Asymptotic sequences and series

Consider a sequence of functions \(\{ \varphi_n(z) \}_{n=0}^{\infty} \)

all defined for all \(z \) in some sector

\[R = (r, \infty) e^{i(\alpha, \beta)} \]

and all nonzero for \(z \in R \) (or at least, for suff. large \(|z| \))

Such a sequence is called an asymptotic sequence if

\[\varphi_{n+1} = o(\varphi_n) \quad (z \to \infty), \]

\[n = 0, 1, 2, \ldots \]

i.e.

\[\lim_{z \to \infty} \frac{\varphi_{n+1}(z)}{\varphi_n(z)} = 0, \quad n = 0, 1, 2, \ldots \]

Exs:

1) \[\varphi_n(z) = \frac{1}{z^n} \quad (z \to \infty) \]
2) \(f_n(z) = \frac{\log z (\sin z)^n}{(z+1)^n} \quad (z \to \infty) \)

[Here sectors are arbitrary - but watch for branch cut of \(\log \)]

Real Exs:

1) \(f_n(x) = \frac{1}{(x^2+1)^n} \quad (x \to \infty) \)

2) \(\frac{1}{x}, \frac{1}{x \ln x}, \frac{1}{x^2}, \frac{1}{x^2 \ln x}, \ldots \)

Next suppose that we are given \(f(x) \) defined on \(\mathbb{R} \) and that there exist constants \(c_0, c_1, c_2, \ldots \) such that
0) \[f(z) = O\left(y_0(z) \right) \quad (z \to \infty) \]

1) \[f(z) = c_0 y_0(z) + O\left(y_1(z) \right) \quad (z \to \infty) \]

2) \[f(z) = c_0 y_0(z) + c_1 y_1(z) + O\left(y_2(z) \right) \quad (z \to \infty) \]

\[\vdots \]

N+1) \[f(z) = \sum_{n=0}^{N} c_n y_n(z) + O\left(y_{N+1}(z) \right) \quad (z \to \infty) \]

Note A: Second formula implies the first, and so improves on (is a refinement of, is stronger than) the first, i.e.

\[c_0 y_0(z) + O\left(y_1(z) \right) = (c_0 + O(1)) y_0(z) = O\left(y_0(z) \right) \quad (z \to \infty) \]

so \(1) \implies 2) \)

Similarly

\[\vdots \implies (N) \implies (N-1) \implies (N-2) \implies \cdots \implies (0) \]
Note B: We can write, equivalently

\[f(x) = \sum_{n=0}^{N} c_n \varphi_n(x) + o(\varphi_n(x)), \quad N = 0, 1, 2, \ldots \quad (x \rightarrow \infty) \]

(Why? Make sure you can see it!)

Note C:

\[f \sim c_0 \varphi \quad (x \rightarrow \infty) \]

and

\[f \sim c_0 \varphi + c_1 \varphi \quad (x \rightarrow \infty) \]

and

\[\vdots \]

and

\[f \sim \sum_{n=0}^{N} c_n \varphi_n \quad (x \rightarrow \infty) \quad N = 0, 1, 2, \ldots \]

We write

\[f(x) \sim \sum_{n=0}^{\infty} c_n \varphi_n(x) \quad (x \rightarrow \infty). \]
The RHS here is called an

asymptotic series (A.S.) for \(f(z) \) \((z \to \infty) \)

or an

asymptotic expansion (A.E.) of \(f(z) \) \((\text{near } z = \infty) \)

The names are due to Poincaré. The first

(nonzero) term on the RHS is called the

dominant or leading term.

Ex: \(f(z) = e^{1/z} \) \((z \to \infty) \)

\[f(z) = O(1) \quad (z \to \infty) \]

\[f(z) = 1 + O\left(\frac{1}{z}\right) \quad (z \to \infty) \]

\[f(z) = 1 + \frac{1}{z} + O\left(\frac{1}{z^2}\right) \quad (z \to \infty) \]

\[f(z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + O\left(\frac{1}{z^3}\right) \quad (z \to \infty) \]

\[f(z) \sim \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} \quad (z \to \infty) \]
In this case \(\sim \) can be replaced by \(= \) everywhere \(a \neq 0 \), not just as \(z \to \infty \).

The correctness of each line follows from the convergence of the P.S. for \(e^z \) (everywhere):

\[
\sum_{n=0}^{N} \frac{z^n}{n!} = O(z^{N+1}) \quad \text{as} \quad \sum_{n=0}^{N} \frac{1}{n! z^n} = O(z^{-N-1})
\]

(\(z \to 0 \)) \quad (\(z \to \infty \))

However, this example is not especially interesting. More interesting to note that an A.S. is not always convergent, and may not converge for any \(a \).

Ex: Consider the function \(G(z) \) defined for \(a \) with positive real part (i.e. on \(R = (0, \infty) \)) by

\[
G(z) = \int_{z}^{\infty} \frac{e^{-as}}{1 + t} \, dt
\]
Now integrate by parts (this is OK here -- consider \int_0^b and let $b \to \infty$ later):

$$
G(t) = \left[-\frac{1}{2} \frac{e^{-2t}}{1+t}\right]_{t=0}^{t=\infty} + \frac{1}{2} \int_0^\infty e^{-2t} \frac{d}{dt} \left[\frac{1}{1+t}\right] dt
$$

$$
= \frac{1}{2} - \frac{1}{2} \int_0^\infty \frac{e^{-2t}}{(1+t)^2} dt
$$

$$
= \frac{1}{2} - o\left(\frac{1}{2}\right) \quad (t \to \infty) \quad \text{as} \quad \int_0^\infty \frac{e^{-2t}}{(1+t)^2} dt \to 0
$$

$$
\lim_{t \to \infty} \frac{1}{2} = \frac{1}{2}, \quad t \in \mathbb{R}
$$

Integrate by parts again:

$$
G(t) = \frac{1}{2} + \left[\frac{1}{2} \frac{e^{-2t}}{(1+t)^2}\right]_{t=0}^{t=\infty} + \frac{1}{2} \int_0^\infty \frac{e^{-2t}}{(1+t)^2} dt
$$

$$
= \frac{1}{2} - \frac{1}{2} + o\left(\frac{1}{2}\right)
$$
Repeat:

\[g(z) = \frac{z}{2} - \frac{z^3}{2^2} + \frac{z^5}{2^3} - \cdots + \frac{(-1)^{N+1} z^N}{2^{N+1}} + o\left(\frac{1}{2^{N+1}}\right) \]

\[(z \to \infty) \quad (z \in \mathbb{R}) \]

So

\[g(z) \sim \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{2^{n+1}} \quad (z \to \infty) \quad (z \in \mathbb{R}) \]

Note that if \(T_n \) denotes the \(n \)-th term of this series, then

\[\frac{T_{n+1}}{T_n} = -\frac{m+1}{2} \]

and it is evident that the series diverges for any fixed value of \(z \). See Fig. 6.
Seems strange - series produces sharper and sharper approximations in sense of \(p(33) \) but diverges at each value of \(z \). What can it all mean?

If we evaluate, say, \(G(10) \) by integrating numerically, we get

\[
G(10) \approx 0.09156...
\]

compared with

\[
0.1000 = 0.0100 + 0.0200 - 0.006 = 0.0914
\]

A good approx! Error is only about \(0.2\% \)

Even for as small a value as \(x = 5 \)

\[
G(5) \approx 0.17042...
\]

\[
0.2 - 0.04 + 0.016 - 0.0096 = 0.1664
\]

So what's happening here? Consider error
(real $z = x$ now for simplicity):

\[G(x) - \frac{1}{x} = G(x) - g_\infty (x) \quad (say) = -\frac{1}{x} \int_0^\infty \frac{e^{-xt}}{(t+x)^2} \, dt \]

\[G(x) - \left(\frac{1}{x} - \frac{1}{x^2} \right) = G(x) - g_\infty (x) = \frac{2}{x^3} \int_0^\infty \frac{e^{-xt}}{(t+x)^3} \, dt \]

\[G(x) - \sum_{n=0}^{N-1} \left(\frac{x^n}{n!} \frac{(-1)^n n!}{x^n} \right) = G(x) - g_N (x) = \frac{(-1)^N n!}{x^N} \int_0^\infty \frac{e^{-xt}}{(t+x)^{N+1}} \, dt = \mathcal{E}_N (x), \]

For $x > 0$, \[|\mathcal{E}_N (x)| < \frac{n!}{x^n} \int_0^\infty e^{-xt} \, dt = \frac{n!}{x^{n+1}} \]

See error in taking first N terms in sum is less than first neglected term, in magnitude.

So, taking first 4 terms, for example

\[|\mathcal{E}_4 (x)| < \frac{24}{x^5} = \begin{cases} 0.00024 & x = 10 \\ 0.0024 & x = 5 \end{cases} \]

Point is:

- Convergence refers to behaviour at each fixed \bar{z} as $N \to \infty$
A.E. concerned with behaviour as $z \to \infty$

for each fixed N.

For a convergent series we need

$$\varepsilon_N (z) \to 0 \text{ as } N \to \infty, \text{ each fixed } z,$$

whereas for an A.S. we need

$$\frac{\varepsilon_N (z)}{g_N (z)} \to 0 \text{ as } z \to \infty, \text{ each fixed } N.$$

Thus, if we put

$$g_N (z) = \sum_{n=0}^{N-1} \frac{(-1)^n n!}{z^{n+1}},$$

in our example, we have

$$\lim_{z \to \infty} \frac{g_N (z)}{C (z)} = 1 \text{ for all finite } z,$$

but

$$\lim_{N \to \infty} \frac{g_N (z)}{C (z)} \text{ undefined for all finite } z.$$

Figs 6 & 7 illustrate this. See for $N > \frac{p}{2},$ $g_N (z)$

gives a worse and worse approximation to $C (z)$.

(Would stop at NS [8] for best approx. to $C (x)$)
In this example, see for any given ξ there is a value of $N \ (\approx \|\xi\|)$ s.t. Nth term is smallest in the series. Moreover, if truncate the series just before this term, we minimise the error $\epsilon_n(\xi)$ for that value of ξ. See again Fig. 7. This is reasonably typical behaviour - see B & O p. 122.

In general, the error in an A.S. for a function is of order smaller than that of last term included (is of order not exceeding that of first term excluded), but for *finite* ξ (which after all is the case when we take an evaluation in practice) the error may be *much* larger than the last term, and possibly even larger than the partial sum of
the series to that point. This must always be remembered!

Note A: Even if series converges, the sum may not equal \(f(\xi) \)

Ex:

\[
f(\xi) = 1 + e^{-2\xi} \sim 1 + \frac{0}{2\xi} + \frac{0}{3\xi^2} + \ldots
\]

\((\xi \to \infty), \quad \text{Re}(\xi) > 0\)

Here asymptotic sequence is

\[
\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}
\]

We say that \(e^{-2\xi} \) is **subdominant** to that asymptotic sequence.
Summary:

- Understand notions of asymptotic sequences, series and expansions.
- Understand example of \(G(z) \)
- Understand that A.S. are not always convergent - may not converge for any \(z \)
 Or may converge for all \(z \), but to some other function.
- Understand difference between

\[
f(z) = \sum c_n \psi_n(z)
\]

\[
f(z) \sim \sum c_n \psi_n(z)
\]

- Understand idea of optimal truncation to get best approx. for given \(z \).

 B80 p.122

 dB \(\leq 1.5 \)