3) Where Irreducible quadratic factors \(\frac{N(s)}{(s-a)^2 + \alpha^2} \) are involved there are two possible methods of taking the inverse Laplace Transform. Either use the fact that

\[
L^{-1}\left(\frac{s-a}{(s-a)^2 + \alpha^2}\right) = e^{at}\cos(at) \quad \text{and} \quad L^{-1}\left(\frac{\alpha}{(s-a)^2 + \alpha^2}\right) = e^{at}\sin(at)
\]

Or use complex numbers and factorise the denominator.

\[
\frac{N(s)}{(s-a)^2 + \alpha^2} = \frac{N(s)}{(s-a+i\alpha)(s-a-i\alpha)} = \frac{A}{(s-a+i\alpha)} + \frac{B}{(s-a-i\alpha)}
\]

Take the example

\[
F(s) = \frac{3(s-10)}{s^2 - 4s + 20}
\]

A quadratic factor is irreducible if its roots are complex.
Here the roots of \(s^2 - 4s + 20 \) are \(s = 2 \pm 4i \).
If the quadratic factor is irreducible it can always be written in the form \(((s-a)^2 + \alpha^2) \) by completing the square.

\[
s^2 - 4s + 20 = (s-2)^2 - 4 + 20 = (s-2)^2 + 4^2
\]

So here we can write \(F(s) = \frac{3(s-10)}{s^2 - 4s + 20} = \frac{3(s-2) - 24}{(s-2)^2 + 4^2} \)

Or \(F(s) = \frac{3(s-2)}{(s-2)^2 + 4^2} - \frac{6 \times 4}{(s-2)^2 + 4^2} \)

Now use the fact that \(L(\cos(at)) = \frac{s}{s^2 + \alpha^2} \) and \(L(\sin(at)) = \frac{\alpha}{s^2 + \alpha^2} \)

AND \(L(e^{at}f(t)) = F(s-a) \) to deduce that

\[
L^{-1}\left(\frac{s-2}{(s-2)^2 + 4^2}\right) = e^{2t}\cos(4t) \quad \text{and} \quad L^{-1}\left(\frac{4}{(s-2)^2 + 4^2}\right) = e^{2t}\sin(4t)
\]

So that \(f(t) = 3e^{2t}\cos(4t) - 6e^{2t}\sin(4t) \).

4) Repeated irreducible quadratic factor \(\frac{N(s)}{((s-a)^2 + \alpha^2)^m} \)

Trouble. We don’t even know the inverse transform of \(\frac{1}{(s^2 + \alpha^2)^2} \)!

Once again you can always use complex numbers and that method works.
But a more interesting method involves the differential of the transformed function.

Suppose you know the transform of \(f(t) \), that is \(F(s) = L(f(t)) = \int_0^\infty e^{-st}f(t)dt \).
Then the differential of \(F(s) \) with respect to \(s \) is

\[
\frac{dF(s)}{ds} = \int_0^\infty (-te^{-st})f(t)dt = -\int_0^\infty tf(t)dt
\]

the transform of \(-tf(t)\).

So for instance since \(L(t^3) = \frac{6}{s^4} \) implies that \(-\frac{d}{ds}\left(\frac{6}{s^4}\right) = \frac{4 \times 6}{s^5} = L(t^4) \) which is true!
We can use this to find the inverse transform of repeated irreducible quadratic factors.

\[L(t \sin(\alpha t)) = -\frac{d}{ds} \left(\frac{\alpha}{(s^2 + \alpha^2)} \right) = \frac{2s\alpha}{(s^2 + \alpha^2)^2} \]

\[L(t \cos(\alpha t)) = -\frac{d}{ds} \left(\frac{s}{(s^2 + \alpha^2)} \right) = \frac{2s^2}{(s^2 + \alpha^2)^2} - \frac{1}{(s^2 + \alpha^2)} \]

Or

\[\frac{s^2}{(s^2 + \alpha^2)^2} = \frac{1}{2} \left(\frac{1}{\alpha} L(\sin(\alpha t)) + L(\cos(\alpha t)) \right) = L \left(\frac{1}{2\alpha} \sin(\alpha t) + \frac{1}{2} t \cos(\alpha t) \right) \]

Lastly we can use a bit of algebra

\[\frac{\alpha^2}{(s^2 + \alpha^2)^2} = \frac{1}{\alpha} L(\sin(\alpha t)) - \frac{1}{2} L(\cos(\alpha t)) - \frac{1}{2\alpha} L(\sin(\alpha t)) = L \left(\frac{1}{2\alpha} \sin(\alpha t) - \frac{1}{2} t \cos(\alpha t) \right) \]

Here are the results

\[L^{-1} \left(\frac{s}{(s^2 + \alpha^2)^2} \right) = \frac{1}{2\alpha} t \sin(\alpha t) \]

\[L^{-1} \left(\frac{s^2}{(s^2 + \alpha^2)^2} \right) = \frac{1}{2\alpha} \sin(\alpha t) + \frac{1}{2} t \cos(\alpha t) \]

\[L^{-1} \left(\frac{\alpha^2}{(s^2 + \alpha^2)^2} \right) = \frac{1}{2\alpha} \sin(\alpha t) - \frac{1}{2} t \cos(\alpha t) \]

I won’t go into the details, but you can continue using this idea to find the inverse transform of \(\frac{N(s)}{((s - a)^2 + \alpha^2)^m} \) for \(m = 3, 4 \).

Lets take an example

\[F(s) = \frac{s^2 - 7}{(s^2 - 2s + 5)^2} = \frac{s^2 - 7}{((s - 1)^2 + 4)^2} \]

\[F(s) = \frac{(s - 1)^2 + 2(s - 1) - 6}{((s - 1)^2 + 4)^2} = \frac{(s - 1)^2}{((s - 1)^2 + 4)^2} + \frac{2(s - 1)}{((s - 1)^2 + 4)^2} - \frac{6}{((s - 1)^2 + 4)^2} \]

Now

\[L^{-1} \left(\frac{(s - 1)^2}{((s - 1)^2 + 4)^2} \right) = e^t \left(\frac{1}{4} \sin(2t) + \frac{1}{2} t \cos(2t) \right) \]

\[L^{-1} \left(\frac{2(s - 1)}{((s - 1)^2 + 4)^2} \right) = \frac{1}{2} e^t \sin(2t) \]

\[L^{-1} \left(\frac{1}{((s - 1)^2 + 4)^2} \right) = e^t \left(\frac{1}{16} \sin(2t) - \frac{1}{8} t \cos(2t) \right) \]

Finally

\[f(t) = e^t \left(\frac{1}{4} \sin(2t) + \frac{1}{2} t \cos(2t) \right) + e^t \sin(2t) - 6e^t \left(\frac{1}{16} \sin(2t) - \frac{1}{8} t \cos(2t) \right) \]

\[= e^t \left(-\frac{1}{8} \sin(2t) + \frac{5}{4} t \cos(2t) + \frac{1}{2} t \sin(2t) \right) \]
4. The SECOND SHIFTING THEOREM and the Dirac Delta function

The SECOND SHIFTING THEOREM

Consider the function \(f(t) \), taken zero for \(t \) negative and then shifted over to \(k \):

\[
f(t-k)u(t-k) = \begin{cases}
0 & 0 \leq t < k \\
f(t-k) & k \leq t < \infty
\end{cases}
\]

The Laplace Transform of this function is actually rather simple:

\[
L(f(t-k)u(t-k)) = \int_{0}^{\infty} e^{-st} f(t-k)u(t-k) \, dt = \int_{k}^{\infty} e^{-st} f(t-k) \, dt \quad \text{now change variables } x = t-k
\]

\[
= \int_{0}^{\infty} e^{-s(x+k)} f(x) \, dx = e^{-sk} \int_{0}^{\infty} e^{-sx} f(x) \, dx = e^{-sk} F(s)
\]

So that

\[
L(f(t-k)u(t-k)) = e^{-sk} F(s) \quad \text{SECOND SHIFTING THM.}
\]

So for instance

\[
L^{-1}\left(\frac{e^{-ks}}{s^2}\right) = (t-2)u(t-2) = \begin{cases}
0 & 0 \leq t < 2 \\
t-2 & 2 \leq t < \infty
\end{cases}
\]

Or consider \(L^{-1}\left(\frac{(1-e^{-s})^2}{s^2}\right) \)

Since

\[
\frac{(1-e^{-s})^2}{s^2} = \frac{1}{s^2} - \frac{2e^{-s}}{s^2} + \frac{e^{-2s}}{s^2}
\]

\[
L^{-1}\left(\frac{(1-e^{-s})^2}{s^2}\right) = t - 2(t-1)u(t-1) + (t-2)u(t-2)
\]

\[
= \begin{cases}
t + 0 + 0 & 0 \leq t < 1 \\
t - 2(t-1) + 0 & 1 \leq t < 2 \\
t - 2(t-1) + (t-2) & 2 \leq t
\end{cases}
\]

\[
= \begin{cases}
t & 0 \leq t < 1 \\
2 - t & 1 \leq t < 2 \\
0 & 2 \leq t
\end{cases}
\]
Going the other way.

\[
f(t) = \begin{cases}
2 & 0 \leq t < \pi \\
0 & \pi \leq t < 3\pi \\
\sin t & 3\pi \leq t
\end{cases}
\]

Then

\[
f(t) = 2 - 2u(t - \pi) + \sin(t)u(t - 3\pi)
\]

\[
= 2 - 2u(t - \pi) - \sin(t - 3\pi)u(t - 3\pi)
\]

So that

\[
F(s) = \frac{2}{s} - \frac{2e^{-\pi s}}{s} - \frac{e^{-3\pi s}}{s^2 + 1}
\]

Consider the LC circuit, where the applied EMF, \(E(t) \), is a function of time.

As before for an RLC circuit

\[
L\frac{d^2Q(t)}{dt^2} + R\frac{dQ(t)}{dt} + \frac{Q(t)}{C} = E(t)
\]

where \(Q(t) \) is the charge at time \(t \).

If \(R = 0 \) the unforced system \((E(t) = 0) \) has purely oscillatory solutions (centers) and then it is usual to set \(\frac{1}{LC} \) equal to \(\omega^2 \). In which case the unforced system undergoes oscillations with period \(\frac{2\pi}{\omega} \).

So dividing by \(L \) and setting \(\frac{1}{LC} = \omega^2 \) gives

\[
\frac{d^2Q(t)}{dt^2} + \omega^2Q(t) = \frac{E(t)}{L}
\]

Suppose the voltage is switched on for a short time and then switched off. We could assume that it is switched on at \(t = 0 \) and off at say \(t = k \)

\[
\frac{E(t)}{L} = \begin{cases}
\bar{E}_0 & 0 \leq t < k \\
0 & k \leq t
\end{cases}
\]

To use Laplace transforms write \(\frac{E(t)}{L} \) in terms of the unit step function. So here that is

\[
\frac{E(t)}{L} = \bar{E}_0(u(t) - u(t - k))
\]

Now let \(\bar{Q}(s) = L(Q(t)) \), the bar is just to distinguish this from \(Q(t) \) and from the the transfer function!