5. Inner product spaces and orthonormal bases

We only consider $F = \mathbb{R}$ or \mathbb{C}.

Definition

Let V be a vector space over F. We define an inner product $\langle \cdot, \cdot \rangle$ on V to be a function that assigns a scalar $\langle u, v \rangle \in F$ to every pair of ordered vectors $u, v \in V$ such that the following properties hold for all $u, v, w \in V$ and $\alpha \in F$:

(a) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

(b) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$

(c) $\langle u, v \rangle = \langle v, u \rangle$

(d) $\langle u, u \rangle > 0$ if $u \neq 0$.

1
Examples

1. \(V = \mathbb{F}^n \), \(\langle \mathbf{u}, \mathbf{v} \rangle \equiv \mathbf{u} \cdot \mathbf{v} \) determined by
 \[
 \mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i,
 \]
 \(\mathbf{u} = (u_1, u_2, \ldots, u_n) \) and \(\mathbf{v} = (v_1, v_2, \ldots, v_n) \).

2. Define \(\langle A, B \rangle \) on \(M_n(\mathbb{F}) \) by
 \[
 \langle A, B \rangle = \text{tr}(B^* A).
 \]
Theorem

Let V be an inner product space. For $x, y, z \in V$ and $c \in \mathbb{F}$, we have

(a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

(b) $\langle x, cy \rangle = c \langle x, y \rangle$

(c) $\langle x, 0 \rangle = \langle 0, x \rangle = 0$

(d) $\langle x, x \rangle = 0$ iff $x = 0$

(e) If $\langle x, y \rangle = \langle x, z \rangle \forall x \in V$, then $y = z$.

Definitions

• A vector space V over F endowed with a specific inner product is called an inner product space. If $F = \mathbb{R}$ then V is said to be a real inner product space, whereas if $F = \mathbb{C}$ we call V a complex inner product space.

• The norm (or length, or magnitude) of a vector u is given by $\|u\| = \sqrt{\langle u, u \rangle}$.
• Two vectors u, v in an inner product space are said to be **orthogonal** if $\langle u, v \rangle = 0$.

• If u and v are orthogonal vectors and both u and v have a magnitude of one (with respect to \langle , \rangle), then u and v are said to be **orthonormal**.

• A set of vectors in an inner product space is called an **orthogonal set** if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has a magnitude of one is called an **orthonormal set**.
Theorem

Every non-zero finite dimensional inner product space V has an orthonormal basis.
Example: Consider the vector space \mathbb{R}^3 with the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1)$ into an orthogonal basis $\{v_1, v_2, v_3\}$; then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{q_1, q_2, q_3\}$.
Quiz
True or false?

• An inner product is a scalar-valued function on the set of ordered pairs of vectors.

• An inner product space must be over the field of real or complex numbers.

• An inner product is linear in both components.

• If x, y and z are vectors in an inner product space such that $\langle x, y \rangle = \langle x, z \rangle$, then $y = z$.

• If $\langle x, y \rangle = 0$ for all x in an inner product space, then $y = 0$.