replace the divisor -7_ ) in (34) by

Z w,

which should improve the speed of convergence. It corresponds to an applica-
tion of the the parameter-expanded EM (PX-EM) algorithm (Liu, Rubin, and
Wu?).

These E- and M-steps are alternated until the changes in the estimated pa-
rameters or the log likelihood are less than some specified threshold. It can be
seen that if the degrees of freedom v; is fixed in advance for each component,
then the M-step exists in closed form. In this case where v; is fixed before-
hand, the estimation of the component parameters is a form of M-estimation.
However, an attractive feature of the use of the ¢ distribution to model the
component distributions is that the degrees of robustness as controlled by v;
can be inferred from the data by computing its MLE.

13



10 Choice of the Number of Components in a Mixture Model

With a mixture model-based approach to clustering, the question of how many
clusters there are can be considered in terms of the smallest number of com-
ponents needed for the mixture model to be compatible with the data. The
estimation of the order of a mixture model has been considered mainly by
consideration of the likelihood, using two main ways. One way is based on
a penalized form of the log likelihood. The other main way is based on a
resampling approach.

10.1 Bayesian Information Criterion

The main Bayesian-based information criteria use an approximation to the
integrated likelihood, as in the original proposal by Schwarz?> leading to his
Bayesian information criterion (BIC). Available general theoretical justifica-
tions of this approximation rely on the same regularity conditions that break
down for inference on the number of components in a frequentist framework.

In the literature, the information criteria so formed are generally expressed
in terms of twice the negative difference between the log likelihood and the
penalty term. This difference for the Bayesian information criterion (BIC) is
given by

—2log L(¥) + dlogn (38)

where d is the number of parameters in the model. The intent is to minimize
the criterion (38) in model selection, including the present situation for the
number of components g in a mixture model.

10.2 Resampling Approach

A formal test of the null hypothesis Hy : ¢ = g versus the alternative
Hy : g = g1 (g1 > go) can be undertaken using a resampling method, as de-
scribed in McLachlan?®. With this approach, bootstrap samples are generated
from the mixture model fitted under the null hypothesis of gy components.
That is, the bootstrap samples are generated from the gy-component mixture
model with the vector ¥ of unknown parameters replaced by its ML estimate
\ilgo computed by consideration of the log likelihood formed from the original
data under H,. The value of —2log A, where X is the likelihood ratio statis-

tic, is computed for each bootstrap sample after fitting mixture models for

14



g = go and ¢; to it in turn. The process is repeated independently B times,
and the replicated values of —2log A\ formed from the successive bootstrap
samples provide an assessment of the bootstrap, and hence of the true, null
distribution of —2log A. Other resampling approaches include that based on
the Gap statistic of Tibshirani et al.?” and the Clest method of Dudoit and
Fridlyand?®.

11 Advantages of Mixture Model-Based Clustering

It can be seen that this mixture likelihood-based approach to clustering is
model based in that the form of each component density of an observation has
to be specified in advance. Hawkins, Muller, and ten Krooden? commented
that most writers on cluster analysis “lay more stress on algorithms and crite-
ria in the belief that intuitively reasonable criteria should produce good results
over a wide range of possible (and generally unstated) models.” For example,
the trace W criterion, where W is the pooled within-cluster sums of squares
and products matrix, is predicated on normal groups with (equal) spherical
covariance matrices; but as they pointed out, many users apply this criterion
even in the face of evidence of nonspherical clusters or, equivalently, would
use Euclidean distance as a metric. They strongly supported the increasing
emphasis on a model-based approach to clustering. Indeed, as remarked by
Aitkin, Anderson, and Hinde® in the reply to the discussion of their paper,
“when clustering samples from a population, no cluster method is, a prior:i be-
lievable without a statistical model.” Concerning the use of mixture models to
represent nonhomogeneous populations, they noted in their paper that “Clus-
tering methods based on such mixture models allow estimation and hypoth-
esis testing within the framework of standard statistical theory.” Previously,
Marriott®! had noted that the mixture likelihood-based approach “is about
the only clustering technique that is entirely satisfactory from the mathemat-
ical point of view. It assumes a well-defined mathematical model, investigates
it by well-established statistical techniques, and provides a test of significance
for the results.” In the context of the analysis of gene expression data, Yeung
et al.®? commented that “in the absence of a well-grounded statistical model,
it seems difficult to define what is meant by a ‘good’ clustering algorithm or
the ‘right’ number of clusters.”

This mixture model-based approach also provides a framework for assessing
the number of clusters and for clustering data in the presence of outliers, as
discussed above.
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12 Factor Analysis Model for Dimension Reduction

As remarked earlier, the g-component normal mixture model with unrestricted
component-covariance matrices is a highly parameterized model with %p(p +
1) parameters for each component-covariance matrix X, (i = 1, ..., g). As
discussed in Section 7, Banfield and Raftery'® introduced a parameterization
of the component-covariance matrix ¥; based on a variant of the standard
spectral decomposition of ¥; (i = 1, ..., g). However, if p is large relative
to the sample size n, it may not be possible to use this decomposition to
infer an appropriate model for the component-covariance matrices. Even if it
is possible, the results may not be reliable due to potential problems with
near-singular estimates of the component-covariance matrices when p is large
relative to n.

A common approach to reducing the number of dimensions is to perform a
principal component analysis (PCA). But as is well known, projections of
the feature data y, onto the first few principal axes are not always useful
in portraying the group structure; see McLachlan and Peel”. Another ap-
proach for reducing the number of unknown parameters in the forms for the
component-covariance matrices is to adopt the mixture of factor analyzers
model, as considered in McLachlan and Peel”? and McLachlan, Peel, and
Bean3*. This model was originally proposed by Ghahramani and Hinton3?
and Hinton, Dayan, and Revow?¢ for the purposes of visualizing high dimen-
sional data in a lower dimensional space to explore for group structure; see
also Tipping and Bishop3”. who considered the related model of mixtures of
principal component analyzers for the same purpose.

With this approach, the number of free parameters is controlled through the
dimension of the latent factor space. By working in this reduced space, it
allows a model for each component-covariance matrix with complexity lying
between that of the isotropic and full covariance structure models without any
restrictions on the covariance matrices.

13 Mixtures of Normal Factor Analyzers
13.1 Formulation of factor analysis submodels

A global nonlinear approach to dimension reduction can be obtained by pos-
tulating a finite mixture of linear submodels for the distribution of the full
observation vector Y'; given the (unobservable) factors w;. That is, we can
provide a local dimensionality reduction method by assuming that the distri-
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bution of the observation Y'; can be modelled as

for j = 1, ..., n, where the factors Ujy, ..., U;, are distributed indepen-
dently N(0, I,), independently of the e;;, which are distributed independently

N(0, D;), where D; is a diagonal matrix (i =1, ..., g).

Thus the mixture of factor analyzers model is given by

Py ®) = S md(ys; o ), (40)

=1

where the 7th component-covariance matrix 3; has the form

> =BB'+D; (i=1,...,9) (41)

and where B; is a p x ¢ matrix of factor loadings and D, is a diagonal ma-
trix (i = 1, ..., g). The parameter vector ¥ now consists of the mixing pro-
portions 7; and the elements of the u,, the B;, and the D.

We can think of the use of this mixture of factor analyzers model as being
purely a method of regularization, but in several applications it is possible
to make a case for it being a reasonable model for the correlation structure
between the variables within a cluster.

The mixture of factor analyzers model can be fitted by using the alternat-
ing expectation—conditional maximization (AECM) algorithm (Meng and van
Dyk3). The AECM algorithm is an extension of the ECM algorithm, where
the specification of the complete data is allowed to be different on each CM-
step. Meng and van Dyk3® established that monotone convergence of the se-
quence of likelihood values is retained with the AECM algorithm.

13.2 An AECM algorithm for mizture of factor analyzers models

To apply the AECM algorithm to the fitting of the mixture of factor analyzers
model, we partition the vector of unknown parameters ¥ as (U7, ¥1)7 where
¥, contains the mixing proportions m; (i = 1, ..., g — 1) and the elements
of the component means p, (i = 1, ..., g). The subvector ¥, contains the
elements of the B; and the D; (i =1, ..., g).

We let T® = (TF" )T be the value of ¥ after the kth iteration of the
AECM algorithm. For this application of the AECM algorithm, one iteration

17



consists of two cycles, and there is one E-step and one CM-step for each cycle.
The two CM-steps correspond to the partition of ¥ into the two subvectors
W, and W,. For the first cycle of the AECM algorithm, we specify the missing
data to be just the component-indicator vectors, zi, ..., z,.

13.8 E-step

In order to carry out the E-step, we need to be able to compute the conditional
expectation of the sufficient statistics. To carry out this step, we need to be
able to calculate the conditional expectations,

Cyui = E{Zij'ijiTj ‘ yj} (42)
and

To do this, we need the result that the random vector (YJT, UZ-)T given its

membership of the ith component of the mixture (that is, z;; = 1) has a
multivariate normal distribution,
Y; ; ,
U.. | Zij = I~ NPJrQ(I"’i, 61) (7’ = 1a R g), (44)
%]
where
pi = (pi, 01)" (45)
and the covariance matrix §; is given by
B,BT + D; B,
El — 7 7 (2 (2 ) (46)

B! I

q

It follows that the conditional distribution of U;; given y; and z;; = 1 is given
by

Ujlyj, zij=1~N(v (y; — 1), Q) (47)
fori=1,...,9;7=1, ..., n, where
v; = (B:B] + D;) ' B;. (48)
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and where

Using (47),

Cyui = 7:(y;; ¥)V, y; (50)
and

Cluui = 7i(y;; O){F (y; — 1) (y; — pi)"v; + Qb (51)

18.4 CM-steps

The first conditional CM-step leads to 7r ) and Wi (k) being updated to

n
) =S r(y,; @ (52)
7j=1
and
n
k+1 ZTZ y]J \Il(k y]/ZTZ y]? \I’(k)) (53)
Jj=1 j=1
fori =1, ..., g, where Ti(yj; ¥) is the ith component-posterior probability
of y;.

For the second cycle for the updating of ¥,, we specify the missing data to be
the factors w;1, ... u;,, as well as the component-indicator vectors, z1, ..., Z,.
On setting g kt1/2) equal to (\Ilng)T, ‘I’gk)T)T, an E-step is performed to cal-
culate Q(¥; glk+1/ 2)), which is the conditional expectation of the complete-
data log likelihood given the observed data, using & = ®*+/2_ The CM-step
on this second cycle is implemented by the maximization of Q(¥; glkt1/ 2))
over ¥ with ¥, set equal to \p§k+1’. This yields the updated estimates ngﬂ)
and ngﬂ). The former is given by

B S V00 ) e

7

where
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n k+1 k41
) _ Zia il OO) (y; - )y - )T

V, ; 55
Z Ty ) i
" =BB"" + D) B, (56)
and
Q) = 1,-+"" BY (57)
fori =1, ..., g. The updated estimate ngﬂ) is given by
D(k+1) _ diag{V(k—i_ 1/2) B(lc+1)H(k+ 1/2)B(k+1)T}
:diag{Vz(-H 1/2) V§k+ 1/2)71('k)Bz(k+l)T}a (58)
where
n k+1/2
H(jc+ 1/2) _ Ej:l Ti(yj§ okt 1/2)) Ez( Y )(UjUgT | yj)
i Z?:l Tz'(yj; \I’(k+ 1/2))
Vgl £

and Ei(kJr 172 denotes conditional expectation given membership of the ith
component, using ®*#+1/2 for @

With the factor analysis model, we avoid having to compute the inverses of
iterates of the estimated p X p covariance matrix X; that may be singluar for
large p relative to n. This is because the inversion of the current value of the
p X p matrix (BiBiT+DZ~) on each iteration can be undertaken using the result
that

(B;BT + D;,)"'= D;'! - D;'B,;(I,+ B'D;'B;)"'BI D!, (60)
where the right-hand side of (60) involves only the inverses of ¢ X ¢ matrices,
since D; is a diagonal matrix. The determinant of (B;B] + D;) can then be

calculated as

| B;Bi +D; |=|D;|/|I,-B;(B:B; +D;)"'B; |.
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Direct differentiation of the log likelihood function shows that the ML estimate
of the diagonal matrix D, satisfies

), (61)

where

Vo= nly: ) (g, — i)y, — m-)T/iln(yj; ) (62)

J=1

As remarked by Lawley and Maxwell*®(Page 30) in the context of direct com-
putation of the ML estimate for a single-component factor analysis model,
the equation (61) looks temptingly simple to use to solve for D;, but was not
recommended due to convergence problems.

On comparing (61) with (58), it can be seen that with the calculation of the
ML estimate of D; directly from the (incomplete-data) log likelihood func-
tion, the unconditional expectation of UjUJT, which is the identity matrix,
is used in place of the conditional expectation in (59) on the E-step of the
AECM algorithm. Unlike the direct approach of calculating the ML estimate,
the EM algorithm and its variants such as the AECM version have good con-
vergence properties in that they ensure the likelihood is not decreased after
each iteration regardless of the choice of starting point.

It can be seen from (61) that some of the estimates of the elements of the
diagonal matrix D; (the uniquenesses) will be close to zero if effectively not
more than g observations are unequivocally assigned to the ith component
of the mixture in terms of the fitted posterior probabilities of component
membership. This will lead to spikes or near singularities in the likelihood.
One way to avoid this is to impose the condition of a common value D for

the Di,

D,=D (i=1,...,9). (63)
An alternative way of proceeding is to adopt some prior distribution for the
D; as in the Bayesian approach of Fokoué and Titterington?°.
The mixture of probabilistic component analyzers (PCAs) model, as proposed
by Tipping and Bishop®’, has the form (41) for each X; with each D; now

having the isotropic structure

D;,=01, (i=1,...,9). (64)
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Under this isotropic restriction (64) the iterative updating of B; and D is

not necessary since, given the component membership of the mixture of PCAs,
2

Bz(-kH) and afkﬂ) are given explicitly by an eigenvalue decomposition of the

current value of V.
13.5 Initialization of AECM algorithm

We can make use of the link of factor analysis with the probabilistic PCA
model (64) to specify an initial value ¥ for ¥ in the ML fitting of the
mixture of factor analyzers via the AECM algorithm. On noting that the
transformed data D; " 2Yj satisfies the probabilitistic PCA model (64) with

o? =1, it follows that for a given DEO) and EEO), we can specify BZ(O) as

B\ = D(O)l/zAi(Ai —aiL)? (i=1,...,9), (65)

2 2

where »
o= Y dn/p—a).
h=q¢+1
The ¢ columns of the matrix A; are the eigenvectors corresponding to the
eigenvalues A\j; > Ajp > --- > Ay of

—1/2

DY

2

=0 p® (66)

7 2

and A; = diag(Ai1, ..., Aiy)- The use of 6? instead of unity is proposed in
(65), because it avoids the possibility of negative values for (A; — I,;), which
can occur since estimates are being used for the unknown values of D; and

To specify 250) for use in (66), we can randomly assign the data into g

groups and take 250) to be the sample covariance matrix of the ith group (i =

(0) (0)

1, ..., g). Concerning the choice of D;”’, we can take D, to be the diagonal

i i
matrix formed from the diagonal elements of 250) (=1, ..., g). In this case,

the matrix (66) has the form of a correlation matrix.

The eigenvalues and eigenvectors for use in (66) can be found by a singular
value decomposition of each p X p sample component-covariance matrix 250).
But if the number of dimensions p is appreciably greater than the sample size

n, then it is much quicker to find them by a singular value decomposition of

- (l . . .
the n; X n; matrix EZ(- ), the sample matrix formed by taking the observations
to be the rows rather than the columns of the p X n; data matrix whose
n; columns are the p-dimensional observations assigned initially to the ¢th
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component (i =1, ..., g). The eigenvalues of this latter matrix are equal to
those of 250) apart from a common multiplier due to the different divisors in
their formation.

A formal test for the number of factors can be undertaken using the likelihood
ratio A, as regularity conditions hold for this test conducted at a given value
for the number of components g. For the null hypothesis that Hy : ¢ = qo
versus the alternative H, : ¢ = qo + 1, the statistic —2log A is asymptotically
chi-squared with d = g(p — qo) degrees of freedom. However, in situations
where n is not large relative to the number of unknown parameters, we prefer
the use of the BIC criterion of Schwarz?®. Applied in this context, it means
that twice the increase in the log likelihood (—2log\) has to be greater than
dlogn for the null hypothesis to be rejected.

14 Mixtures of ¢ Factor Analyzers

The mixture of factor analyzers model is sensitive to outliers since it uses nor-
mal errors and factors. Recently, McLachlan, Bean, and Ben-Tovim Jones*!
have considered the use of mixtures of ¢ analyzers in an attempt to make the
model less sensitive to outliers. Zhao and Jiang?? have independently consid-
ered this problem in the special case of spherical D,.

14.1 Formulation of the mizture of t-factor analyers model

Following McLachlan et al.*!, we now formulate our mixture of ¢ analyzers

model by replacing the multivariate normal distribution in (16) for the ith
component-conditional distribution of Y; by the multivariate ¢ distribution
with mean vector vector p,, scale matrix ¥;, and v; degrees of freedom with
the factor analytic restriction (41) on the component-scale matrices X;. Thus
our postulated mixture model of ¢ factor analyzers assumes that y,, ..., ¥,
is an observed random sample from the ¢ mixture density

g
f(yj; \IJ) = Z’ﬁift(yj; 1200 Eiayi)a (67)
i=1
where
% =BB{+D; (i=1,...,9) (68)

and where now the vector of unknown parameters ¥ consists of the degrees
of freedom v; in addition to the mixing proportions 7; and the elements of
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the p,;, B;, and the D; (i = 1, ..., g). As in the mixture of factor analyzers
model, B; is a p X ¢ matrix and D; is a diagonal matrix.

In order to fit this model (67) with the restriction (68), it is computationally
convenient to exploit its link with factor analysis. Accordingly, corresponding
to (39), we assume that

Yj = M; + BZU'L] + €;j with prOb. Y (Z = 1, ey g) (69)

for j =1, ..., n, where the joint distribution of the factor U,;; and of the error
e;; needs to be specified so that it is consistent with the ¢ mixture formulation
(67) for the marginal distribution of Y.

For the normal factor analysis model, we have that conditional on member-
ship of the ith component of the mixture the joint distribution of Y; and its
associated vector of factors U;; is multivariate normal,

(YJ> | zij =1 ~ Npig(pi, &) (i=1,...,9). (70)

where the mean pu} and the covariance matrix §; are given by

pi = (pi, 07)" (71)

and

B,B} + D; B
Ez‘ = T . (72)
B! I

q

We now replace the normal distribution by the ¢ distribution in (70) to pos-
tulate that

j * .
<U-Jv> | Zij =1 r~ tp+q("‘l’i7£i7 v;) (1=1,...,9):. (73)
ij

This specification of the joint distribution of Y'; and its associated factors in
(69) will imply the ¢ mixture model (67) for the marginal distribution of Y,
with the restriction (68) on its component-scale matrices.

Using the characterization of the ¢ distribution discussed earlier, it follows
that we can express (73) alternatively as

j *
(UJ.) | wjs zig =1~ Npiqg(p3s &i/w;), (74)
ij
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where w;; is a value of the weight variable W; taken to have the gamma
distribution (27).

It can be established from (74) that

Uij | wj,2i5 =1 ~ Ny(0, I;/w;) (75)

and

eij ‘ Rij = 1 ~ Np(O, Di/’w]’), (76)

and hence that

U;; | Zig =1~ tq(OanaVz’) (77)

and

eij ‘ Zij =1 ~ tp(O, Di, l/z'). (78)

Thus with this formulation, the error terms e;; and the factors U;; are dis-
tributed according to the ¢ distribution with the same degrees of freedom.
However, the factors and error terms are no longer independently distributed
as in the normal-based model for factor analysis, but they are uncorrelated.
To see this, we have from (74) that conditional on w;, U;; and e;; are uncor-
related, and hence, unconditionally uncorrelated.

14.2 An AECM algorithm for miztures of t-factor analyzers

We can fit the mixture of ¢ factor analyzers model specified by (67) and (68)
using the AECM algorithm (Meng and van Dyk3®), as described in McLachlan
et al.*'. More specifically, we declare the missing data to be the component-
indicators z;;, the factors u;; in (69), and the weights w, in the characterization
(74) of the t-distribution for the ith component distribution of Y ; and Uj;.
We have from (74) that

Y| wij,wy, 25 =1 ~ Nyp(p; + Biuig, Difw;) (79)

fore=1,..., 9.

Thus in the EM framework for this problem, the complete data consist, in
addition to the observed data y;, of the component-indicators z;;, the unob-
servable weights w;, and the latent factors ;.
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Using the results (77) to (79), it is straightforward to show that an AECM
algorithm can be formulated as in Section 13.2 to iteratively fit the mixture
of t-factor analyzers model as specified by (67) and (68).

We use two CM steps in the AECM algorithm, which correspond to the par-
tition of ¥ into the two subvectors ¥; and ¥,, where ¥, contains the mix-
ing proportions, the elements of the p,, and the degrees of freedom v; (i =
1, ..., g). The subvector ¥, contains the elements of the matrix B; of factor
loadings and of the diagonal matrix D;.

On the first cycle, we specify the missing data to be the component-indicator
variables Z;; and the weights w, in the characterization (74) of the ¢-distribution
for the component distribution of y;. On the (k + 1)th iteration of the algo-
rithm, we update the estimates of the mixing proportions using (52). The
updated estimate of the ith component mean p, is given by

p Y = Sy T Yy Sy el (80)
j=1 j=1

where the current weight wz(]k ) is formed using the current value ¥ for ¥ in
(30).

In the case where the degrees of freedom v; in the component t¢-distributions
are not specified but are to be estimated from the data, we have to update
the estimate of v; on the second cycle. The updated estimate Z/Z-(k_H) of v; does

not exist in closed form, but is given as a solution of the equation

1 n
{ 1/)( I/Z)-i—log( vi)+1+ (_Z (k) logw wz(j’“))

+ ( (k) +p) log ( (k)2+ )} =0, (81)

where T(Jk) = 7i(y;; TRy ) = ?ZlTi(f) (it =1,...,9), and 9¥(-) is the

Digamma function.

i

The estimate of ¥ is updated so that its current value after the first cycle is
given by

plk+1/2) _ (\I,(IH'U \I,gk)T)T. (82)

On the second cycle of this iteration, the complete data are expanded to
include the unobservable factors U ;; associated with the y;. The estimates of
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the matrix of factor loadingsB; and the diagonal matrix D; can be updated
using (54) and (55), but where the ith component sample covariance matrix
is calculated as

n k+1/2 k+1 k+1
V(k+1/2) _ Ej:l Ti(yj; ‘I’(k+1/2))wz(j o )(yj - /J’z( i ))(yj - l*l'z( i ))T (83)
7 Z?:l Tz(yj, \Il(k+1/2)) ’

where wg-cﬂm is updated partially by using ®**+1/? for ® in (30).

15 Available Software

The reader is referred to the appendix in McLachlan and Peel” for the avail-
ability of software for the fitting of normal mixture models, including the
EMMIX program of McLachlan et al.*® The current version of EMMIX is
available from the World Wide Web address

http://www.maths.uq.edu.au/"gjm/emmix/emmix.html

Concerning the availability of mixture modeling facilities in general-purpose
statistical packages, there is the MCLUST software package of Fraley and
Raftery!'®, which is interfaced to the S-PLUS commercial software and the
open source R code.

16 Example

We now illustrate the use of normal mixture models by applying them to
two data sets, the so-called Vietnam and Thyroid data sets as considered in
Smyth et al.** The Vietnam data set consists of the log transformed and z-
standardized concentrations of p = 17 chemical elements to which synthetic
noise variables were added by Smyth et al.** to study methods for clustering
high dimensional data. The concentrations were measured in hair samples from
six classes of Vietnamese. These classes differed in their age and exposure to
coal. There were n = 224 subjects and the classes were: (1) Control adults:
n1=31 males with low exposure to coal; (2) Control children: ny=children with
low exposure to coal; (3) Miner adults: n3=56 males employed at a coal mine;
(4) Miner children: nys=47 children of male coal workers; (5) Burner adults:
n;=18 females using coal for cooking; (6) Burner children: ng=41 children
with exposure to coal through its use in cooking.

The Thyroid data set consists of the z-standardized concentrations of p = 5
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hormones to which 400 synthetic noise variables similar to those in the Viet-
nam data set were added by Smyth et al.** They were measured in n = 215
patients. The patients were divided into three classes according to Thyroid
function. The classes were: (1) Normal thyroid function (n; = 150); (2) Hy-
perthyroid function (ny = 35); (3) Hypothyroid function (n3= 30).

A plot of the first two canonical variates of these two data sets is given in
Figures 1 and 2, respectively. Note that since there are only three classes for
the Thyroid data set, the data can be fully represented in the space of the
first two canonical variates.
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Fig. 1. Plot of the first two canonical variates for the g = 6 classes in the Vietnam
data.

The 400 additional noise variables added by Smyth et al.** to these two data
sets consisted of 100 of each of four different types of noise variable. The noise
variables were all z-standardized. They examined the effects on clustering
methods of adding p, 50 and 100 of each of the noise variable types, where p
was equal to the dimension of the original feature vector.

For these two data sets, we looked at the effect on normal mixture models and
mixtures of factor analyzers of adding 50 of each of two types of their noise
variables, which were normally distributed noise and uniformly distributed
noise.

If we had tried to fit normal mixture mdoels with unrestricted component-
covariance matrices to the Vietnam data set, then we would have had problems
with singularities or near-singular estimates of the component-covariances ma-
trices. This is because there are p = 17 variables, but only 18 observations
in one of the classes. Similarly, with the Thyroid data set, because the two
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Fig. 2. Plot of the first two canonical variates for the g = 3 classes in the thyroid
data.

smaller classes had only 30 and 35 patients in them, use of normal mixture
models with unrestricted component-covariance matrices would have led to
singularities with 50 noise variables added. We therefore fitted mixtures of
factor analyzers both with equal and unequal component-covariance matrices.
In the latter case, the diagonal matrices D; in the factor analysis representa-
tion (41) of the component-covariance matrices were constrained to be equal;
that is, we took the uniquenesses to be common across the components. For
the mixture of factor analyzers models we examined models with ¢ = 2, 3, 4,
and 5 factors per component, but have only presented the results for g=2 fac-
tors per cluster here. The models with ¢ = 2 factor analyzers per cluster were
the ones which most accurately reproduced the classes described above.

We fitted the normal mixture models and mixtures of factor analyzers using
50 random and 50 k-means starts and then choosing the one with highest
likelihood. We then used the EM-algorithm to obtain our final solution us-
ing this as our initial classification. In doing this we specified the number of
components g to be the same as the number of a priori specified number of
classes; that is, ¢ = 6 for the Vietnam data and g = 3 for the Thyroid data.

For each clustering obtained, we permuted the cluster labels so that the error
rate of misallocation was minimized when the clusters were identified with the
true classes. We also calculated the adjusted Rand index*. This is a measure
of the agreement of two partitions of a data set. For two given partitions of
a data set (not necessarily having the same number of clusters or classes) the
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Rand index®¢ is
R= (a+b)/<;’),

where a is the number of pairs of elements which are in the same cluster in the
first partition and in the same cluster in the second partition, b is the number
of pairs of elements which are in different clusters in the first partition and in
different clusters in the second partition and n is the number of elements. The
adjusted Rand index is modification of the Rand index so that its expected
value when comparing two random partitions is zero.

The results of the clustering are given in Tables 1 and 2, corresponding to the
Vietnam and Thyroid data sets, respectively. In these tables, we have listed the
adjusted Rand index with the error of misallocation below in parentheses for
the normal mixture model (NMM) and the mixture of factor analyzers model
(MFA) with ¢ =2 factors and for no noise, uniform noise and normal noise.
The "equal” and ”unequal” in these tables refers to whether the component-
covariance matrices were set to be equal or were unequal in the sense that the
component-factor analyzers were allowed to have different loadings (that is,
different B;), but common uniquenesses (that is, common D).

Table 1
Vietnam data Adjusted Rand Index and misclassification rate
Start Noise NMM MFA MFA
equal equal unequal
True None 0.961 0.958 0.939
(0.031) (0.036) (0.049)
Uniform 0.988 0.949 0.992
(0.009) (0.054) (0.009)
Normal 0.974 0.922 0.981
(0.022) (0.067) (0.018)
50r/50k None 0.762 0.766 0.907
(0.201) (0.196) (0.098)
Uniform 0.778 0.825 0.867
(0.214) (0.143) (0.143)
Normal 0.818 0.783 0.867
(0.143) (0.210) (0.143)

We found that if there were no noise, the clusters created by the mixture of
factor analyzers model (with unrestricted factor loadings) agreed very well
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Table 2
Thyroid data Adjusted Rand Index and misclassification rate

Start Noise NMM NMM MFA MFA
equal unequal equal unequal

True None 0.380 0.931 0.380 0.923
(0.191) (0.042) (0.191) (0.037)

Uniform 0.819 0.528 0.884
(0.061) (0.149) (0.061)

50r/50k None 0.147 0.931 0.312 0.906
(0.279) (0.042) (0.219) (0.047)

Uniform 0.104 0.254 0.807
(0.488) (0.488) (0.102)

with the true classes. Also, in this case, the full normal mixture model per-
formed well in those instances where it was able to be fitted. The imposition
of equal component-covariance matrices led to more misallocations. For the
Vietnam data set, the agreement between the output clusters and the true
classes was still acceptable, but for the Thyroid data set it was quite poor.
The Thyroid data set appears to have a class configuration that cannot be ad-
equately represented by a model with equal component-covariance matrices.
It has little separation between classes and large differences in their variance
structure. This can be seen by examination of the class structure in Figure 2.

Concerning the introduction of the noise variables to the originally measured
variables, we concluded that if the component-covariance matrices were al-
lowed to be unequal, added noise did not greatly reduce the accuracy of the
clustering we obtained from the mixtures of factor analyzers models. We were
not able to evaluate the effect of noise on normal mixture models with un-
restricted component-covariance matrices since we were unable to fit these
models to these data sets with noise variables added. The effect of noise on
the full normal mixture model with equal component-covariance matrices was
erratic. It was found that it could lead to either increases or to decreases in
the accuracy of the clusterings obtained.

The adjusted Rand indices for our model-based clusterings of these two data
sets were higher than those calculated in Smyth et al.** For the case with 50
normal noise variables and ¢=2 factor analyzers per cluster, they calculated
an adjusted Rand index of 0.415 for the Vietnam data and 0.735 for the
Thyroid data. Our calculated values are 0.867 and 0.807, respectively. The
reason for this large difference on the Vietnam data set is unknown. Their
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preferred classification method was multivariate regression trees using global
factor scores. Using this method the adjusted Rand indices they obtained for
these data sets were 0.808 and 0.766.

Up to now for each of these two data sets, we have specified the number of
components in our mixture models to be the same as the number of classes. We
also looked at the case where the number of component ¢ in the mixture model
were selected via consideration of the log likelihood. We used the resampling
approach of McLachlan?® as described in Section 10.2. Starting with a single
factor analyzer (g = 1), we proceeded to fit an additional component analyzer
(with the same uniquenesses as the existing component analyzers) provided
the likelihood ratio test for an additional factor analyzer was found to be
significant. It led to the choice of ¢ = 6 and g = 3 for the Vietnam and Thyroid
data sets, respectively, coinciding with the specified number of classes in these
two sets.

17 Some recent extensions for high-dimensional data

The EMMIX-GENE program of McLachlan, Peel, and Bean*” has been de-
signed for the normal mixture model-based clustering of a limited number of
observations that may be of extremely high-dimensions. It was called EMIX-
GENE as it was designed specifically for problems in bioinformatics that re-
quire the clustering of a relatively small number of tissue samples containing
the expression levels of possibly thousands of genes. But it is applicable to clus-
tering problems outside the field of bioinformatics involving high-dimensional
data. In situations where the sample size n is very large relative to the dimen-
sion p, it might not be practical to fit mixtures of factor analyzers, as it would
involve a considerable amount of computation time. Thus initially some of the
variables may have to be removed. Indeed, the simultaneous use of too many
variables in the cluster analysis may serve only to create noise that masks the
effect of a smaller number of variables. Also, the intent of the cluster analysis
may not be to produce a clustering of the observations on the basis of all the
available genes, but rather to discover and study different clusterings of the
observations corresponding to different subsets of the variables.

Therefore, the EMMIX-GENE procedure has two optional steps before the
final step of clustering the observations. The first step considers the selection
of a subset of relevant variables from the available set of variables by screening
the variables on an individual basis to eliminate those which are of little use in
clustering the observations. The usefulness of a given variable to the clustering
process can be assessed formally by a test of the null hypothesis that it has
a single component normal distribution over the observations. A faster but
ad hoc way is to make this decision on the basis of the interquartile range.
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Even after this step has been completed, there may still remain too many
variables. Thus there is a second step in EMMIX-GENE in which the retained
variables are clustered (after standardization) into a number of groups on the
basis of Euclidean distance so that variables with similar profiles are put into
the same group. In general, care has to be taken with the scaling of variables
before clustering of the observations, as the nature of the variables can be
intrinsically different. Also, as noted above, the clustering of the observations
via normal mixture models is invariant under changes in scale and location.
The clustering of the observations can be carried out on the basis of the groups
considered individually using some or all of the variables within a group or
collectively. For the latter, we can replace each group by a representative (a
metavariable) such as the sample mean as in the EMMIX-GENE procedure.

(a) there are no replications on any particular entity specifically identified as
such;
(b) all the observations on the entities are independent of one another.

These assumptions should hold for the clustering of, say, tissue samples as
discussed above, although the tissue samples have been known to be correlated
for different tissues due to flawed experimental conditions. However, condition
(b) will not hold for the clustering of gene profiles, since not all the genes are
independently distributed, and condition (a) will generally not hold either as
the gene profiles may be measured over time or on technical replicates. While
this correlated structure can be incorporated into the normal mixture model
(15) by appropriate specification of the component-covariance matrices 3;, it
is difficult to fit the model under such specifications. For example, the M-step
may not exist in closed form.

Accordingly, Ng et al.*® have developed the procedure called EMMIX-WIRE
(EM-based MIXture analysis With Random Effects) to handle the cluster-
ing of correlated data that may be replicated. They adopted conditionally a
mixture of linear mixed models to specify the correlation structure between
the variables and to allow for correlations among the observations. It also
enables covariate information to be incorporated into the clustering process.

18 Mixed feature data

We consider now the case where some of the feature variables are discrete.
That is, the observation vector y; on the jth entity to be clustered consists
of p; discrete variables, represented by the subvector y,;, in addition to p;
continuous variables represented by the subvector y,; (j=1,...,n). The ith
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component density of the jth observation
y, = (¥l y3,)"
can then be written as

fi(yj) = fi(ylj)fi(ij | ylj)’ (84)

The symbol f; is being used generically here to denote a density where, for
discrete random variables, the density is really a probability function.

In discriminant and cluster analyses, it has been found that it is reasonable
to proceed by treating the discrete variables as if they are independently
distributed within a class or cluster. This is known as the NAIVE assump-
tion (Titterington et al.**, Hand and Yi®®). Under this assumption, the ith
component-conditional density of the vector y,; of discrete features is given
by

fi(ylj) = lp:l[lfiv(ylvj)a (85)

where f;,(y1,;) denotes the ¢th component-conditional density of the vth dis-
crete feature variable yy,; in y,;.

If y1, denotes one of the distinct values taken on by the discrete variable y,;,
then under (85) the (k + 1)th update of f;,(y1,) is

Yo iy ‘I’(k)) 8[Y1vj> Y10] + €1
Y1 Ty W) + o

£ ) = (86)

where 0[Y145, Y1) = 1 if y1,; = Y1, and is zero otherwise, and T*) s the
current estimate of the vector of all the unknown parameters that now include
the probabilities for the discrete variables. In (86), the constants ¢; and ¢,
which are both equal to zero for the maximum likelihood estimate, can be
chosen to limit the effect of zero estimates of f;,(y1,) for rare values yi,. One
choice is ¢ = 1 and ¢; = 1/d,, where d, is the number of distinct values in
the support of y;,; (Titterington et al.*?).

We can allow for some dependence between the vector y,; of continuous vari-
ables and the discrete-data vector y,; by adopting the location model as, for
example, in Hunt and Jorgensen®". With the location model, fi(yy; | ¥y;) is
taken to be multivariate normal with a mean that is allowed to be different
for some or all of the different levels of y;.
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As an alternative to the use of the full mixture model, we may proceed condi-
tionally on the realized values of the discrete feature vector y,;, as in McLach-
lan and Chang?2. This leads to the use of the conditional mixture model for
the continuous feature vector y,;,

9

f(y2j | ylj) = Zﬂi(ylj) fi(ij | ylj)7 (87)

=1

where 7;(y,;) denotes the conditional probability of ith component member-
ship of the mixture given the discrete data in y,; . A common model for 7;(y,;)
is the logistic model under which

Wi(ylj) - exp(ﬁzo + 181 ylj) (88)

1+ exp(Bho + ﬁ:;fyu)’
where 8, = (Bi1, .-, Bip,)T fori=1,...,g—1, and

g—1
7Tg(?/1j) =1- Z Wh(ylj)-
h=1
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