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Abstract

Mixtures of factor analyzers enable model-based density estimation to be under-
taken for high-dimensional data, where the number of observations n is small rel-
ative to their dimension p. However, this approach is sensitive to outliers as it is
based on a mixture model in which the multivariate normal family of distributions is
assumed for the component error and factor distributions. An extension to mixtures
of t-factor analyzers is considered, whereby the multivariate ¢-family is adopted for
the component error and factor distributions. An EM-based algorithm is developed
for the fitting of mixtures of t-factor analyzers. Its application is demonstrated in
the clustering of some microarray gene-expression data.
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1 Introduction

Finite mixture models are being increasingly used to model the distributions of
a wide variety of random phenomena and to cluster data sets; see, for example,
the recent books by Bohning (1999) and McLachlan and Peel (2000a) and
the references therein. Earlier references on mixture models may be found in
the previous books by Everitt and Hand (1981), Titterington et al. (1985),
McLachlan and Basford (1988), and Lindsay (1995).
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Let

Y:(YI"'WYE))T (1)

be a p-dimensional vector of feature variables. For continuous features Y}, the
density of Y can be modelled by a mixture of a sufficiently large enough
number g of multivariate normal component distributions,

g

fly; ®) =" m o(y; piy i), (2)

i=1

where ¢(y; p, X) denotes the p-variate normal density function with mean p
and covariance matrix 3. Here the vector ¥ of unknown parameters consists
of the mixing proportions 7;, the elements of the component means u;, and
the distinct elements of the component-covariance matrix X;.

The parameter vector ¥ can be estimated by maximum likelihood. For an

observed random sample, y,, ..., y,, the log likelihood function for W is given
by
log L(®) =" log f(y,; ). (3)
j=1

The maximum likelihood estimate (MLE) of ¥, U, is given by an appropriate
root of the likelihood equation,

Olog L(¥)/0¥ = 0. (4)

Solutions of (4) corresponding to local maximizers of log L(¥) can be obtained
via the expectation-maximization (EM) algorithm of Dempster, Laird, and
Rubin (1977); see also McLachlan and Krishnan (1997).

Besides providing an estimate of the density function of Y, the normal mixture
model (2) provides a probabilistic clustering of the observed data y,, ..., ¥y,
into ¢ clusters in terms of their estimated posterior probabilities of component
membership of the mixture. The posterior probability 7;(y,; ¥) that the jth
feature vector with observed value y; belongs to the ith component of the
mixture can be expressed by Bayes’ theorem as

Tid(Y5 M, i)

Ti\Y ;5 v) = )
( ’ ) Yhet Wh(b(yj; My Xh)

(5)



where 7; is the prior probability that an observation belongs to the ith com-
ponent (i =1,...,¢;5 = 1,...,n). An outright assignment of the data is
obtained by assigning each data point y; to the component to which it has
the highest estimated posterior probability of belonging.

One attractive feature of adopting mixture models with elliptically symmetric
components such as the normal or ¢-densities, is that the implied clustering is
invariant under affine transformations of the data (that is, under operations
relating to changes in location, scale, and rotation of the data); see, for exam-
ple, Coleman et al. (1999). However, the g-component normal mixture model
(2) with unrestricted component-covariance matrices is a highly parameterized
model with d = %p(p + 1) parameters for each component-covariance matrix
3;(i=1,..., g). Banfield and Raftery (1993) introduced a parameterization
of the component-covariance matrix ¥; based on a variant of the standard
spectral decomposition of £; (i = 1, ..., g). But if p is large relative to the
sample size n, it may not be possible to use this decomposition to infer an ap-
propriate model for the component-covariance matrices. Even if it is possible,
the results may not be reliable due to potential problems with near-singular
estimates of the component-covariance matrices when p is large relative to n.

A simple way of proceeding in the clustering of high-dimensional data would be
to take the component-covariances matrices X; to be diagonal. But this leads
to clusters whose axes are aligned with those of the feature space, whereas
in practice the clusters are of arbitrary orientation. For instance, taking the
3; to be a common multiple of the identity matrix leads to a soft-version
of k-means which produces spherical clusters. Another way commonly used
in practice for reducing the number of dimensions is to perform a principal
component analysis (PCA). But as is well known, projections of the feature
data y; onto the first few principal axes are not always useful in portraying
the group structure.

In this paper, we focus on the use of mixtures of factor analyzers as a means
of fitting normal mixture models in situations where p is sufficiently large
relative to the sample size n to cause potential problems with singular or
near-singular estimates of the component-covariance matrices. The number of
free parameters is controlled through the dimension of the latent factor space.
By working in this reduced space, it allows a model for each component-
covariance matrix with complexity lying between that of the isotropic and full
covariance structure models. This approach has been studied in a series of
articles by McLachlan (2000a, 2000b) and McLachlan et al. (2003).

However, the mixture of factor analyzers model is sensitive to outliers since
it uses normal errors and factors. Here we consider the use of mixtures of
t-factor analyzers in an attempt to make the model less sensitive to outliers.
An EM-type algorithm is described for the fitting of factor mixture models



where the family of multivariate ¢-distributions is adopted for the distributions
of the latent factors and error terms. We demonstrate the implementation of
this algorithm in its application to a real data set involving the clustering of
gene expression levels on the basis of tissue samples from some microarray
experiments.

2 Mixtures of Factor Analyzers

Factor analysis is commonly used for explaining data, in particular, corre-
lations between variables in multivariate observations. It can be used also
for dimensionality reduction. However, a single-factor analysis model like a
principal component analysis, provides only a global linear model for the rep-
resentation of the data in a lower-dimensional subspace. Thus it has limited
scope in revealing group structure in a data set.

A global nonlinear approach can be obtained by postulating a finite mixture
of linear submodels for the distribution of the full observation vector Y ; given
the (unobservable) factors w;. That is, we can provide a local dimensionality
reduction method by assuming that the distribution of the observation Y,
can be modelled as

Yj =u; + BZUZJ + €;j with prob. T (l = 1, ey g) (6)

for j =1, ..., n, where U;; is a ¢g-dimensional (¢ < p) vector of latent or
unobservable variables called factors and B is a p x ¢ matrix of factor loadings
(parameters). The factor (vector) U,; is distributed N,(0, I,), independently
of e;;, which is distributed N,(0, D;), where D; is a diagonal matrix (i =
1, ..., g) and where I, denotes the ¢ x ¢ identity matrix.

Thus the mixture of factor analyzers model is given by (2), where the ith
component-covariance matrix 3; has the form

where B; is a p x ¢ matrix of factor loadings and D; is a diagonal matrix (i =
1, ..., g). The parameter vector ¥ now consists of the elements of the u,, the
B;, and the D;, along with the mixing proportions m; (i =1, ..., g — 1), on
putting 7, =1 — E;‘-’;ll 7;. Unlike the principal component analysis model, the
mixture of factor analyzers model (6) enjoys a powerful invariance property:
changes in the scales of the feature variables in y,, appear only as scale changes
in the appropriate rows of the matrix B; of factor loadings (in conjunction
with scale changes in the elements of the vectors of means and errors.)



If g is chosen sufficiently smaller than p, the representation (7) imposes some
constraints on the component-covariance matrices 3; and thus reduces the
number of free parameters to be estimated. Note that in the case of ¢ > 1, there
is an infinity of choices for B;, since (7) is still satisfied if B; is post multiplied
by any orthogonal matrix of order g. As 1g(q — 1) constraints are needed for
B to be uniquely defined, the number of free parameters is pg+ p — %q(q -1).
With a principal component analysis, there are %pl (p1 + 1) parameters where
p1 is the number of principal components chosen.

3 An AECM algorithm for mixture of factor analyzers models

The mixture of factor analyzers model can be fitted by maximum likelihood
via the alternating expectation—conditional maximization (AECM) algorithm
(Meng and van Dyk, 1997), as described in McLachlan et al. (2003). We give
again the equations here for the updating of the parameters, as they are needed
to describe the extension of the algorithm to handle the fitting of mixtures of
t-factor analyzers.

The expectation—conditional maximization (ECM) algorithm proposed by Meng
and Rubin (1993) replaces the M-step of the EM algorithm by a number of
computationally simpler conditional maximization (CM) steps. The AECM
algorithm is an extension of the ECM algorithm, where the specification of
the complete data is allowed to be different on each CM-step. Meng and van
Dyk (1997) established that monotone convergence of the sequence of likeli-
hood values is retained with the AECM algorithm and that under standard
regularity conditions, the sequence converges to a stationary value of the like-
lihood function (which in practice is usually a local maximum).

To apply the AECM algorithm to the fitting of the mixture of factor analyzers
model, we partition the vector of unknown parameters ¥ as (\IJIT, \Ilg)T, where
P, contains the mixing proportions m; (1 = 1, ..., g — 1) and the elements
of the component means p, (i = 1, ..., g). The subvector ¥y contains the
elements of the B; and the D; (1 =1, ..., g).

We let ¥*) = (\IIYC)T, \Ilgk)T)T be the value of ¥ after the kth iteration of the
AECM algorithm. For this application of the AECM algorithm, one iteration
consists of two cycles, and there is one E-step and two CM-steps for each cycle.

The two CM-steps correspond to the partition of ¥ into the two subvectors
‘I’l and ‘I’Q.

For the first cycle of the AECM algorithm, we specify the missing data to be
just the component-indicator vectors, z1, ..., 2,, where z;; = (2,); is one or
zero, according to whether y; arose or did not arise from the ith component



(1=1,...,¢9;j=1,...,n). In this conceptualization of the mixture model,
it is valid to assume that the observation y; has arisen from one of the g
components.

3.1 FE-step

In order to carry out the E-step, we need to be able to compute the conditional
expectation of the sufficient statistics. To carry out this step, we need to be
able to calculate the conditional expectations,

Cyui = E{Zijijz?;' ‘ yj} (8)
and
Cuwi = E{Z;U;;U}; | y,}. (9)

To do this, we need the result that the random vector (Y?, UZ-TJ-)T given its

membership of the ith component of the mixture (that is, z; 1) has a
multivariate normal distribution,
Y, . .
U.. | Rij = I~ NPJHI(I'I’Z', 61) (7’ = 1a SRR g), (10)
ij
where
pi = (ui, 0")" (11)
and the covariance matrix &, is given by
B;B] + D; B,
& = Z : (12)

B; I,

It follows that the conditional distribution of U;; given y; and z;; = 1 is given
by

Ujly,, zj =1~ N (y; — m,), ) (13)
fore=1,...,9;5=1, ..., n, where
v; = (B:Bj + D;)"! B;. (14)



and where

Using (13),
and
Cuui = 7i(y;; O){vi (y; — ) (y; — )" vi + Qs (17)

see McLachlan et al. (2003) for further details.
3.2 CM-steps

The first conditional CM-step leads to 7r ) and I (k) being updated to

) =
+ ZTZ y]7 (18)
Jj=1
and
(k+1) _ - k) = k)
w0 =2y )y Yoy o) (19)
j=1 j=1
fori =1,..., g, where 7;(y,; ¥) is the ith component-posterior probability

of y; defined by (5).

For the second cycle for the updating of ¥y, we specify the missing data to be
the factors u;1, ... u;,, as well as the component-indicator vectors, z1, ..., Z,.
On setting ¥*+1/2) equal to (\Ilng)T, ‘Ilgk)T)T, an E-step is performed to cal-
culate Q(¥; ®*+1/2)) which is the conditional expectation of the complete-
data log likelihood given the observed data, using & = ®*+/2_ The CM-step
on this second cycle is implemented by the maximization of Q(¥; wlktl/ 2))
over ¥ with ¥, set equal to w&’““’. This yields the updated estimates ng“)
and ngﬂ). The former is given by

B 2 V0 (T 50 gl 20

2

where



yk+1/2) _ S iy TEYD) (g, — pF ) (g, — pET)T

j [
Z?—l Ti('yj; gkt 1/2)) ’ (21)
v =BPB" +DP)'BY, (22)
and
o =1,-+"" B (23)
fori =1, ..., g. The updated estimate ngﬂ) is given by

D§k+1) =diag{V§k+ 1/2) B§k+1)HZ(k+ 1/2)B§k+1)T}

:diag{VZ(H 1/2) VZ(H 1/2)7(k)B(k+1)T}’ (24)

% i

where

n k+1/2
Fk+1/2) Zj:l Ti(yj; ‘I’(k+1/2)) Ez( Y )(UjUgT | yj)
i E?:l Ti(yj; \Il(k+ 1/2))

=y VA0 1 (25)

and Ei('ch 72} denotes conditional expectation given membership of the ith
component, using ®*+1/2 for @

Some of the estimates of the elements of the diagonal matrix D; (the unique-
nesses) will be close to zero if effectively not more than g observations are
unequivocally assigned to the ith component of the mixture in terms of the
fitted posterior probabilities of component membership. This will lead to spikes
or near singularities in the likelihood. One way to avoid this is to impose the
condition of a common value D for the D;,

D;=D (i=1,...,9). (26)

Another way is to impose constraints on the ratios of the diagonal elements
of each D;; see Hathaway (1985) and Ingrassia (2004). Alternatively, one can
adopt a Bayesian approach as, for example, in Fokoué and Titterington (2002)
and Svensén and Bishop (2005).

Under the mixture of probabilistic component analyzers (PCAs) model as
proposed by Tipping and Bishop (1997), the ith component-covariance matrix



3, has the form (7) with each D; now having the isotropic structure

D=0, (i=1,...,9). (27)

Under this isotropic restriction (27), BZ(-kH) and 0§k+1)2 are given explicitly by

an eigenvalue decomposition of the current value of V; without the need to
introduce the latent factors u;; as “missing” data.

We can make use of the link of factor analysis with the probabilistic PCA
algorithm to specify an initial starting value for ¥; see McLachlan et al. (2003).

4 Multivariate t-distribution

The mixture of factor analyzers model is sensitive to outliers since it adopts the
multivariate normal family for the distributions of the errors and the latent
factors. An obvious way to improve the robustness of this model for data
which have longer tails than the normal or atypical observations is to consider
using the multivariate ¢-family of elliptically symmetric distributions. It has
an additional parameter called the degrees of freedom that controls the length
of the tails of the distribution. Although the number of outliers needed for
breakdown is almost the same as with the normal distribution, the outliers
have to be much larger (Hennig, 2004).

Before we proceed to consider a mixture model that adopts the ¢-family for
modelling the distribution of the component errors and also the latent factors,
we give a brief account of the multivariate ¢-distribution. The ¢-distribution for
the 7th component-conditional distribution of Y; is obtained by embedding
the normal N,(u,, ;) distribution in a wider class of elliptically symmetric
distributions with an additional parameter v; called the degrees of freedom.
This t-distribution can be characterized by letting W; denote a random vari-
able distributed as

W; ~ gamma (5v;, 5;), (28)

where the gamma («, ) density function is equal to

fa(w; e, B) = {B*w* ! /T () } exp(—Bw)lpecy(w) (@, B>0),  (29)

and I4(w) denotes the indicator function that is 1 if w belongs to A and is
zero otherwise. Then, if the conditional distribution of Y'; given W; = w; is



specified to be

Yj ‘ wy ~ Np(l"’i, Ei/wj)a (30)

the unconditional distribution of Y'; has a (multivariate) t-distribution with
mean p,;, scale matrix 3;, and degrees of freedom v;. The mean of this t-
distribution is p; and its covariance matrix is {v;/(v; — 2)}X;. We write

Yj th(p’iazi,yi)a (31)

and we let fi(y i My i, v;) denote the corresponding density; see, for example,
McLachlan and Peel (2000a, Chapter 7) and Kotz and Nadarajah (2004). As v;
tends to infinity, the ¢-distribution approaches the normal distribution. Hence
this parameter v; may be viewed as a robustness tuning parameter. It can be
fixed in advance or it can be inferred from the data for each component.

McLachlan and Peel (2000a, Chapter 7) and Peel and McLachlan (2000) have
considered the fitting of mixtures of ¢-components via the ECM algorithm.
In this framework, the unobservable random variables W, defined by (29) are
introduced as “missing data.” Thus on the E-step, their conditional expecta-
tion given the observed data has to be computed, using the current estimate
for ¥. Tt can be shown that the conditional expectation of W; given y; and
zij = 1 can be expressed as

E{W; | y,,zi; = 1} = wi(y;; ¥),

where
vi+p
iy ) = 32
w (yJ ) Vi+5(yj; i Ez) ( )
and where
5(y;, pas i) = (y; — ) =7 (g — my) (33)

denotes the squared Mahalanobis distance between y,; and p,; (i =1, ... g; j =
1, ..., n).

5 Formulation of mixture of ¢-factor analyzers model

McLachlan and Peel (1998, 2000a) replaced the multivariate normal compo-
nent distributions in normal mixture models by multivariate ¢-distribution

10



components in an attempt to make the model more robust to outliers. We
now follow their approach in the present context with factor analytic compo-
nents with arbitrary component-diagonal matrices D;. Zhao and Jiang (2006)
have independently considered this problem in the special case of spherical
Di-

We now formulate our mixture of t-analyzers model by replacing the multivari-
ate normal distribution in (10) for the ith component-conditional distribution
of Y; by the multivariate ¢-distribution with mean vector vector p,, scale
matrix §;, and v; degrees with the factor analytic restriction (7) on the the
component-scale matrices 3;. Thus our postulated mixture model of ¢-factor
analyzers assumes that y,, ..., y,, is an observed random sample from the
t-mixture density

g
Flys @) = mifo(yi mi Bi,vi), (34)
i=1
where
Ei:BiB;r‘i‘Di (iZl,...,g) (35)

and where now the vector of unknown parameters ¥ consists of the degrees
of freedom v; in addition to the mixing proportions 7; and the elements of
the w,, B;, and the D; (i = 1, ..., g). As in the mixture of factor analyzers
model, B; is a p X ¢ matrix and D, is a diagonal matrix.

In order to fit this model (34) with the restriction (35), it is computationally
convenient to exploit its link with factor analysis. Accordingly, corresponding
to (6), we assume that

Y, =p,+BU;+e; with prob. m; (i=1, ..., g) (36)
for j =1, ..., n, where the joint distribution of the factor U,; and of the error

e;; needs to be specified so that it is consistent with the ¢-mixture formulation
(34) for the marginal distribution of Y.

From (10), we have for the usual factor analysis model that conditional on
membership of the ith component of the mixture the joint distribution of Y,
and its associated factor (vector) U;; is multivariate normal,

Y.
(U]> | Zig =1~ Np+q(u;'ka §z) (i=1,...,9). (37)
ij

where the mean p} and the covariance matrix §; are defined by (11) and

11



(12). We now replace the normal distribution by the ¢-distribution in (37) to
postulate that

Y, . '
(UJ> | 2ij =1 ~tpg(pi, &vi) (i=1,..., 9). (38)
ij

This specification of the joint distribution of Y'; and its associated factors in
(36) will imply the t-mixture model (34) for the marginal distribution of Y,
with the restriction (35) on its component-scale matrices.

Using the characterization of the ¢-distribution discussed in Section 4, it follows
that we can express (37) alternatively as

Y. i
(U]> | wjy 215 =1 ~ Npiopi, &i/wj), (39)
ij

where w;; is a value of the weight variable W; taken to have the gamma

distribution (29). It can be established from (39) that

Uij | wj,zij =1 ~ Ny(0, I,/w;) (40)

and

eij | wj, zij =1 ~ Np(0, D;/w;), (41)

and hence that

Uij | zij =1~ tq(O, Iq, Vi) (42)

and

eij ‘ Zij =1 ~ tp(O, Di, Vz')- (43)

Thus with this formulation, the error terms e;; and the factors U;; are dis-
tributed according to the t-distribution with the same degrees of freedom.
However, the factors and error terms are no longer independently distributed
as in the normal-based model for factor analysis, but they are uncorrelated.
To see this, we have from (39) that conditional on w;, U;; and e;; are uncor-
related, and hence, unconditionally uncorrelated.

12



6 An AECM algorithm for mixtures of ¢{-factor analyzers

We can use maximum likelihood to provide an estimator of the vector of un-
known parameters in the mixture of ¢-factor analyzers model specified by (34)
and (35). We use the AECM algorithm as outlined in Section 3 for mixtures
of factor analyzers. The results as outlined in iMcLachlan and Peel (2000, Sec-
tion 3.8) on the consistency of the ML estimator in the case of normal mixture
components should carry over here if the adopted factor analysis model holds
true for the component distributions.

More specifically, we declare the missing data to be the component-indicators
zij, the factors u;; in (36), and the weights w; in the characterization (39) of
the t-distribution for the sth component distribution of Y'; and U;;. We have
from (39) that

Yij | wij, wj, zij =1 ~ Ny(p; + Biugj, Difw;) (44)

fore=1,..., 9.

Thus in the EM framework for this problem, the complete data consist, in ad-
dition to the observed data y;, of the component-indicators z;;, the unobserv-
able weights w;, and the latent factors u;;. The complete-data log likelihood
for ¥ formed on the basis of the complete data is given by

g n

log L.(¥) = Z Z zij log a;; (45)

i=1j=1

where
ai; = T fa(wy; 5vi, 5v3)O(wij; 0, Io/w;)d(y;; p; + Biwij, Dijw;).  (46)

From (46), log a;; can be expressed as

4
IOg Q5 = Z Qhij, (47)
h=1
where
a5 = log m;, (48)

agij = — log F(%l/i) + %l/i log(%l/i)
+3vi(logw; — wy) — logwj, (49)
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asij = —3q10g(2m) + 3qlogw; + suiui;/w;, (50)

and

a4 =—3plog(2m) — +iplogw; — log|D;|
_%wj(yj — K — Biuij)TDi_l(yj — K~ Biuij)- (51)

6.1 FE-step

It can be seen from (51) that in order to carry out the E-step, we need to be
able to calculate the conditional expectation of terms like

Z WUy (52)

and
ZW;U UL (53)

From (39), we have that conditional on y,; and wy, the ith component-conditional
distribution of U;; is multivariate normal with mean

v (y; — 1) (54)

and covariance matrix €2;/w;, where v, and €; are defined by (14) and (15).

We can now use (39) and (54) to compute the required conditional expecta-
tions (52) and (53). It follows that conditional on w; and z;; =1

E{Z;W;U;j | y;, wi} = wiry] (y; — my) (55)
and

E{Z;W;U;UL | y;,wit = Qi+ wiv? (y; — ) (y; — 1) (56)
fori=1,..., 4.

The conditional expectation of W; given y; and z; = 1 is given by (32), and
the conditional expectation of Z;; given y; is given by the posterior proba-
bility that y; belongs to the ith component of the mixture. This posterior

14



probability can be expressed as in (5) on replacing the multivariate normal
density ¢(y,; p;; ¥) by the multivariate t-density f(y;; p;, X4, ;). That is,

) ﬂ—zft(yjﬁ I"’zazlayz)

i=1,...,g;7=1,...,n),(57
Yhe 17Thft(yj, By Zh, Vh) ( ),(57)

Ti(yj; v

where now the vector of parameters ¥ consists of the mixing proportions, the
elements of u,, B;, and of D;, and the degrees of freedom v; (i =1, ..., g).

Using the results (56) and (57), it is straightforward to show that an AECM
algorithm can be formulated as in Section 3 to iteratively fit the mixture of
t-factor analyzers model as specified by (35) and (37).

6.2 CM-steps

We use two CM steps in the AECM algorithm, which correspond to the par-
tition of ¥ into the two subvectors ¥; and ¥y, where ¥, contains the mix-
ing proportions, the elements of the u,, and the degrees of freedom v; (i =
1, ..., g). The subvector ¥, contains the elements of the matrix B; of factor
loadings and of the diagonal matrix D.

On the first cycle, we specify the missing data to be the component-indicator
variables Z;; and the weights w, in the characterization (39) of the ¢-distribution
for the component distribution of y,. On the (k + 1)th iteration of the algo-
rithm, we update the estimates of the mixing proportions using (18), where
now the posterior probabilities are calculated using (57). The updated esti-
mate of the 7th component mean p, is given by

p Y =3 5y TNy /3 ny,; TEw, (58)
7j=1

i=1

(k)

where the current weight w;;” is formed using the current value T*) for ¥ in

(32).

In the case where the degrees of freedom v; in the component t-distributions
are not specified but are to be estimated from the data, we have to update
the estimate of v; on the second cycle. The updated estimate I/Z-(k_H) of v; does

not exist in closed form, but is given as a solution of the equation

1 n
{—¢(%Vi) + log(3v, (— > T % (log w®) — wg-“))

Jj=1

15



(k) (k)
w4 .
+ (”’271“) — log (”’ 2+p)} =0, (59)

where Ti(f) = 7i(y;; ‘I’(k)),ngk) = ?:171-(@ (1t =1,...,9), and ¢(-) is the

Digamma function.

The estimate of ¥ is updated so that its current value after the first cycle is
given by

gk+1/2) _ (\I,glc+1)T7 ‘ng)T)T. (60)

On the second cycle of this iteration, the complete data are expanded to
include the unobservable factors U ;; associated with the y;. The estimates of
the matrix of factor loadings B; and the diagonal matrix D; can be updated
using (20) to (25), but where the ith component sample covariance matrix is
calculated as

n k+1/2 k+1 k+1
pisise _ Dianilyss T w0 — )y =
' E?:l Ti(yj§ Wkt 1/2)) ’
where wg?H/Z) is updated partially by using ®**+1/2 for @ in (32).

7 Clustering of microarray gene-expression data

As an example of the use of mixtures of ¢-factor analyzers to cluster high-
dimensional data, we consider the clustering of 234 tissue samples on the
basis of 70 genes. van’t Veer et al. (2002) developed a set of 70 marker genes
to predict the clinical outcome of breast-cancer patients. van de Vijver (2002)
used these genes to study a set of 295 patients; 234 of these patients were
not examined in the van’t Veer et al study. Weigelt et al. (2005), referring to
Perou et al. (2000), reported that there were at least four molecular subtypes
associated with distinct patient outcomes from breast cancer. These four types
were luminal, normal-like, basal-like, and HER2+, having different metastatic
properties and outcomes. We wish to investigate the claims of Weigelt at al.
(2005) and Perou et al. (2000) about the number of molecular subtypes with
respect to these 234 tissue samples. But firstly, we note some results for the
supervised classification of these 234 tissue samples.

In the study of van de Vijver et al. (2002), these 234 tissues were assigned
to a good-prognosis class GG; and a poor-prognosis class G, using a classifier
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Table 1
Confusion matrix for van de Vijver classification versus our classification using an
SVM

van de Vijver

G1 Go
SVM G175 7
SVM G2 18 134

based on 61 lymph-node negative tissues from an earlier study of van’t Veer
et al. (2002); 93 tissues were assigned to G; and 141 tissues to Gs. The rule
was essentially equivalent to the nearest-centroid classifier, as it was based on
the correlation between the feature vector (the gene-signature vector) and the
mean of the good-prognosis class G;. We also classified these 234 tissues, using
a support vector machine (SVM) based on the same 61 tissue samples from
van’t Veer et al. (2002). With its application, 18 of the 93 tissues assigned to
the class G'; were put in the class G5, while 7 of the 141 tissues assigned to G
were put in ;1. These results are shown in the confusion matrix in Table 1. We
examined the 18 tissues classified by our SVM as being in the bad-prognosis
class, but in the good-prognosis class by van de Vijver et al. (2002). Of the 18
tissues, four have an outcome of distant metastasis during the follow up, two of
which had distant metastases within five years and these two died. The other
two were still alive at the time of follow up (about nine years later). Next,
we examined the seven tissues classified by our SVM as in the good-prognosis
class but by van de Vijver et al. (2002) as in the bad-prognosis class. Of these
seven, five of these had no distant metastases. Of the other two with distant
metastases, both were still alive at the last follow up (one at more than eight
years, the other at only two years).

We now consider the clustering of these 234 tissues without use of the 61
tissues used by van de Vijver et al. (2002). We first worked with all p = 70
genes and fitted a g-component normal mixture model, with g ranging from 2
to 4, with the restriction that the component-covariance matrices ¥; are equal.
To assess the number of components g to be used in this normal mixture model,
we used BIC (the Bayesian information criterion) of Schwarz (1978). With this
criterion, we compare twice the increase in the log likelihood, that is, —2log A
where ) is the likelihood ratio statistic, to dlogn, where d is the increase in the
number of parameters fitted in proceeding from g to g + 1 components. Using
BIC, we concluded that there was not sufficient support in the data to reject
g = 2 components in favour of g = 3; likewise for rejecting g = 3 in favour
of g = 4. For example, for g = 2 versus g = 3, —2log A is 224.9, which is less
than dlogn = 71 x 5.46 = 388. The g = 2 clustering puts 121 tissues in one
cluster and 113 in the other. Compared with the (supervised) classification of
these tissues from the support vector machine, the larger cluster contained 72
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Table 2
Confusion matrix for our classification using mixture of normals with equal covari-
ance matrices versus our classification using an SVM

mixture of normals

G Go
SVM G; 72 10
SVM G2 49 103

from the good-prognosis class and the smaller cluster contained 103 from the
bad-prognosis class. These results are given in a confusion matrix in Table 2.

Although we can fit mixtures of normal components with no numerical diffi-
culties due to the imposition of the restriction of equal component-covariance
matrices ¥; = X(i = 1, ..., g), the number of distinct parameters in ¥ is
still very large relative to the sample size of n = 234. Also, there is no reason
why the homoscedasticity should hold. Hence we decided to explore these data
further for group structure without the restriction of homoscedasticity. How-
ever, we are unable to fit a mixture of normal distributions with unrestricted
component-covariance matrices for p = 70 variables (genes) as there will be
problems with singular or near-singular estimates of the ¥;. Accordingly, we
considered the fitting of mixtures of g factor analyzers. We adopted ¢ = 6
factors for this purpose of exploring the data for group structure.

As before, we used BIC to assess the number g of components (factor analyz-
ers) to be used in the mixture model. We also used this criterion to assess the
number g of factors to be used for a given choice of g. Regularity conditions
hold for this latter testing problem provided g is fixed (McLachlan, Chapter
8, 2000). Application of this criterion here for g = 2,3, and 4 suggests that it
is reasonable to use ¢ = 6 factors, although its use interpreted rigidly would
lead to values of ¢ up to ¢ = 10. But we settled on ¢ = 6 factors, bearing in
mind that the sample size is limited relative to the number of parameters that
would be needed in a model with ¢ = 10.

On fitting mixtures of g factor analyzers with ¢ = 6 factors, we proceeded to
see if we could find evidence in the data to support (according to BIC) using
g = 3 or 4 over g = 2 components. The component-covariance matrices were
unconstrained apart from the assumptions that the diagonal matrices D; were
equal; that is, D; = D. As in the case of equal component-covariance matrices
we could find no evidence in support of ¢ = 3 or 4 components over g = 2.

The clustering according to a mixture of g = 2 factor analyzers with ¢ = 6 puts
181 in the larger cluster and 53 in the smaller cluster. The cardinalities of the
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clusters are found to be quite different from that obtained using mixtures of
normals with equal component-covariance matrices. When we identified these
two clusters with the classification into good- and bad-prognosis classes using
SVM, we found that the larger cluster contains 81 of the 82 tissues assigned
to the good-prognosis class. We also fitted a mixture of g = 2 ¢-factor analyz-
ers, obtaining one cluster with 156 tissues and the other with 78. The former
contained the 82 tissues classified to the good-prognosis class by the SVM.
The difference between the clusterings obtained with the use of - instead of
ordinary factor analyzers indicates that there are tissues with atypical gene
expressions. These tissues can be identified by those that have small weights
with respect to both components in the mixture model. The biological signif-
icance of these atypical gene expressions is still under investigation.
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