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Summary

Semi-supervised learning is being extensively applied to estimate classifiers from training
data in which not all the labels of the feature vectors are available. We present gmmsslm,
an R package for estimating the Bayes’ classifier from such partially classified data in the
case where the feature vector has a multivariate Gaussian (normal) distribution in each
of the pre-defined classes. Our package implements a recently proposed Gaussian mixture
modelling framework that incorporates a missingness mechanism for the missing labels in
which the probability of a missing label is represented via a logistic model with covariates
that depend on the entropy of the feature vector. Under this framework, it has been shown
that the accuracy of the Bayes’ classifier formed from the Gaussian mixture model fitted to
the partially classified training data can even have lower error rate than if it were estimated
from the sample completely classified. This result was established in the particular case of
two Gaussian classes with a common covariance matrix. Here we focus on the effective
implementation of an algorithm for multiple Gaussian classes with arbitrary covariance
matrices. A strategy for initialising the algorithm is discussed and illustrated. The new
package is demonstrated on some real data.

Key words: Bayes’ rule; entropy; mixture model; partially classified sample; semi-supervised
learning.

1. Introduction

Classifiers such as neural networks often achieve their strong performance through a
completely supervised learning approach, which requires a fully classified (labelled) dataset.
However, missing labels often occur in practice because of the difficulty determining the
true label for an observation (the feature vector). For example, in medicine and defence,
images can often be correctly classified only by a limited number of experts in the field.
Hence, a training sample might not be completely classified, with images difficult to classify
left without their class labels. Moreover, in medicine, there might be scans that can be
diagnosed confidently only after an invasive procedure, possibly regarded as unethical to
perform at the time.
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2 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

Semi-supervised learning (Chapelle, Schölkopf, & Zien 2006) addresses the issue of
missing labels. Classic approaches that belong to the semi-supervised learning paradigm
include generative models (Pan et al. 2006; Kim & Kang 2007; Fujino, Ueda, & Saito 2008),
graph-based models (Blum & Mitchell 1998; Szummer & Jaakkola 2001; Zhou et al. 2003)
and semi-supervised support vector machines (Vapnik 1998; Joachims 1999; Lanckriet
et al. 2004). Gaussian mixture models are a fundamental class of statistical models particu-
larly relevant to semi-supervised learning. Given a partially classified sample, the traditional
optimisation objective is a joint likelihood over the labelled and unlabelled data. This
problem of maximum likelihood (ML) with missing data is amenable to the expectation-
maximisation algorithm of Dempster, Laird, & Rubin (1977); see, for example, McLachlan
& Peel (2000), McLachlan & Krishnan (2008) and the recent review of McLachlan, Lee,
& Rathnayake (2019) on finite mixture models. Although Gaussian mixture models in the
semi-supervised setting are now well studied (Pan et al. 2006; Kim & Kang 2007; Côme
et al. 2009; Huang & Hasegawa-Johnson 2010; Szczurek et al. 2010), there is often a criti-
cal assumption that the missing-label process can be ignored for likelihood-based inference
(McLachlan 1975, 1977; Ganesalingam & McLachlan 1978; Chawla & Karakoulas 2005).

Recently, Ahfock & McLachlan (2020) introduced a novel approach that treats
labels of unclassified observations as missing data, leveraging a framework for handling
missingness, as in the groundbreaking work by Rubin (1976) on incomplete data analysis.
Ahfock & McLachlan (2020) conducted an asymptotic analysis to demonstrate that a
partially classified sample can provide more valuable information than a fully labelled
sample, specifically in the two-class Gaussian homoscedastic model; see also the review
by Ahfock & McLachlan (2023). By building upon their framework, we propose to
model the probability of a missing label as a logistic regression model where the mean
depends on a single covariate equal to an entropy-based measure. This approach enables
the implementation of an algorithm for estimating the Bayes’ classifier through the full
likelihood, catering to multiple Gaussian classes with arbitrary covariance matrices. Given
the complexities that emerged in the derived expressions, transitioning from the specific
two-class homoscedastic Gaussian model to this expanded framework poses a significant
technical challenge. Our development and presentation of an R package designed for
semi-supervised learning from a statistical viewpoint marks an important advancement.
Its potential spans various statistical analyses and application scenarios.

In the context of our more general framework, we introduce the R package gmmsslm
(Gaussian mixture model-based semi-supervised learning with a missing-data mechanism),
which is available open-source on the Comprehensive R Archive Network at https://cran.r
-project.org/package=gmmsslm. This package implements three distinct Gaussian mixture
modelling approaches: (i) partially classified samples, taking into account the missing-
data mechanism; (ii) partially classified samples, disregarding the missing-data mechanism;
and (iii) fully classified samples. Although various packages exist for estimating mixture
models, such as bgmm (Biecek et al. 2012), EMMIX (McLachlan et al. 1999), flexmix
(Grün & Leisch 2007), mclust (Fraley & Raftery 2007), mixtools (Benaglia et al. 2009)
and Rmixmod (Lebret et al. 2015), none accommodates a missing-data mechanism.
In gmmsslm, the missingness mechanism is specified through a multinomial logistic
regression concerning the entropy of feature vectors. The package applies to an arbitrary
number of classes possessing multivariate Gaussian distributions with potentially dissimilar
covariance matrices.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 3

This paper is structured as follows. Section 2 provides a concise review of the statistical
model used in gmmsslm. Section 3 describes how users can implement gmmsslm in
applications. Section 4 illustrates a practical application of the package. Finally, Section 5
concludes the paper.

2. Gaussian mixture model with a missing-data mechanism

2.1. Gaussian mixture model

We let Y be a p-dimensional vector of features on an entity to be assigned to one of g
pre-defined classes C1, . . . ,Cg occurring in proportions π1, . . . , πg , where

∑
g

i=1 πi = 1.
The random variable Y corresponding to the realisation y is assumed to have density fi (y;ωi )

with a vector ωi of unknown parameters in Class Ci (i = 1, . . . , g). The vector of all
unknown parameters is given by θ = (π1, . . . , πg−1, ω�

1 , . . . , ω�
g
)�.

In the sequel, we assume that the class-conditional densities of y are multivariate
Gaussian with

fi (y;ωi ) = φ(y;μ
i
, Σi ) (i = 1, . . . , g),

where φ(y;μ, Σ) denotes the p-variate Gaussian density function with mean μ and
covariance matrix Σ. The vector θ of all unknown parameters now consists of the elements
of the means μ

i
and the p(p + 1)/2 distinct elements of the covariance matrices Σi ,

along with the mixing proportions. In order to estimate θ , it is customary in practice
to have available a training sample. We let xCC = (x�

1 , . . . , x�
n
)� contain n independent

realisations of X = (Y�,Z )� as the completely classified training data, where Z denotes
the class membership of Y, being equal to i if Y belongs to class Ci (i = 1, . . . , g) and
zero otherwise, and where xj = (y�

j
, zj )� (j = 1, . . . , n). For a partially classified training

sample xPC in semi-supervised learning, we introduce the missing-label indicator mj , which
equals 1 if zj is missing and 0 if it is available (j = 1, . . . , n). Thus, xPC consists of those
observations xj in xCC with mj = 0, but only the feature vector y

j
in xCC if mj = 1 (i.e.

the label zj is missing). The presence of unclassified feature observations in the training
data (i.e. features with missing labels) necessitates the consideration and fitting of the
unconditional density of Y, which is given by the g-component Gaussian mixture density

f (y
j
; θ) =

g∑

i=1

πiφ
(
y
j
;μ

i
, Σi

)
.

The optimal (Bayes’) rule of allocation R(y; θ) assigns an entity with feature vec-
tor y to Class Ck , that is, R(y; θ) = k if k = argmax

i
τi (y; θ), where τi (y; θ) =

πi fi (y;ωi )/
∑

g

h=1 πh fh(y;ωh) is the posterior probability that the entity belongs to Class
Ci given Y = y (i = 1, . . . , g).

We define the log likelihoods

logLC(θ) =
n∑

j=1

(1 − mj )

g∑

i=1

zij log
{
πi fi (yj ;ωi )

}
, (1)

logLUC(θ) =
n∑

j=1

mj log

{
g∑

i=1

πi fi (yj ;ωi )

}

,

logL(ig)

PC (θ) = logLC(θ) + log LUC(θ). (2)

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
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4 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

In (1), zij = 1 if zj = i and zij = 0 otherwise. If one ignores the ‘missingness’ of the
class labels, LC(θ) and LUC(θ) are the likelihood functions formed from the classified and
unclassified data, respectively. The likelihood function L(ig)

PC (θ) is formed from the partially
classified sample xPC, ignoring the missing-data mechanism for the labels. The likelihood
LCC(θ) for the completely classified sample xCC is recovered from (1) by taking all mj = 0.

2.2. Missing-data mechanism

In the present context, it is appropriate to dispense with the missing-data mechanism
when performing likelihood inference in situations where the missing labels can be viewed
as missing completely at random (MCAR) in the framework proposed by Rubin (1976)
for handling missingness in incomplete data analysis. The reader is referred to Mealli &
Rubin (2015) for precise definitions of MCAR and its less restrictive version of missing at
random (MAR). The MCAR case here holds if the missingness of labels is independent of
both the features and labels, while with the MAR case this missingness is allowed to depend
on the features but not the labels. As highlighted by McLachlan & Gordon (1989), one
can legitimately ignore missingness in certain MAR situations, such as when dealing with
truncated features. However, for the MAR scenario being discussed here, one cannot ignore
the missingness in carrying out the likelihood analysis. Indeed, the use of the missingness
provides a way of improving the performance of the classifier to be formed.

Ahfock & McLachlan (2020) noted that it is common in practice for unlabelled images
(i.e. the features with missing labels) to fall in regions of the feature space where there
is class overlap. This finding led them to argue that the unlabelled observations can carry
additional information that can be used to improve the efficiency of the parameter estimation
of θ . Additional theoretical motivation is available in Appendix A. They noted that in these
situations the difficulty of classifying an observation can be quantified using the Shannon
entropy of an entity with feature vector y, which is defined by

e(y
j
; θ) = −

g∑

i=1

τi (yj ; θ) log τi (yj ; θ).

Let Mj denote the random variable corresponding to the realised value mj of the missing-
label indicator for the observation y

j
. The missingness mechanism of Rubin (1976) is

specified in the present context as

Pr {Mj = 1|y
j
, zj } = Pr {Mj = 1|y

j
} = q(y

j
; θ , ξ),

where ξ = (ξ0, ξ1)
� is distinct from θ . The conditional probability q(y

j
; θ , ξ) is taken to

be a logistic function of the Shannon entropy e(y
j
; θ), yielding

q(y
j
; θ , ξ) = exp{ξ0 + ξ1 log e(y

j
; θ)}

1 + exp{ξ0 + ξ1 log e(y
j
; θ)} . (3)

In the special case of g = 2 with equal covariance matrices, the negative log entropy in
the conditional probability (3) can be replaced by the square of the discriminant function.
Details can be found in Appendix B.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 5

2.3. Full likelihood function based on a missingness mechanism

We let Ψ = (
θ�, ξ�)�

be the vector of all unknown parameters. Henceforth, we let
f be a generic symbol for a density or probability function where appropriate. To construct
the full likelihood function L

(full)
PC (Ψ) from the partially classified sample xPC, we need

expressions for
f (y

j
, zj ,mj = 0) and f (y

j
,mj = 1)

corresponding to the classified and unclassified observations y
j
, respectively. For a classified

observation y
j
, it follows that

f (y
j
, zj ,mj = 0) = f (zj )f (yj |zj ) Pr {Mj = 0|y

j
, zj }

=
g∏

i=1

{πi fi (yj ;ωi )}zij {1 − q(y
j
; θ , ξ)},

while for an unclassified observation y
j
, we have

f (y
j
,mj = 1) = f (y

j
) Pr {Mj = 1|y

j
} =

g∑

i=1

πi fi (yj ;ωi )q(y
j
; θ , ξ).

The full likelihood can then be expressed as

L
(full)
PC (Ψ) =

n∏

j=1

{f (y
j
, zj ,mj = 0)}1−m

j {f (y
j
,mj = 1)}mj .

Thus, the full log likelihood follows as

logL(full)
PC (Ψ) = logL(ig)

PC (θ) + logL(miss)
PC (Ψ), (4)

where log L(ig)

PC (θ) is given in (2) and

logL(miss)
PC (Ψ) =

n∑

j=1

[
(1 − mj ) log

{
1 − q(y

j
; θ , ξ)

} + mj log q(y
j
; θ , ξ)

]

is the log likelihood formed on the basis of the missing-label indicators mj .
Using the expectation conditional maximisation (ECM) algorithm, we obtain the ML

estimations θ̂CC, θ̂
(ig)

PC and θ̂
(full)
PC for θ based on the log likelihoods log LCC(θ), log L(ig)

PC (θ)

and logL(full)
PC (Ψ), respectively (see Appendix C for details). Notice that θ̂

(full)
PC is a subvector

of Ψ̂
(full)
PC . Similarly, we let R(θ̂CC), R

(
θ̂

(ig)

PC

)
and R

(
θ̂

(full)
PC

)
denote the estimated Bayes’

rule obtained by plugging in the estimates θ̂CC, θ̂
(ig)

PC and θ̂
(full)
PC , respectively. The overall

conditional error rate of the rule R
(
y; θ̂CC

)
is then

err(θ̂CC; θ) = 1 −
g∑

i=1

πi Pr
{
R(y; θ̂CC) = i |θ̂CC,Z = i

}
. (5)

The corresponding conditional error rates err
(
θ̂

(ig)

PC ; θ
)

of the rule R

(
y; θ̂

(ig)

PC

)
and

err
(
θ̂

(full)
PC ; θ

)
of the rule R

(
y; θ̂

(full)
PC

)
are defined likewise. The optimal error rate err(θ)

follows by replacing θ̂CC with θ in (5).

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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6 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

3. Package description

In this section, we describe the gmmsslm package. The package has been crafted
to implement three distinct Gaussian mixture models, which can be fit using the function
gmmsslm(). These models utilise different log likelihood functions, namely (1), (2) and
(4). Furthermore, the package provides several auxiliary functions including the Bayes rule
classifier bayesclassifier(), conditional error rate erate() and Shannon entropy
get_entropy(). The general syntax for using these functions is illustrated below:

gmmsslm(dat, zm, paralist, xi = NULL, type)
bayesclassifier(dat, p, g, paralist)
erate(dat, p, g, paralist, clust)
get_entropy(dat, n, p, g, paralist)

Details for some of the main command arguments are as follows:

• n: Number of observations.
• p: Dimension of observation vector.
• g: Number of multivariate normal classes.
• dat: An n × p matrix where each row represents an individual observation.
• zm: An n-dimensional vector containing the class labels including the missing label

denoted as NA.
• pi: A g-dimensional vector for the initial values of the mixing proportions.
• mu: A p × g matrix for the initial values of the location parameters.
• sigma: A p × p matrix, or a p × p × g array, for the initial values of the covariance

matrices. The model is fit with a common covariance matrix if sigma is a p × p

covariance matrix, otherwise the model is fit with unequal covariance matrices.
• paralist: A list containing pi, mu and sigma. When paralist is provided,

individual inputs for pi, mu and sigma are not required.
• xi: A two-dimensional vector containing the initial values of the coefficients in the

logistic function of the Shannon entropy. The default value of xi is NULL, except
when type = ‘full’ is selected.

• type: One of three types of Gaussian mixture models as follows: ‘full’ fits the
model given by (4) to a partially classified sample on the basis of the full likelihood by
taking into account the missing-data mechanism; ‘ign’ fits the model given by (2) to
a partially classified sample based on the likelihood that the missing-data mechanism
is ignored; and ‘com’ fits the model given by (1) to a completed classified sample.

• clust: An n-dimensional vector of the class partition.

The main function gmmsslm() provides a comprehensive summary output, detailed
as follows:

• Likelihood: Value of the objective likelihood.
• VarianceStructure: Describes the structure of the covariance matrix associated

with the Gaussian mixture model fitting. Possible structures include ‘A common
covariance matrix’ and ‘Unequal covariance matrices’.

• Convergence: State of convergence.
• Iteration: Number of iterations executed.
• TotalObservation: Total number of observations.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 7

• Dimension: Dimension of the data.
• ModelType: Type of model fit. The ‘full’ model type considers a partially classified

sample based on the full likelihood, accounting for the missing-data mechanism. The
‘ign’ type fits the model to a partially classified sample, dismissing the missing-data
mechanism. The ‘com’ type is dedicated to a completely classified sample.

• Parameters: Estimated parameters, which include π , μ, Σ and ξ (relevant only if
ModelType = ‘full’).

4. Example: Gastrointestinal lesions data

In this section, we demonstrate the practical application of the gmmsslm package
using the gastrointestinal lesions data from Mesejo et al. (2016). The dataset comprises
76 colonoscopy videos, the histology (classification ground truth) and the opinions of the
endoscopists (four experts and three beginners). White light- and narrow-band imaging
methods were used to classify whether the lesions were benign or malignant. Each of
the n = 76 observations consists of four selected features extracted from the colonoscopy
videos. A panel of seven endoscopists viewed the videos to give their opinion as to whether
each patient needed resection (malignant) or no resection (benign). We formed our partially
classified sample as follows. Feature vectors for which all seven endoscopists agreed were
taken to be classified with labels specified either as 1 (resection) or 2 (no resection) using
the ground truth labels. Observations for which there was no total agreement among the
endoscopists were taken as having missing labels, denoted by NA.

We begin by loading the gmmsslm package. The gastro_data dataset from
gmmsslm is then loaded. The feature matrix is denoted as X, where n represents the
total number of observations and p their dimensionality. We also define g = 2 as the
number of classes.

library(gmmsslm)
data(’gastro_data’)
X <- as.matrix(gastro_data[,1:4])
n <- nrow(X)
p <- ncol(X)
g <- 2

An initial pair plot is constructed to visualise the locations of the labelled and
unlabelled data.

classagree <- ifelse(is.na(gastro_data$class_agreement), 3,
gastro_data$class_agreement)

shapevec <- plyr::mapvalues(unclass(classagree), 1:3,
to = c(16, 17, 15))

colvec <- plyr::mapvalues(unclass(classagree), 1:3,
to = c(’BLUE’, ’RED’, ’BLACK’))

pairs(X, pch = shapevec, col = colvec)

Figure 1 shows a plot of the data with the class labels of the feature vectors. The black
squares denote the unlabelled observations, red triangles denote the benign observations

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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8 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

Figure 1. Gastrointestinal dataset. The black squares correspond to the unlabelled observations, the
red triangles denote the benign observations and the blue circles denote the malignant observations.
Observations are treated as unlabelled if fewer than seven endoscopists assigned the same class label
to the feature vector.

and blue circles denote the malignant observations. The unlabelled observations tend to be
located in regions of class overlap.

We can now verify if the incomplete data is appropriate for modelling with our
proposed approach. Specifically, we need to ascertain whether there exists a missing-data
mechanism in the missing labels. The function plot_missingness() is employed
for this purpose, producing a box plot of the initial estimated entropies for labelled and
unlabelled groups. Furthermore, it offers a plot showcasing a Nadaraya–Watson kernel
estimate for the probability of missing labels against the negative log entropy. The
plot_missingness() function requires initial estimates of π , μ and Σ. To acquire
these estimates, we utilise initialvalue(dat, zm, g, ncov). Note that the
ncov parameter specifies the structure of sigma. By default, ncov = 2. When set
to ncov = 1, it denotes a common covariance matrix, whereas ncov = 2 signifies
unequal covariance matrices.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 9

zm <- gastro_data$class_agreement
inits <- initialvalue(dat = X, zm = zm, g = g, ncov = 2)
plot_missingness(dat = X, g = 2, parlist = inits, zm = zm,

bandwidth = 3, range.x = c(0, 4), ylim = c(0.2, 0.8),
kernel = ’normal’)

Figure 2a compares the box plots of the estimated entropies in the labelled and
unlabelled groups. Figure 2b presents the Nadaraya–Watson kernel estimate of the
probability of missing labels. From Figure 2a, we find that the unlabelled observations
typically have higher entropy than the labelled observations. Figure 2b shows that the
estimated probability of a missing class label increases as the log entropy increases. This
relation is in accordance with (3). The higher the entropy of a feature vector, the higher
the probability of its class label being unavailable.

To process the data with the Gaussian mixture model with a missing-data mechanism,
we utilise the gmmsslm() function and set type = ‘full’. Prior to this, initial values
for ξ0 and ξ1 are essential. We leverage the glm() function from the base package stats
as follows:

en <- get_entropy(dat = X, n = n, p = p, g = g,
paralist = inits)

m <- ifelse(gastro_data$missinglabel_indicator == 1, 0, 1)
xi_inits <- coef(glm(m ∼ en, family = ’binomial’))
fullfit <- gmmsslm(dat = X, zm = zm, paralist = inits,

xi = xi_inits, type = ’full’)

The gmmsslm() function yields a gmmsslm object as its output. To extract a
comprehensive summary from the fitted model, we can employ the summary() function.
This summary reports various aspects, including the likelihood value, fitted variance

Figure 2. Analysing the gastrointestinal dataset concerning the relationship between entropy and
observations, both labelled and unlabelled.

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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10 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

structure, convergence status, number of iterations, total number of observations, dimension,
model type and estimated parameters.

summary(fullfit)

Table:
[,1]

Likelihood "-244.9371"
VarianceStructure "Unequal covariance matrices"
Convergence "1"
Iteration "205"
TotalObservation "76"
Dimension "4"
ModelType "full"

Parameters:

$pi
[1] 0.7758885 0.2241115

$mu
[,1] [,2]

[1,] 0.018823669 -0.06329461
[2,] 0.002130841 -0.00751177
[3,] 0.050076855 -0.16765507
[4,] -0.042663822 0.14306282

$sigma
,, 1

[,1] [,2] [,3] [,4]
[1,] 1.302248e-02 0.0002572603 0.002515218 -8.461135e-05
[2,] 2.572603e-04 0.0128121495 -0.001279286 -6.947834e-04
[3,] 2.515218e-03 -0.0012792861 0.005025436 -1.812703e-03
[4,] -8.461135e-05 -0.0006947834 -0.001812703 3.683971e-03

,, 2

[,1] [,2] [,3] [,4]
[1,] 0.0086012175 0.0009785018 -0.0004327248 0.004907910
[2,] 0.0009785018 0.0147164175 -0.0051017162 -0.003288298
[3,] -0.0004327248 -0.0051017162 0.0039913872 0.001410450
[4,] 0.0049079101 -0.0032882976 0.0014104502 0.018480950

$xi
(Intercept) en
1.8276442 0.1434896

The initial values have minimal impact on the ECM algorithm’s outcomes in this
instance. For further exploration of this aspect, interested readers can refer to Data S1

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 11

containing relevant code for their own sensitivity analysis. Additionally, we can utilise the
predict() function to obtain predicted labels derived from the fit by gmmsslm().
This function returns the predicted labels for the unclassified data initially input into
gmmsslm().

> predict(fullfit)
[1] 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 2 1 1 1 1 2 2 2 2
[27] 2 2 1 2 1 2 1 2 2 1 1 1 1 1 1

Subsequently, we use the function paraextract() to extract the parameter list
from the fit by gmmsslm(); then we compute the conditional error rate for the unlabelled
data.

X_ul <- X[m == 1,]
labeltruth = vector(length = n)
labeltruth[gastro_data$‘ground truth’ == ’resection’] <- 1
labeltruth[gastro_data$‘ground truth’== ’no-resection’]<- 2
clust_ul <- labeltruth[m == 1]
err_ful <- erate(dat = X[m == 1,], p, g,

paralist = paraextract(fullfit), clust = clust_ul)
err_ful
[1] 0.2215959

We now use gmmsslm() to compare the performance of the Bayes classifier with the
unknown parameter vector θ estimated by θ̂CC, θ̂

(ig)

PC and θ̂
(full)
PC . Error rates are estimated

using leave-one-out cross-validation.

clust_com <- clust_ign <- clust_ful <- numeric(n)
for(i in 1:n){

comfit <- gmmsslm(dat = X[-i,], zm = labeltruth[-i],
paralist = inits, type = ’com’)

ignfit <- gmmsslm(dat = X[-i,], zm = zm[-i],
paralist = inits, type = ’ign’)

fullfit <- gmmsslm(dat = X[-i,], zm = zm[-i],
paralist = inits, xi = xi_inits, type = ’full’)

clust_com[i] <- bayesclassifier(dat = X[i,], p, g,
paralist = paraextract(comfit))

clust_ign[i] <- bayesclassifier(dat = X[i,], p, g,
paralist = paraextract(ignfit))

clust_ful[i] <- bayesclassifier(dat = X[i,], p, g,
paralist = paraextract(fullfit))

}
1 - mean(clust_com == labeltruth)
1 - mean(clust_ign == labeltruth)
1 - mean(clust_ful == labeltruth)

The estimated conditional error rates are reported in Table 1. The classifier based on
the estimates of the parameters using the full likelihood for the partially classified training

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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12 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

Table 1. Results for the Gastrointestinal dataset. The dataset has n = 76 observations, p = 4 features
and g = 2 classes.

nc (classified) nuc (unclassified) Error rate

R(θ̂
(full)
PC ) 35 41 0.158

R(θ̂
(ig)

PC ) 35 41 0.211
R(θ̂CC) 76 0 0.171

sample has lower estimated error rate than that of the rule that would be formed if the
sample were completely classified.

5. Summary

The R package gmmsslm implements the semi-supervised learning approach proposed
by Ahfock & McLachlan (2020) for estimating the Bayes’ classifier from a partially
classified training sample in which some of the feature vectors have missing labels. It
uses a generative model approach whereby the joint distribution of the feature vector and
its ground-truth label is adopted. Each of g pre-specified classes to which a feature vector
can belong has the multivariate Gaussian distribution. The conditional probability that a
feature vector has a missing label is formulated in a framework in which the missingness
mechanism models this probability to depend on the entropy of the feature vector using a
logistic model. The parameters in the Bayes classifier are estimated by ML via an ECM
algorithm. The package applies to classes with equal or unequal covariance matrices in
their multivariate Gaussian distributions. In application to a real-world medical dataset, the
estimated error rate of the Bayes’ classifier based on the partially classified training sample
is lower than that of the Bayes classifier formed from a completely classified sample.

Appendix A

Under the model (3) for MAR labels in the case of the two-class homoscedastic
Gaussian model, Ahfock & McLachlan (2020) derived the following theorem, which
motivated the development of a package to implement this semi-supervised learning
approach for possibly multiple classes with multivariate Gaussian distributions.

Theorem 1. The Fisher information about β in the partially classified sample xPC via the

full likelihood function L
(full)

PC
(Ψ) can be decomposed as

I
(full)

PC
(β) = ICC(β) − γ (Ψ)I

(clr)
CC

(β) + I(miss)
PC

(β), (A1)

where γ (Ψ) is the proportion of missing labels, ICC(β) is the information about β in

the completely classified sample xCC, I(clr)
CC

(β) is the conditional information about β

under the logistic regression model fitted to the class labels in xCC and I
(miss)
PC

(β) is the

information about β in the missing-label indicators under the assumed logistic model for

their distribution given their associated features in the partially classified sample xPC.

The expression (A1) for the Fisher information about the vector of discriminant
function coefficients contains the additional term I

(miss)
PC (β), arising from the additional

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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LYU, AHFOCK, THOMPSON AND MCLACHLAN 13

information about β in the missing-label indicators mj . This term has the potential to
compensate for the loss of information in not knowing the true labels of those unclassified
features in the partially unclassified sample. The compensation depends on the extent to
which the probability of a missing label for a feature depends on its entropy. It follows
that if

I
(miss)
PC (β) > γ (Ψ)I

(clr)
CC (β), (A2)

there is an increase in the information about β from the partially classified sample over the
information ICC(β) from the completely classified sample. The inequality in (A2) is used
to mean that the difference of the left- and right-hand sides of the inequality is a positive
definite matrix.

The reader is referred to equation (36) in Ahfock & McLachlan (2020) for a precise
definition of the conditional information term I

(clr)
CC (β). By deriving the asymptotic relative

efficiency of the Bayes rule using the full ML estimate of β, Ahfock & McLachlan (2020)
showed that the asymptotic expected excess error rate using the partially classified sample
xPC can be much lower than the corresponding excess rate using the completely classified
sample xCC. The contribution to the Fisher information from the missingness mechanism
can be relatively high if ξ1 is large, as the location of the unclassified features in the feature
space provides information about regions of high uncertainty and, hence, where the entropy
is high.

However, when extending to multiple classes with multivariate Gaussians, providing a
similar asymptotic analysis becomes considerably more complex. We are inclined to believe
that the foundational ideas of Theorem 1 should hold for the general case. However, a
comprehensive analytical verification would be extensive and is beyond the scope of this
paper. We recognise the importance of such a verification and are planning to address this
in our future research, possibly by leveraging numerical analysis techniques.

Appendix B

Since the expression for the optimal error rate is complicated, it is difficult to
give a theoretical analysis of likelihood inference based on a missing-data mechanism
in the general case. In the particular case of g = 2 classes and under the assumption of
equal covariance Σ1 = Σ2 = Σ, Ahfock & McLachlan (2020) provided a Taylor series
approximation for the logarithm of entropy as

log
{
e

(
y
j
; θ

)} = −[
log{log(2)} + d

2 (
y
j
;β

)
/{8 log(2)}] + O

(
d

4 (
y
j
;β

))
,

where
d

(
y
j
;β

) = β0 + β�
1 yj ,

with

β0 = log(π1/π2) − 1

2
(μ1 + μ2)

�Σ−1 (μ1 − μ2) and β1 = Σ−1 (μ1 − μ2) .

This expression provides a linear relationship between the negative log entropy
log{e(y

j
; θ)} and the square of the discriminant function d2(y

j
;β). Therefore, the negative

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.
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14 SEMI-SUPERVISED GAUSSIAN MIXTURE MODELLING IN R

log entropy in the conditional probability (3) can be replaced by the square of the
discriminant function

q(y
j
;β, ξ) = exp{ξ0 − ξ1d

2(y
j
;β)}

1 + exp{ξ0 − ξ1d
2(y

j
;β)} .

The missing-label indicator based on the entropy (g > 2) or the square of the discriminant
function (g = 2) can be generated using the function rlabel(dat, pi, mu, sigma,
xi). The element of the outputs represent a missing label when equal to 1 and an available
label when equal to 0.

Appendix C

We apply the ECM algorithm of Meng & Rubin (1993) to compute the ML estimate
of Ψ on the basis of the full likelihood L(full)

PC (Ψ). The adopted ECM framework makes the
obvious choice of declaring the ‘missing’ data to be the missing labels zj for those features
y
j

with mj = 1.
E step: It handles the presence of the introduced missing data by forming on the

(k + 1)th iteration the so-called Q-function Q

(
Ψ;Ψ(k)

)
equal to the expectation of the

complete data log likelihood conditional on the observed data y, using the current estimate
Ψ(k) for Ψ. As this complete data log likelihood is linear in the missing class labels, this
expectation conditional on y is effected by replacing the unobservable zij by its conditional
expectation given y, z (k)

ij
, where

z
(k)
ij

= EΨ(k){Zij |y}
= PrΨ(k){Zij = 1|y}
= τi

(
y
j
;Ψ(k)

)

=
π

(k)
i

φ
(
y
j
;μ

(k)
i

, Σ(k)
i

)

∑
g

h=1 π
(k)
h

φ
(
y
j
;μ

(k)
h

, Σ(k)
h

) .

Accordingly, we have that

Q

(
Ψ;Ψ(k)

) =
n∑

j=1

(1 − mj )

g∑

i=1

zij {log πi + φ(y
j
;μ

i
, Σi )}

+
n∑

j=1

mj

g∑

i=1

z
(k)
ij

{log πi + φ(y
j
;μ

i
, Σi )}

+
n∑

j=1

[
(1 − mj ) log{1 − q(y

j
; θ , ξ)} + mj log q(y

j
; θ , ξ)

]
.

We calculate the updated value Ψ(k+1) of Ψ using two conditional maximisation (CM)
steps.

CM-step 1: We fix ξ at its current value ξ (k) and update θ to θ (k+1) given by

θ (k+1) = arg max
θ

Q

(
θ , ξ (k); θ (k), ξ (k)

)
,

© 2024 The Authors. Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.

 1467842x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/anzs.12413 by U

niversity of Q
ueensland L

ibrary, W
iley O

nline L
ibrary on [06/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LYU, AHFOCK, THOMPSON AND MCLACHLAN 15

where

Q(θ , ξ (k); θ (k), ξ (k)) =
n∑

j=1

(1 − mj )

g∑

i=1

z
(k)
ij

{log πi + log fi (yj ;ωi )}

+
n∑

j=1

mj

g∑

i=1

z
(k)
ij

{log πi + log fi (yj ;ωi )}

+
n∑

j=1

[
(1 − mj ) log{1 − q(y

j
; θ , ξ (k))} + mj log q

(
y
j
; θ , ξ (k)

)]
.

CM-step 2: We now fix θ at its updated value θ (k+1) and update ξ to ξ (k+1) as

ξ (k+1) = arg max
ξ

Q

(
θ (k+1), ξ ; θ (k), ξ (k)

)
,

which reduces to
ξ (k+1) = arg max

ξ

log L(miss)
PC (θ (k+1), ξ),

on retaining only terms that depend on ξ .
As L(miss)

PC (θ (k+1), ξ) belongs to the regular exponential family, we use the function
glm(). The estimate Ψ

(full)
PC is given by the limiting value of Ψ(k) as k tends to infinity.

We take the ECM algorithm as having converged when

logL(full)
PC

(
Ψ(k+1)

)
− logL(full)

PC (Ψ(k))

is less than some arbitrarily specified value.

Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs.

Data S1. ANZJS code.
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