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Abstract. An important and common problem in microarray exper-
iments is the detection of genes that are differentially expressed in a
given number of classes. As this problem concerns the selection of signif-
icant genes from a large pool of candidate genes, it needs to be carried
out within the framework of multiple hypothesis testing. In this paper,
we focus on the use of mixture models to handle the multiplicity issue.
With this approach, a measure of the local FDR (false discovery rate)
is provided for each gene. An attractive feature of the mixture model
approach is that it provides a framework for the estimation of the prior
probability that a gene is not differentially expressed, and this proba-
bility can subsequently be used in forming a decision rule. The rule can
also be formed to take the false negative rate into account. We apply this
approach to a well-known publicly available data set on breast cancer,
and discuss our findings with reference to other approaches.

1 Introduction

DNA microarrays allow the simultaneous measurement of the expression levels
of tens of thousands of genes for a single biological sample; see, for example,
McLachlan et al. (2004). A major objective in these experiments is to find genes
that are differentially expressed in a given number of classes. In cancer studies,
the classes may correspond to normal versus tumour tissues, or to different
subtypes of a particular cancer. Comparing gene expression profiles across these
classes gives insight into the roles of these genes, and is important in making
new biological discoveries. Yet now a real goal for microarrays is to establish
their use as tools in medicine. This requires the identification of subsets of genes
(marker genes) potentially useful in cancer diagnosis and prognosis.

In the early days of microarray technology, a simple fold change test with
an arbitrary cut-off value was used to determine differentially expressed genes.
This method is now known to be unreliable as it does not take into account the
statistical variability. In order to determine statistical significance, a test such
as the t-test, can be performed for each gene. However, when many hypotheses
are tested the probability of a type I error (false positive) occurring increases
sharply with the number of hypotheses. This multiplicity poses a considerable
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problem in microarray data, where there are many thousands of gene expression
values.

Recently, a number of sophisticated statistical methods have been proposed,
including several nonparametric methods. Tusher et al. (2001), in their signifi-
cance analysis method (SAM), proposed a refinement on the standard Student’s
t-statistic. Because of the large number of genes in microarray experiments, there
will always be some genes with a very small sum of squares across replicates, so
that their (absolute) t-values will be very large whether or not their averages are
large. The modified t-statistic of Tusher et al. (2001) avoids this problem. Pan
et al. (2003) also considered a nonparametric approach in their mixture model
method (MMM). These methods are reviewed in Pan (2002).

In this paper, we initially present the statistical problem and show how a
prediction rule based on a two-component mixture model can be applied. In
particular, we show how the mixture model approach can handle the multiplicity
issue. It provides a measure of the local FDR (false discovery rate), but can be
used in the spirit of the q-value. In the latter case, an upper bound, co, can
be obtained on the posterior probability of nondifferential expression, to ensure
that the FDR is bounded at some desired level α.

We finally apply this method to real data, in the well-known breast cancer
study of Hedenfalk et al. (2001), with the aim of identifying new genes which are
differentially expressed between BRCA1 and BRCA2 tumours. We compare our
findings with those of Storey and Tibshirani (2003), and of Broët et al. (2004),
who also analysed this data set using different approaches.

2 Two-Component Mixture Model Framework

2.1 Definition of Model

We focus on a decision-theoretic approach to the problem of finding genes that
are differentially expressed. We use a prediction rule approach based on a two-
component mixture model as formulated in Lee et al. (2000) and Efron et al.
(2001). We let G denote the population of genes under consideration. It can be
decomposed into G0 and G1, where G0 is the population of genes that are not
differentially expressed, and G1 is the complement of G0; that is, G1 contains
the genes that are differentially expressed.

We let the random variable Zij be defined to be one or zero according as the
jth gene belongs to Gi or not (i = 0, 1; j = 1, . . . , N). We define Hj to be zero
or one according as to whether the null hypothesis of no differential expression
does or does not hold for the jth gene. Thus Z1j is zero or one according as to
whether Hj is zero or one.

The prior probability that the jth gene belongs to G0 is assumed to be π0

for all j. That is, π0 = pr{Hj = 0} and π1 = pr{Hj = 1}. Assuming that the
test statistics Wj all have the same distribution in Gi, we let fi(wj) denote the
density of Wj in Gi (i = 1, 2). The unconditional density f(wj) of Wj is given
by the two-component mixture model

f(wj) = π0 f0(wj) + π1 f1(wj). (1)
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Using Bayes Theorem, the posterior probability that the jth gene is not
differentially expressed (that is, belongs to G0) is given by

τ0(wj) = π0f0(wj)/f(wj) (j = 1, . . . , N). (2)

In this framework, the gene-specific posterior probabilities τ0(wj) provide the
basis for optimal statistical inference about differential expression.

2.2 Bayes Decision Rule

Let e01 and e10 denote the two errors when a rule is used to assign a gene to
either G0 or G1, where eij is the probability that a gene from Gi is assigned to
Gj (i, j = 0, 1). That is, e01 is the probability of a false positive and e10 is the
probability of a false negative. Then the risk is given by

Risk = (1 − c)π0e01 + cπ1e10, (3)

where (1− c) is the cost of a false positive. As the risk depends only on the ratio
of the costs of misallocation, they have been scaled to add to one without loss
of generality.

The Bayes rule, which is the rule that minimizes the risk (3), assigns a gene
to G1 if

τ0(wj) ≤ c; (4)

otherwise, the jth gene is assigned to G0. In the case of equal costs of misalloca-
tion (c = 0.5), the cutoff point for the posterior probability τ0(wj) in (4) reduces
to 0.5.

2.3 The FDR and FNR

When many hypotheses are tested, the probability that a type I error (false pos-
itive) is made increases rapidly with the number of hypotheses. The Bonferroni
method is perhaps the best known method for dealing with this problem. It con-
trols the family-wise error rate (FWER), which is the probability that at least
one false positive error will be made. Control of the FWER is useful for situations
where the aim is to identify a small number of genes that are truly differentially
expressed. However, in the case of exploratory type microarray analyses, ap-
proaches to control the FWER are too strict and will lead to missed findings.
Here it is more appropriate to emphasize the proportion of false positives among
the identified differentially expressed genes. The false discovery rate (FDR), in-
troduced by Benjamini and Hochberg (1995), is essentially the expectation of
this proportion and is widely used for microarray analyses. Similarly, the false
nondiscovery rate (FNR) can be defined as the expected proportion of false neg-
atives among the genes identified as not differentially expressed (Genovese and
Wasserman 2002).
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2.4 Estimated FDR

In practice, we do not know π0 nor the density f(wj), and perhaps not f0(wj). In
some instances, the latter may be known as we may have chosen our test statistic
so that its null distribution is known (or known to a good approximation). For
example, we shall work with the oneway analysis of variance F -statistic, which
can be so transformed that its null distribution is approximately the standard
normal.

Alternatively, null replications of the test statistic might be created, for ex-
ample, by the bootstrap or permutation methods. We shall estimate the popula-
tion density f(w) by maximum likelihood after its formulation using a mixture
model. But it can be estimated also nonparametrically by its empirical distribu-
tion based on the observed test statistics wj .

If π̂0, f̂0(wj), and f̂(wj) denote estimates of π0, f0(wj), and f(wj), respec-
tively, the gene-specific summaries of differential expression can be expressed in
terms of the estimated posterior probabilities τ̂0(wj), where

τ̂0(wj) = π̂0f̂0(wj)/f̂(wj) (j = 1, . . . , N) (5)

is the estimated posterior probability that the jth gene is not differentially ex-
pressed. An optimal ranking of the genes can therefore be obtained by ranking
the genes according to the τ̂0(wj) ranked from smallest to largest. A short list of
genes can be obtained by including all genes with τ̂0(wj) less than some threshold
co or by taking the top No genes in the ranked list.

Suppose that we select all genes with

τ̂0(wj) ≤ co. (6)

Then an estimate of the FDR rate is given by

F̂DR =
N∑

j=1

τ̂0(wj) I[0,co](τ̂0(wj))/Nr, (7)

where

Nr =
N∑

j=1

I[0,co](τ̂0(wj)) (8)

is the number of the selected genes in the list. Here IA(w)) is the indicator
function that is one if w belongs to the interval A and is zero otherwise.

Thus we can find a data-dependent co ≤ 1 as large as possible such that
F̂DR ≤ α. This assumes that there will be some genes with τ̂0(wj) ≤ α, which
will be true in the typical situation in practice. This bound is approximate due
to the use of estimates in forming the posterior probabilities of nondifferential
expression and so it depends on the fit of the densities f0(wj) and f(wj).
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2.5 Bayes Risk in Terms of Estimated FDR and FNR

The Bayes prediction rule minimizes the risk of an allocation defined by (3). We
can estimate the error of a false positive e01 and the error of a false negative e10

by

ê01 =
N∑

j=1

τ̂0(wj)ẑ1j/
N∑

j=1

τ̂0(wj) (9)

and

ê10 =
N∑

j=1

τ̂1(wj)ẑ0j/

N∑

j=1

τ̂1(wj) (10)

respectively, where ẑ0j is taken to be zero or one according as to whether τ̂0(wj)
is less than or greater than c in (4), and ẑ1j = 1− ẑ0j. Also, we can estimate the
prior probability π0 as

π̂0 =
N∑

j=1

τ̂0(wj)/N. (11)

On substituting these estimates (9) to (11) into the right-hand side of (3), the
estimated risk can be written as

R̂isk = (1 − c)ω̂F̂DR + c(1 − ω̂)F̂NR, (12)

where

F̂DR =
N∑

j=1

τ̂0(wj)ẑ1j/

N∑

j=1

ẑ1j (13)

and

F̂NR =
N∑

j=1

τ̂1(wj)ẑ0j/

N∑

j=1

ẑ0j (14)

are estimates of the FDR and FNR respectively, and where

ω̂ =
N∑

j=1

ẑ1j/N

= Nr/N (15)

is an estimate of the probability that a gene is selected.
Thus unlike the tests or rules that are designed to control just the FDR, the

Bayes rule approach in its selection of the genes can be viewed as controlling a
linear combination of the FDR and FNR. The balance between the FDR and
the FNR is controlled by the threshold c.
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3 Estimation of Posterior Probabilities

3.1 Mixture Model Approach

We choose our test statistic Wj so that it has a normal distribution under the
null hypothesis Hj that the jth gene is not differentially expressed. For example,
if Fj denotes the usual test statistic in a one-way analysis of variance of M
observations from g classes, then we follow Broët et al. (2002) and transform the
Fj statistic as

Wj =

(

1 − 2
9(M − g)

)

F
1
3

j −
(

1 − 2
9(g − 1)

)

√

2
9(M − g)

F
2
3

j +
2

9(g − 1)

(16)

The distribution of the transformed statistic Wj is approximately a standard
normal under the null hypothesis that the jth gene is not differentially expressed
(that is, given its membership of population G0). As noted in Broët et al. (2002),
it is remarkably accurate for (M − g) ≥ 10.

With this transformation, we can take the null density f0(wj) to be the
standard normal density (which has mean zero and unit variance). In order to
estimate the mixing proportion π0 and the mixture density f(wj), we postulate
it to have the h-component normal mixture form

f(wj) =
h−1∑

i=0

πiφ(wj ; µi, σi2), (17)

where we specify µ0 = 0 and σi2 = 1. In (17), φ(wj ; µi, σi2) denotes the normal
density with mean µi and unit variance σi2. We suggest starting with h = 2,
adding more components if considered necessary as judged using the Bayesian
Information Criterion (BIC).

3.2 Use of P -Values

An an alternative to working with the test statistic Wj , we could follow the
approach of Allison et al. (2002) and use the associated P -value pj. We can find
these P -values using permutation methods whereby we permute the class labels.
Using just the B permutations of the class labels for the gene-specific statistic
Wj , the P -value for Wj = wj is assessed as

pj =
#{b : w

(b)
0j ≥ wj}
B

, (18)

where w
(b)
0j is the null version of wj after the bth permutation of the class labels.
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3.3 Link with FDR

Suppose that τ0(w) is monotonic (decreasing in w). Then the rule (6) for declar-
ing the jth gene to be differentially expressed is equivalent to

w ≥ wo, (19)

where wo is the value of w such that τ0(wo) = co. The associated FDR, actually
the positive FDR (Storey 2004), is given by

π0
1 − F0(wo)
1 − F (wo)

. (20)

Using (17), the positive FDR can be approximated using the fully parametric
estimate for F (wo),

F̂ (wo) = π0Φ(wo) +
h−1∑

i=1

π̂iΦ(
wo − µ̂i

σ̂i
) (21)

in the right-hand side of (21).
Alternatively, we could choose wo, and hence co, so that (20) is equal to α.

It thus also has an interpretation in terms of the q-value of Storey (2004). For
if all genes with τ0(w) ≤ co are declared to be differentially expressed, then the
FDR will be bounded above by α; see Efron et al. (2001).

Concerning the link of this approach with the tail-area methodology of Ben-
jamini and Hochberg (1995), suppose that the right-hand side of (20) is mono-
tonic (decreasing) in w0. Then as shown explicitly in Wit and McClure (2004),
if we set π0 equal to one and estimate F (w0) by its empirical distribution in
the right-hand side of (20), the consequent rule is equivalent to the Benjamini-
Hochberg procedure.

4 Application to Hedenfalk Breast Cancer Data

We analyze the publicly available cDNA microarray data set of Hedenfalk et al.
(2001). They studied the gene expression profiles of tumours from women with
hereditary BRCA1- (n1 = 7) and BRCA2-mutation positive cancer (n2 = 8),
here referred to as BRCA1 and BRCA2, as well as sporadic cases of breast
cancer.

Hedenfalk et al. initially considered genes which could differentiate between
the three types of breast cancer (BRCA1, BRCA2 and sporadic). They computed
a modified F -statistic and used it to assign a P -value to each gene. A threshold
of α = 0.001 was selected to find 51 genes from a total of N = 3, 226 that show
differential gene expression. One of the main goals of the study was to identify the
genes differentially expressed between the BRCA1 and BRCA2 cancers. They
used a combination of three methods (modified t-test, weighted gene analysis
and mutual-information scoring), and identified 176 significant genes.
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Here we consider the gene expression data from the BRCA1 and BRCA2
tumours only. We use a subset of 3,170 genes, having eliminated genes with one
or more measurements greater than 20, which was several interquartile ranges
away from the interquartile range of all the data (as in Storey and Tibshirani
2003). We applied our decision-theoretic approach to this data set. In Table 1,
we report the estimated values of the FDR, calculated using (13), for various
levels of the threshold co.

Table 1. Estimated FDR for various levels of co

co Nr F̂DR

0.5 1702 0.29
0.4 1235 0.23
0.3 850 0.18
0.2 483 0.12
0.1 175 0.06

It can be seen that if we were to declare the jth gene to be differentially
expressed if τ0(wj) ≤ 0.1, then 175 genes would be selected as being significant,
with an estimated FDR equal to 0.06. The prior probability of a gene not being
differentially expressed (π0) was estimated to be 0.465. We found that the above
estimates, based on the semi-parametric version (13), were the same (to the
second decimal place) as those calculated using the fully parametric estimate
given in (20).

Of these 175 significant genes, 137 are over-expressed in BRCA1 tumours rel-
ative to BRCA2. Hedenfalk et al. (2001), and also Storey and Tibshirani (2003)
in their further analysis of this data set, found too that a large block of genes are
over-expressed in BRCA1. In particular, these included genes involved in DNA
repair and cell death, such as MSH2 (DNA repair) and PDCD5 (induction of
apoptosis), also identified by us. In their study, Storey and Tibshirani (2003)
identified 160 genes to be significant for differential expression between BRCA1
and BRCA2 by thresholding genes with q-values less than or equal to α = 0.05
(an arbitrary cut-off value). Here the q-value of a particular gene is the expected
proportion of false positives incurred when calling that gene significant, so that
8 of their 160 genes were expected to be false positives.

On comparing our 175 genes with the 160 identified by Storey and Tibshirani
(2003), we found that there were 140 genes in common. Of the 35 excluded
genes, 12 were included in the Hedenfalk set of 176. The functional classes (where
known) of the remaining 23 genes are shown in Table 2, and interestingly include
several genes involved in cell death as well as cell cycle control.

Broët et al. (2004) recently also applied a mixture model appproach to iden-
tify differentially expressed genes in this data set. However, they implemented
a Bayesian approach, in contrast to the frequentist approach as applied here.
They obtained a slightly different estimate for π0 of 0.52, hence rejecting 52 %
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Table 2. Functional classes for uniquely identified genes

Functional Class Gene Identifier

Cell death ITPK1, NALP1, GADD34
Cell cycle MAPK6
Transcription GATA3, TLE1, HDAC2, GTF2B
Cell-to-cell signalling ANXA1
Cell growth/adhesion/motility COL5A1, ACTB1
Protein synthesis EIF2S2
Protein modification PRKACA, CSTB
Metabolism OXCT1, POX1

of the genes as not differentially expressed, as opposed to our value of 46.5 %.
In their approach, they did not constrain the variance of the first component to
be one because it presents computational problems implementing the Bayesian
solution via MCMC methods. However, using the frequentist approach, we were
able to fix the variance to be one.

In conclusion, we feel that a mixture model-based approach towards finding
differentially expressed genes in microarray data can provide useful information
beyond that of other methods. In particular, genes which score as most significant
using standard methods for multiple hypothesis testing may not necessarily be of
most biological relevance (see Broët et al. 2004). Genes with more subtle changes
in their expression levels, indicating that they are more tightly regulated, may
be of more importance in the biology of tumour formation.
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