3. Span and linear dependence

Definitions

• A vector w is called a **linear combination** of the vectors v_1, v_2, \ldots, v_r if it can be expressed in the form

$$w = k_1v_1 + k_2v_2 + \cdots + k_rv_r$$

where k_1, k_2, \ldots, k_r are scalars.

• For a set S of vectors in a vector space V, the **span** of S (denoted $span(S)$) is the set consisting of all linear combinations of the vectors in S.
Theorem

If \(S = \{v_1, v_2, \ldots, v_r\} \) is a set of vectors in a vector space \(V \), then:

(a) \(\text{span}(S) \) is a subspace of \(V \).

(b) \(\text{span}(S) \) is the smallest subspace of \(V \) that contains \(v_1, v_2, \ldots, v_r \) and every other subspace of \(V \) that contains \(v_1, v_2, \ldots, v_r \) must contain \(\text{span}(S) \).

We say that a subset \(S \) of a vector space \(V \) spans \(V \) if \(\text{span}(S) = V \).
Example

The polynomials $1, x, x^2, \ldots, x^n$ span the vector space P_n defined previously since each polynomial p in P_n can be written as

$$p = a_0 + a_1x + \cdots + a_nx^n$$

which is a linear combination of $1, x, x^2, \ldots, x^n$. This can be denoted by writing

$$P_n = span\{1, x, x^2, \ldots, x^n\}$$
Definition

If $S = \{v_1, v_2, \ldots, v_r\}$ is a nonempty set of vectors, then the vector equation

$$k_1 v_1 + k_2 v_2 + \cdots + k_r v_r = 0$$

has at least one solution, namely

$$k_1 = 0, k_2 = 0, \ldots, k_r = 0$$

If this is the only solution, then S is called a **linearly independent** set. If there are other solutions, then S is called a **linearly dependent** set.
Examples

1. If \(v_1 = (2, -1, 0, 3), v_2 = (1, 2, 5, -1) \) and \(v_3 = (7, -1, 5, 8) \), then the set of vectors \(S = \{ v_1, v_2, v_3 \} \) is linearly dependent, since \(3v_1 + v_2 - v_3 = 0 \).

2. The polynomials

\[p_1 = 1 - x, \quad p_2 = 5 + 3x - 2x^2, \quad p_3 = 1 + 3x - x^2 \]

form a linearly dependent set in \(P_2 \) since

\[3p_1 - p_2 + 2p_3 = 0 \]
3. Consider the vectors $i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)$ in \mathbb{R}^3. In terms of components the vector equation

$$k_1 i + k_2 j + k_3 k = 0$$

becomes

$$k_1(1, 0, 0) + k_2(0, 1, 0) + k_3(0, 0, 1) = (0, 0, 0)$$

or equivalently,

$$(k_1, k_2, k_3) = (0, 0, 0)$$

Thus the set $S = \{i, j, k\}$ is linearly independent. A similar argument can be used to extend S to a linear independent set in \mathbb{R}^n.
4. In $M_{2 \times 3}(\mathbb{R})$, the set

$$\left\{ \begin{pmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{pmatrix}, \begin{pmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{pmatrix}, \begin{pmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{pmatrix} \right\}$$

is linearly dependent since

$$5 \begin{pmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{pmatrix} + 3 \begin{pmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{pmatrix} - 2 \begin{pmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
Theorem

Let S_1 and S_2 be subsets of a vector space such that $S_1 \subseteq S_2$.

- If S_1 is linearly dependent, then so is S_2.
- IF S_2 is linearly independent, then so is S_1.
Theorem

Let S be a linearly independent subset of a vector space V, $v \in V$ and $v \notin S$. Then $S \cup \{v\}$ is linearly dependent iff $v \in \text{span}(S)$.
Quiz
True or false?

(a) 0 is a linear combination of any non-empty set of vectors.

(b) If $S \subseteq V$ (vector space V), then $\text{span}(S)$ equals the intersection of all subspaces of V that contain S.

(c) If S is a linearly independent set, then each vector in S is a linear combination of other vectors in S.

(d) Any set of vectors containing the zero vector is linearly dependent.