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Summary. Finite mixture models are being increasingly used to model the dis-
tributions of a wide variety of random phenomena. While normal mixture models
are often used to cluster data sets of continuous multivariate data, a more robust
clustering can be obtained by considering the ¢ mixture model-based approach. Mix-
tures of factor analyzers enable model-based density estimation to be undertaken
for high-dimensional data where the number of observations n is very large rela-
tive to their dimension p. As the approach using the multivariate normal family of
distributions is sensitive to outliers, it is more robust to adopt the multivariate ¢
family for the component error and factor distributions. The computational aspects
associated with robustness and high dimensionality in these approaches to cluster
analysis are discussed and illustrated;

Key words: finite mixture models, normal components, mixtures of factor analyz-
ers, t distributions, EM algorithm

1 Introduction

Finite mixture models are being increasingly used to model the distributions of a
wide variety of random phenomena. As in [MNBO6], consider their application in the

context of cluster analysis. Let the p-dimensional vector & = (z1, - .., &))" contain
the values of p variables measured on each of n (independent) entities to be clustered,
and let x; denote the value of & corresponding to the jth entity (j = 1, ..., n). With

the mixture approach to clustering, &1, ..., £, are assumed to be an observed
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random sample from mixture of a finite number, say g, of groups in some unknown

proportions mi,. .., 7y. The mixture density of T; is expressed as
g
f@;; O) = mfi@;0:)  (G=1,...,n), (1)
i=1
where the mixing proportions 71, ..., mg sum to one and the group-conditional den-
sity fi(x;; 0;) is specified up to a vector 6; of unknown parameters (i =1, ..., g).
The vector of all unknown parameters is given by ¥ = (71, ..., mg—1,07, ..., HgT)T,

where the superscript T' denotes vector transpose. Using an estimate of ¥, this ap-
proach gives a probabilistic clustering of the data into g clusters in terms of estimates
of the posterior probabilities of component membership,

mi fi(x;; 0:)

Ti(x;) = , 2
)= Ty @) ®
where 7;(x;) is the posterior probability that @; (really the entity with observation
;) belongs to the ith component of the mixture(i =1, ..., g;7=1, ..., n).

The parameter vector ¥ can be estimated by maximum likelihood. The max-
imum likelihood estimate (MLE) of ¥, W, is given by an appropriate root of the
likelihood equation,

Olog L(¥) /0¥ = 0, (3)
where "
log L(®) = Y _ log fi(x;; 6:) (4)

is the log likelihood function for ¥. Solutions of (3) corresponding to local maximizers
of log L(¥) can be obtained via the expectation-maximization (EM) algorithm of
[DLR77].

For the modelling of continuous data, the group-conditional densities are usually
taken to belong to the same parametric family, for example, the normal. In this case,

fi(xj; 0:) = d(xj; py, X), (5)

where ¢(x;; pu, X) denotes the p-dimensional multivariate normal distribution with
mean vector i and covariance matrix X

One attractive feature of adopting mixture models with elliptically symmetric
components such as the normal or ¢ densities, is that the implied clustering is in-
variant under affine transformations of the data (that is, under operations relating
to changes in location, scale, and rotation of the data); see, for example, [CDH99].
Thus the clustering process does not depend on irrelevant factors such as the units of
measurement or the orientation of the clusters in space. Concerning the desirability
of the latter, [Har75] has commented that affine invariance is less compelling that
than invariance under the change of measuring units of each variable.

Unfortunately, as with many other applications of ML estimation for normal-
based models, the ML fitting of normal mixture models is not robust against gross
outliers, at least if the number of components g is not fixed. The problem of pro-
viding protection against outliers in multivariate data is a very difficult problem
and increases in difficulty with the dimension of the data. There is now a vast lit-
erature on robust modelling methods some of which focus on outlier identification,
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while others are more for outlier accommodation ([Hub81]). In a series of papers,
[ROCY6], [RW96], [RW9I7], [WRI3], and [WR94] have considered robust estimation
of multivariate location and shape, and the consequent identification of outliers and
leverage points. More recently, [DGO05] have discussed the concept of breakdown
points ([Ham71]; [DH83]). In the context of mixtures, [Hen04] has given an account
of robustness issues with ML estimation of univariate normal mixture models.

One-way to broaden the normal mixture parametric family for potential outliers
or data with longer-than-normal tails is to adopt mixtures of ¢ distributions, as
proposed by [MP98] and [MP00b], and [PM00]. Mixtures of a fixed number of ¢
components, are not robust against outliers. The advantage of the ¢ mixture model
is that, although the number of outliers needed for breakdown is almost the same
as with the normal mixture model, the outliers have to be much larger. This point
is made more precise in [Hen04].

Robust estimation in the context of mixture models has been considered in
the past by [Cam84] and [MB88], among others, using M-estimates of the means
and covariance matrices of the normal components of the mixture model. [Mar00]
has provided a formal approach to robust mixture estimation by applying weighted
likelihood methodology ([MBL9S8] in the context of mixture models. [MN04] and
[NFDO04] have considered the trimmed likelihood methodology ([HL97]; [VN98]) in
the fitting of mixtures of normals and generalized linear models. Also, [TK99] have
proposed the technique of otstrap “bumping,” which can be used for resistant fitting.

We give a brief review of the fitting of mixtures of ¢ components and the use of
mixture models for the clustering of high-dimensional data. With mixtures of normal
or ¢t component distributions, there may be problems with potential singularities in
the estimates of the component scale matrices. One way to avoiding such singular-
ities for mixture of normal components is to fit mixtures of factor analyzers. Thus
we will then discuss how this latter model can be made less sensitive to outliers
by considering the implementation of mixtures of ¢ factor analyzers whereby the
multivariate ¢ family is adopted for the component error and factor distributions.

2 Multivariate ¢t Distribution

For mixtures of normal components, the ith component-conditional distribution of
the jth observation vector X is given by

Xj ~ N(l"’zv 21)7

denoting the multivariate normal distribution with mean vector u; and covariance
matrix 3.

With the ¢ mixture model, the normal distribution for the ith component is
embedded in a wider class of elliptically symmetric distributions with an additional
parameter v; called the degrees of freedom. Then the ¢th-conditional distribution of
X is given by

Xj Nt(p‘iazia'/i): (6)
where t(p;, X, v;) denotes the multivariate ¢ distribution with mean g, scale ma-
trix 3%, and v; degrees of freedom. The mean of this ¢ distribution is p,; and its
covariance matrix is {v;/(v; — 2)} ;.

The density corresponding to (6) is given by
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L(#52) |27
(i) 2P D) {1+ 85, poy; Z20) [} 24P

f(xg; pyy X0, vi) = (7)

where
§(@y, iy Xi) = (5 — )" 27 (@5 — 1) (8)
denotes the squared Mahalanobis distance between x; and p, (with X as the
covariance matrix).
The t distribution (6) can be characterized by letting W; denote a random
variable distributed as
W; ~ gamma (3vi, 3v4), 9)

where the gamma («, 3) density function is equal to
{ﬂawail/f‘(a)}exp(_ﬁw)I[O,oo)(w) (aa ﬂ > 0)7 (10)

and I4(w) denotes the indicator function that is 1 if w belongs to A and is zero
otherwise.
If the conditional distribution of X; given W; = w; is specified by

X |wj ~ N(w;, Xi/wy), (11)

then the unconditional distribution of X is given by the ¢ distribution (6); see, for
example, the monograph of [KN04] on the ¢ distribution. As v; tends to infinity, the
t distribution approaches the normal distribution. Hence this parameter v; may be
viewed as a robustness tuning parameter. It can be fixed in advance or it can be
inferred from the data for each component.

For ML estimation in the case of a single ¢ distribution, the reader is referred to
[Rub83], [LR8&7], [LR94], [LRI5], [Liu97], and [LRW98]. A brief history of the devel-
opment of ML estimation of a single-component ¢ distribution is given in [LR95].

3 ML Estimation of Mixtures of ¢t Components

[MP00a] have implemented the E- and M-steps of the EM algorithm and its variant,
the ECM (expectation—conditional maximization) algorithm for the ML estimation
of multivariate ¢ components. The ECM algorithm proposed by [MR93] replaces the
M-step of the EM algorithm by a number of computationally simpler conditional
maximization (CM) steps.

In the EM framework for this problem, the unobservable variable w; in the
characterization (11) of the ¢ distribution for the ith component of the ¢ mixture
model and the component-indicator labels z;; are treated as being the “missing”
data, where z;; is defined to be one or zero according as &; belongs or does not belong
to the ith component of the mixture(i =1, ..., g;j7=1,..., n). On the (k+ 1)th
iteration of the EM algorithm, the updated estimates of the mixing proportion, the
mean vector ft,, and the scale matrix X; are given by

n

rf =3, (12)

j=1
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(k+1) Z (k) (k)m]/z ®) (k) (13)

and
k) (k k+1 k+1
wrny o T Pw @y — ) (@ — p)T
pI) = — @& (14)
Ej:l Tij
In the above,
(k k k
(k) ( )f((l?], /J‘z )7 ZE )7 Vi( )) (15)

T f(mja w(k))
is the posterior probability that x; belongs to the ith component of the mixture,
using the current fit ¥*) for & (i=1,...,9;7=1,...,n). Also,

® (k) +p
AN é(w OSSO

which is the current stimate of the conditional expectation of U; given x; and
Zij = 1.

(16)

The updated estimate I/(k+1)

a solution of the equation

of v; does not exist in closed form, but is given as

{—1/)(%1/7;) +log(3vs) + 1+ W (k) (log w(k) wf]’-c))
(k) (k)
v, + v+
+ (%) —log (ZTP)} =0, (17)
where n( ) = E;‘ L Z(Jk) (=1, ..., g) and 9(-) is the Digamma function.

Following the proposal of [KTV94] in the case of a single-component ¢ distribu-

tion, we can replace the divisor Z A l(]k) in (14) by

Z (), ()
lj ’

which should improve the speed of convergence; see also [Liu97] and [LRW98].

These E- and M-steps are alternated until the changes in the estimated param-
eters or the log likelihood are less than some specified threshold. It can be seen that
if the degrees of freedom v; is fixed in advance for each component, then the M-step
exists in closed form. In this case where v; is fixed beforehand, the estimation of the
component parameters is a form of M-estimation. However, an attractive feature of
the use of the ¢ distribution to model the component distributions is that the de-
grees of robustness as controlled by v; can be inferred from the data by computing
its MLE.

4 Factor Analysis Model for Dimension Reduction

The g-component normal mixture model with unrestricted component-covariance
matrices is a highly parameterized model with d = %p(p + 1) parameters for each
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component-covariance matrix X; (1 = 1, ..., g). [BR93] introduced a parameteri-
zation of the component-covariance matrix X; based on a variant of the standard
spectral decomposition of 3; (i = 1, ..., g). However, if p is large relative to the

sample size n, it may not be possible to use this decomposition to infer an appropri-
ate model for the component-covariance matrices. Even if it is possible, the results
may not be reliable due to potential problems with near-singular estimates of the
component-covariance matrices when p is large relative to n.

A common approach to reducing the number of dimensions is to perform a
principal component analysis (PCA). But as is well known, projections of the feature
data x; onto the first few principal axes are not always useful in portraying the group
structure; see [MP00a] and [Cha83]. Another approach for reducing the number of
unknown parameters in the forms for the component-covariance matrices is to adopt
the mixture of factor analyzers model, as considered in [MP00b]. This model was
originally proposed by [GH97] and [HDR97] for the purposes of visualizing high
dimensional data in a lower dimensional space to explore for group structure; see
also [TB97] who considered the related model of mixtures of principal component
analyzers for the same purpose. Further references may be found in [MP00a].

In the next section, we focus on mixtures of factor analyzers from the perspec-
tive of a method for model-based density estimation from high-dimensional data,
and hence for the clustering of such data. This approach enables a normal mixture
model to be fitted to a sample of n data points of dimension p, where p is large
relative to n. The number of free parameters is controlled through the dimension of
the latent factor space. By working in this reduced space, it allows a model for each
component-covariance matrix with complexity lying between that of the isotropic
and full covariance structure models without any restrictions on the covariance ma-
trices.

5 Mixtures of Normal Factor Analyzers

A global nonlinear approach can be obtained by postulating a finite mixture of
linear submodels for the distribution of the full observation vector X; given the
(unobservable) factors w;. That is, we can provide a local dimensionality reduction
method by assuming that the distribution of the observation X; can be modelled
as

Xj =M, + B,U” + €;; with pI‘Ob. i1 ('L =1,..., g) (18)
for j = 1, ..., n, where the factors Ui, ..., U;, are distributed independently
N(0, I,), independently of the e;;, which are distributed independently N (0, D;),
where D; is a diagonal matrix (i=1, ..., g).

Thus the mixture of factor analyzers model is given by

g
f@s; §) =Y mg(@;; p;, ), (19)
i=1
where the ith component-covariance matrix X; has the form
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and where B; is a p x ¢ matrix of factor loadings and D; is a diagonal matrix (i =
1, ..., g). The parameter vector ¥ now consists of the mixing proportions m; and
the elements of the p,, the B;, and the D;.

The mixture of factor analyzers model can be fitted by using the alternating
expectation—conditional maximization (AECM) algorithm ([MV97]). The AECM
algorithm is an extension of the ECM algorithm, where the specification of the
complete data is allowed to be different on each CM-step.

To apply the AECM algorithm to the fitting of the mixture of factor analyzers
model, we partition the vector of unknown parameters ¥ as (¥, @5 )7, where
¥, contains the mixing proportions m; (i = 1, ..., g — 1) and the elements of the
component means i, (¢ =1, ..., g). The subvector ¥, contains the elements of the
B; and the D; (i =1, ..., g).

We let @) = (Wﬁk)T, ng)T)T be the value of ¥ after the kth iteration of
the AECM algorithm. For this application of the AECM algorithm, one iteration
consists of two cycles, and there is one E-step and one CM-step for each cycle. The
two CM-steps correspond to the partition of ¥ into the two subvectors ¥; and Ws.

Direct differentiation of the log likelihood function shows that the ML estimate
of the diagonal matrix D; satisfies

D; = diag(V; — B;B}), (21)

where N N
Vi=) ni(@s; &) (@5 — o) (@5 — )7 Y mi@s; ©). (22)

j=1 j=1

As remarked by [LM71] in the context of direct computation of the ML estimate for
a single-component factor analysis model, the equation (21) looks temptingly simple
to use to solve for i)i, but was not recommended due to convergence problems.

On comparing (21) with (16), it can be seen that with the calculation of the
ML estimate of D; directly from the (incomplete-data) log likelihood function, the
unconditional expectation of UjU;-T , which is the identity matrix, is used in place
of the conditional expectation in the E-step of the AECM algorithm. Unlike the
direct approach of calculating the ML estimate, the EM algorithm and its variants
such as the AECM version have good convergence properties in that they ensure the
likelihood is not decreased after each iteration regardless of the choice of starting
point; see [MPBO03] for further discussion.

It can be seen from (21) that some of the estimates of the elements of the
diagonal matrix D; (the uniquenesses) will be close to zero if effectively not more
than g observations are unequivocally assigned to the ith component of the mixture
in terms of the fitted posterior probabilities of component membership. This will
lead to spikes or near singularities in the likelihood. One way to avoid this is to
impose the condition of a common value D for the D,

D;=D (i=1,...,q). (23)

An alternative way of proceeding is to adopt some prior distribution for the D; as,
for example, in the Bayesian approach of [FT02].

The mixture of probabilistic component analyzers (PCAs) model, as proposed
by [TB97], has the form (20) with each D; now having the isotropic structure



8 Kaye Basford, Geoff McLachlan, and Richard Bean
D;=dlI, (i=1,...,9). (24)

Under this isotropic restriction (24) the iterative updating of B; and D; is not

necessary since, given the component membership of the mixture of PCAs, ng‘H)

2
and ai(k"'l)

of V;.

are given explicitly by an eigenvalue decomposition of the current value

6 Mixtures of t Factor Analyzers

The mixture of factor analyzers model is sensitive to outliers since it uses normal
errors and factors. Recently, [MBBO06] have considered the use of mixtures of ¢ an-
alyzers in an attempt to make the model less sensitive to outliers. With mixtures
of t factor analyzers, the error terms e;; and the factors U;; are assumed to be
distributed according to the ¢ distribution with the same degrees of freedom. Under
this model, the factors and error terms are no longer independently distributed but
they are uncorrelated.

Following [MBBO06], we now formulate our mixture of ¢ analyzers model by
replacing the multivariate normal distribution in (19) for the ith component-
conditional distribution of X; by the multivariate ¢ distribution with mean vector
vector pt,, scale matrix 37, and v; degrees of freedom with the factor analytic re-
striction (20) on the component-scale matrices ;. Thus our postulated mixture
model of ¢ factor analyzers assumes that &1, ..., , is an observed random sample
from the ¢ mixture density

g9
F@i; ®) = miful@s; i, i vi), (25)

i=1

where

Sl:BlBlT“‘Dz (izla---:g) (26)

and where now the vector of unknown parameters ¥ consists of the degrees of
freedom v; in addition to the mixing proportions 7; and the elements of the u,, B;,
and the D; (¢ =1, ..., g). As in the mixture of factor analyzers model, B; isapxq
matrix and D; is a diagonal matrix.

In order to fit this model (25) with the restriction (26), it is computationally
convenient to exploit its link with factor analysis. Accordingly, corresponding to
(18), we assume that

.Xj =M; + B,Um + €;; with prob. ; (’L =1, ..., g) (27)

for j =1, ..., n, where the joint distribution of the factor U;; and of the error e;;
needs to be specified so that it is consistent with the ¢ mixture formulation (25) for
the marginal distribution of X;.

For the normal factor analysis model, we have that conditional on membership
of the ith component of the mixture the joint distribution of X; and its associated
factor (vector) U;; is multivariate normal,

(g:) | 2ij =1 ~ Npyq(ui, &) (i=1,...,9). (28)
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where the mean p} and the covariance matrix §; are defined by

pi = (pi, 07)" (29)

and the covariance matrix &; is given by

We now replace the normal distrubution by the ¢ distribution in (28) to postulate
that

Y; " )
(Uj) | zij =1~ tp+q(l'l‘ia£i7ui) (Z =1,..., g)' (31)

This specification of the joint distribution of X; and its associated factors in (27)
will imply the ¢ mixture model (25) for the marginal distribution of X; with the
restriction (26) on its component-scale matrices.

Using the characterization of the ¢ distribution discussed earlier, it follows that
we can express (26) alternatively as

Y; .
(Ui-) | wj,zi5 =1 ~ Npyq(p;, &/wj), (32)

where w;; is a value of the weight variable W; taken to have the gamma distribution
(10).
It can be established from (32) that

Uij |wj,zij =1 ~ Ng(0, Io/w;) (33)
and
€ij | zij =1 ~ Np(0, Di/wj), (34)
and hence that
Uij | zij =1 ~14(0, I, vi) (35)
and
€;; | zij =1 ~ tp(O,Di,Vq;). (36)

Thus with this formulation, the error terms e;; and the factors U;; are dis-
tributed according to the ¢ distribution with the same degrees of freedom. However,
the factors and error terms are no longer independently distributed as in the normal-
based model for factor analysis, but they are uncorrelated. To see this, we have from
(32) that conditional on wj, U;; and e;; are uncorrelated, and hence, uncondition-
ally uncorrelated.

We fit the mixture of ¢ factor analyzers model specified by (25) and (26) using
the AECM algorithm ([MV97]), as described in [MBB06].

7 Discussion

We have considered the use of mixtures of multivariate ¢ distributions instead of
normal components as a more robust approach to the clustering of multivariate
continuous data which have longer tails that the normal or atypical observations.
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As pointed out by [Hen04], although the number of outliers needed for breakdown
with the ¢ mixture model is almost the same as with the normal version, the outliers
have to be much larger.

In considering the robustness of mixture models, it is usual to consider the
number of components as fixed. This is because the existence of outliers in a data
set can be handled by the addition of further components in the mixture model if the
number of components is not fixed. Breakdown can still occur if the contaminating
points lie between the clusters of the main body of points and fill in the feature
space to the extent that a fewer number of components is needed in the mixture
model than the actual number of clusters ([Hen04]). But obviously the situation is
fairly straightforward if the number of clusters are known a priori. However, this is
usually not the case in clustering applications.

We consider also the case of clustering high-dimensional feature data via nor-
mal mixture models. These models can be fitted by adopting the factor analysis
model to represent the component-covariance matrices. It is shown how the result-
ing model known as mixtures of factor analyzers can be made more robust by using
the multivariate t distribution for the component distributions of the factors and
errors.

Examples will be presented in the oral presentation and computational aspects
associated with these approaches further discussed and illustrated.
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