Cover.
A collection \(\mathcal{G} = \{ G_\alpha \subset X \} \) covers a set \(S \) in \(X \) if \(S \subset \bigcup_\alpha G_\alpha \).

If each of the sets \(G_\alpha \) is open in \(X \), we say that this is an open cover for \(S \).

Compact Set.
A set \(S \subset X \) is compact if and only if for every collection \(\{ G_\alpha \} \) of open sets in \(X \) which cover \(S \), there is a finite subcollection \(\{ G_{\alpha_i} \} \), \(i = 1 \ldots n \), such that

\[
S \subset \bigcup_{i=1}^{n} G_{\alpha_i}.
\]

(Every open cover has a finite subcover.)

A compact set is bounded.
Let \(S \) be a compact set in \((X, d) \).
Choose some \(a \in X \).
The sets \(G_n = \{ x \in X : d(x, a) < n; n \in \mathbb{N} \} \) are open in \((X, d) \), and cover \(X \).
Therefore they cover \(S \).
Therefore there is a finite set \(\{ G_{n_1}, G_{n_2}, \ldots, G_{n_k} \} \) which covers \(S \).
Therefore \(d(x, a) < \max(n_i) \) for every \(x \in S \), and \(S \) is bounded.

A compact set is closed.
Let \(S \) be a compact set in \((X, d) \), and let \(a \in \setminus S \).
The sets \(G_n = \{ x \in X : d(x, a) > \frac{1}{n}; n \in \mathbb{N} \} \) are open in \((X, d) \) and cover \(X \setminus \{a\} \).
Therefore they cover \(S \).
Therefore there is a finite set \(\{ G_{n_1}, G_{n_2}, \ldots, G_{n_k} \} \) which covers \(S \).
If \(N = \max n_i \), \(d(x, a) > \frac{1}{N} \) for all \(x \in S \), and \(a \) is not an accumulation point of \(S \).
Therefore \(S \) contains all its accumulation points, and is closed.

The converse of these results does not hold in general.
If \(d \) is the discrete metric and \(X \) is an infinite set, then any infinite subset \(S \subset X \) is closed and bounded, but is not compact.
The collection \(\{ G_\alpha = \{ \alpha \} : \alpha \in S \} \) is an open cover for \(S \) but no finite subcollection covers \(S \).

However, the converse does hold in \((\mathbb{R}, |.|) \).

The Heine-Borel Theorem. A closed and bounded set in \(\mathbb{R} \) is compact.

Theorem. An infinite subset of a compact set has an accumulation point in the set.
Proof.
Suppose that \(S \) is a compact set in \((X, d) \), the set \(T \subset S \) has no accumulation point in \(S \).
Then for every \(x \in S \), there is a neighbourhood \(\mathcal{N}(x, \epsilon_x) \) for some \(\epsilon_x > 0 \) which contains at most one point of \(T \) (when \(x \in T \)).
The collection \(\{ \mathcal{N}(x, \epsilon_x) \} \) is an open cover for \(S \), therefore there is a finite subcover for \(S \).
Since this sub-cover also covers \(T \), and each set in the sub-cover contains at most one point of \(T \), the set \(T \) is finite.

It follows that a Cauchy sequence in a compact set converges in the set.

Theorem. If \(S \) is a compact set, and \(f: (X,d_X) \to (Y,d_Y) \) is continuous on \(S \), then \(f \) is uniformly continuous on \(S \).

Proof.

Given any \(\epsilon > 0 \), for every \(x \) in \(S \) there is a \(\delta_x > 0 \) such that

\[
d_X(y,x) < \delta_x \implies d_Y(f(y), f(x)) < \epsilon/2.
\]

For each \(x \in S \), define the set \(G_x \) by

\[
G_x = \{ y \in S ; d_X(y,x) < \delta_x/2 \}.
\]

The collection \(\{G_x\} \) is an open cover for \(S \).

Therefore, there is a finite set \(\{x_1, \ldots, x_n\} \) such that \(\{G_{x_i}\} \) is an open cover for \(S \).

Let \(\delta = \min(\delta_{x_i}/2) \).

Any \(x \in S \) is in one of the \(G_{x_i} \); i.e \(d_X(x,x_i) < \delta_{x_i}/2 < \delta_{x_i} \).

\[
d_X(y,x_i) \leq d_X(y,x) + d_X(x,x_i) < \delta + \delta_{x_i}/2 \leq \delta_{x_i}.
\]

Therefore

\[
d_Y(f(y), f(x_i)) < \epsilon/2 \quad \text{and} \quad d_Y(f(y), f(x_i)) < \epsilon/2
\]

so that \(d_Y(f(y), f(x)) < \epsilon \).

i.e. \(y, x \in S \) and \(d_X(y,x) < \delta \implies d_Y(f(y), f(x)) < \epsilon \).

Consequently, if \(\{x_n\} \) is a Cauchy sequence in a compact set \(S \), and \(f \) is continuous on \(S \) then \(\{f(x_n)\} \) is a Cauchy sequence in \(f(S) \).

Proof.

Since \(f \) is uniformly continuous from \(S \) to \(f(S) \), given any \(\epsilon > 0 \), there is a \(\delta > 0 \) such that

\[
d_Y(f(y), f(x)) < \epsilon \quad \forall \ x, y \in S ; \ d_X(y,x) < \delta.
\]

Given this \(\delta \), we can find \(N \in \mathbb{N} \) such that

\[
d_X(x_n, x_m) < \delta \quad \forall \ n, m > N.
\]

But then

\[
d_Y(f(x_n), f(x_m)) < \epsilon \quad \forall \ n, m > N.
\]
Theorem. If $S \subset X$ is compact, and $f : X \to Y$ is continuous on S then $f(S)$ is compact.

Proof. Let $\{G_\alpha\}$ be any open cover for $f(S)$. Then $\{f^{-1}(G_\alpha)\}$ is an open cover for S.

But S is compact, therefore there is a finite subcover $\{f^{-1}(G_{\alpha_i})\}$ for S, and $\{G_{\alpha_i}\}$ is now a finite subcover for $f(S)$.

Combining these results, we see that if $\{x_n\}$ is Cauchy in S, and f is continuous on S, $\{f(x_n)\}$ converges in $f(S)$.

Since a compact set is closed and bounded, we also have as a consequence the following.

Corollary: The extreme value theorem. If S is compact, and $f; S \to \mathbb{R}$ is continuous on S, then there are $x_1, x_2 \in S$ such that

$$f(x_1) \leq f(x) \leq f(x_2) \text{ for all } x \in S.$$