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Motivation

Let f (x) := f (x1, . . . , xn) a Laurent polynomial in x and CT(f ) its
constant term.

For example, if

f (x1, x2) =
(

1− x1

x2

)(
1− x2

x1

)
then

CT(f ) = 2
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In 1962 Freeman Dyson, while developing his Statistical theory of energy
levels of complex systems, made a remarkable conjecture.

Dyson conjecture

CT

( ∏
1≤i<j≤n

(
1− xi

xj

)k(
1− xj

xi

)k
)

=
(kn)!

(k!)n
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Dyson’s conjecture was proved almost immediately by Gunson and
(subsequent Nobel Laureate) Wilson.

George Andrews made the problem significantly harder by conjecturing a
q-analogue.
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Let

(a; q)k = (1− a)(1− aq) · · · (1− aqk−1)

be a q-shifted factorial, and[
n

m

]
=

(1− qn−m+1)(1− qn−m+2) · · · (1− qn)

(1− q)(1− q2) · · · (1− qm)

be a q-binomial coefficient.

For example [
4

2

]
= 1 + q + 2q2 + q3 + q4

Macdonald polynomials made easy



Motivation Symmetric functions Macdonald polynomials Macdonald interpolation polynomials

Andrews’ q-Dyson conjecture

CT

( ∏
1≤i<j≤n

(xi/xj ; q)k(qxj/xi ; q)k

)
=

(q; q)nk

(q; q)n
k

For example, if k = 1 then

CT
(

1− x1

x2

)(
1− qx2

x1

)
= 1 + q =

(q; q)2

(q; q)2
1

=

[
2

1

]
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Andrews’ conjecture was proved by Zeilberger and Bressoud in a famous
(but difficult) paper.

Ian Macdonald made the problem even harder . . .
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Macdonald observed that

(q; q)nk

(q; q)n
k

can also be written as [
nk

k

]
· · ·
[

2k

k

][
k

k

]

The numbers 1, 2, . . . , n are precisely the degrees of the fundamental
invariants of the root system An−1. (Much more on this in my talk on
Friday).
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For other (finite and reduced) root systems these degrees are also known
and Macdonald made the following deep conjecture.

Macdonald CT conjecture

Let Φ be a finite, reduced root system and Φ+ the set of
positive roots. Let D be the set of degrees of the fundamental
invariants of Φ. Then

CT

( ∏
α∈Φ+

(eα; q)k(qe−α; q)k

)
=
∏
d∈D

[
dk

k

]
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Nothing works better than an example . . .

Let εi the ith standard unit vector in Rn. Then the root system Cn is
given by

Φ = {±2εi |1 ≤ i ≤ n} ∪ {±εi ± εj |1 ≤ i < j ≤ n}

with positive roots

Φ+ = {2εi |1 ≤ i ≤ n} ∪ {εi ± εj |1 ≤ i < j ≤ n}

2ε1

2ε2

ε1 + ε2

ε1 − ε2−(ε1 + ε2)

−(ε1 − ε2)

−2ε1

−2ε2

The root system C2 with positive roots in red.
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Identitfy xi = eεi . Then the Macdonald conjecture for Cn is as follows.

If

f (x) =
n∏

i=1

(x2
i ; q)k(q/x2

i ; q)k

×
∏

1≤i<j≤n

(xixj ; q)k(xi/xj ; q)k(qxj/xi ; q)k(q/xixj ; q)k

then

CT(f ) =

[
2kn

k

]
· · ·
[

4k

k

][
2k

k

]
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To deal with the Macdonald conjectures, a theory of polynomials is
needed that has constant terms naturally built in.

These are the G -Macdonald polynomials, where G is a reduced, finite
root system.

In the remainder of this talk I will only consider the case An−1.
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Symmetric functions

The Bible
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A function f (x) = f (x1, . . . , xn) is called symmetric of it is invariant
under permutations of the variables.

Some standard symmetric functions are the elementary symmetric
functions

er (x) =
∑

1≤i1<i2<···<ir≤n

xi1xi2 · · · xir

the complete symmetric functions

hr (x) =
∑

1≤i1≤i2≤···≤ir≤n

xi1xi2 · · · xir

and the monomial symmetric functions

mλ(x) =
∑

xλ =
∑

xλ1
1 xλ2

2 . . . xλn
n

where the sum is over distinct permutations of the partition λ.

Macdonald polynomials made easy



Motivation Symmetric functions Macdonald polynomials Macdonald interpolation polynomials

Examples:
e0(x) = h0(x) = m0(x) = 1

e1(x) = h1(x) = m(1)(x) = x1 + · · ·+ xn

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3

h2(x1, x2, x3) = e2(x1, x2, x3) + x2
1 + x2

2 + x2
3

m(2,1)(x1, x2, x3) = x2
1 (x2 + x3) + x2

2 (x1 + x3) + x2
3 (x1 + x2)
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If Λn is the ring Z[x1, . . . , xn]Sn then {e1, . . . , en} and {h1, . . . , hn} form
algebraic bases of Λn.

It is no coincidence that the degrees of these polynomials are exactly
1, 2, . . . , n, the degrees of the fundamental invariants of An−1.

The set of monomial symmetric functions {mλ}, with λ ranging over all
partitions of at most n parts, forms a linear bases of Λn.
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The most important (linear) basis of Λn is given by the Schur functions.

A not so insightful definition of these is as the ratio of two alternants
(which is in fact due to Jacobi)

sλ(x) =
det1≤i,j≤n(x

λj +n−j
i )

det1≤i,j≤n(xn−j
i )

where the denominator is the famous Vandermonde determinant.
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The more important description of the Schur functions is combinatorial
in nature:

sλ(x) =
∑
T

xT

where the sum is over all (semi-standard) Young tableaux T .
For example, there are eight tableaux of shape (2, 1) on three letters

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

and therefore

s(2,1)(x1, x2, x3) = x2
1 x2 + x2

1 x3 + x1x
2
2 + x1x2x3 + x1x2x3

+ x1x
2
3 + x2

2 x3 + x2x
2
3

= x2
1 (x2 + x3) + x2

2 (x1 + x3) + x2
3 (x1 + x2) + 2x1x2x3

= m(2,1)(x1, x2, x3) + 2m(1,1,1)(x1, x2, x3)
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Macdonald polynomials

The Macdonald polynomials Pλ(x ; q, t) (of type An−1) are
q, t-generalisations of the Schur functions and monomial symmetric
functions, and form a linear basis of the ring

ΛF := F[x1, . . . , xn]Sn

where F = Q(q, t).

When t = q and t = 1 the Macdonald polynomials simplify to the Schur
and monomial symmetric functions

Pλ(x ; q, q) = sλ(x)

Pλ(x ; q, 1) = mλ(x)

Other special cases include the Hall–Littlewood and the Jack polynomials.
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The original definition of the Macdonald polynomials is neither easy nor
very exlicit . . .

For λ a partition let mi (λ) be the multiplicity of parts of size i .
For example, if λ = (4, 2, 2, 1) then m2 = 2 and m3 = 0.

Let
zλ =

∏
i≥1

imi (λ)mi (λ)!

For example

z(4,2,2,1) = (111!)× (222!)× (411!) = 32

Let pλ be a power-sum symmetric function

pλ(x) = pλ1 (x) · · · pλn (x)

with
pr (x) = x r

1 + · · ·+ x r
n
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Macdonald defined a q, t-analogue of Hall’s scalar product by demanding
that

〈pλ, pµ〉 = δλµ zλ

l(λ)∏
i=1

1− qλi

1− tλi

Macdonald’s existence theorem

For each partition λ there exists a unique symmetric function Pλ(x) ∈
ΛF such that

Pλ(x) = mλ(x) +
∑
µ<λ

uλµmµ(x)

and
〈Pλ,Pµ〉 = 0 if λ 6= µ

where mλ is the monomial symmetric function and < refers to the
dominance order on partitions.
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Problem: The above existence theorem is inappropriate in a talk called
Macdonald polynomials made easy.

Solution: Go nonsymmetric (Cherednik,Opdam) and nonhomogeneous
(Okounkov,Knop,Sahi).
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Before going nonsymmetric and inhomogeneous let me remark that the
Macdonald polynomials are indeed related to constant term identities.
In particular, assuming t = qk , Macdonald defined a second scalar
product on the ring ΛF as

〈f , g〉′ :=
1

n!
CT

(
f (x)g(1/x)

n∏
i,j=1
i 6=j

(xi/xj ; q)k

)

He then proved the orthogonality and quadratic norm evaluation.

Theorem

〈Pλ,Pµ〉′ := δλµ
∏

1≤i<j≤n

k−1∏
r=1

1− qλi−λj +r t j−i

1− qλi−λj−r t j−i
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Taking λ = µ = 0 this in particular implies that

1

n!
CT

(
n∏

i,j=1
i 6=j

(xi/xj ; q)k

)
=

n∏
i=1

[
ik − 1

k − 1

]

It requires only highschool maths to show that this is equivalent to
Andrews’ q-Dyson (ex-)conjecture

CT

( ∏
1≤i<j≤n

(xi/xj ; q)k(qxj/xi ; q)k

)
=

n∏
i=1

[
ik

k

]
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Macdonald interpolation polynomials

For u = 0, 1, 2 . . . define the Newton interpolation polynomial
Mu(x) = Mu(x ; q) as

Mu(x) = q−(u
2)(x − 1)(x − q) · · · (x − qu−1)

Clearly, up to normalisation, this polynomial is uniquely defined by its
degree and the fact that

Mu(〈v〉) = 0 〈v〉 := qv

for 0 ≤ v < u. These are referred to as the vanishing conditions.

It is also obvious that we have the recursion

Mu+1(x) = (x − 1)Mu(x/q)
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The previous constructions have been generalised by Knop and Sahi,
resulting in nonsymmetric and nonhomogeneous polynomials in n
variables.

These are known as the interpolation Macdonald polynomials or
vanishing Macdonald polynomials and are labelled by compositions
u = (u1, . . . , un).
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A composition is called dominant if it is a partition.
More generally we set u+ for the partition obtained by reordering the
parts of the composition u.
If a composition u is dominant, define its spectral vector as

〈u〉 = (qu1tn−1, qu2tn−2, . . . , qun t0)

For example, if u = (8, 5, 5, 0) then

〈(8, 5, 5, 0)〉 = (q8t3, q5t2, q5t, 1)

If u is not dominant generalise this in the “obvious way”
For example, if u = (5, 0, 8, 5) then

〈(5, 0, 8, 5)〉 = (q5t2, 1, q8t3, q5t)

(Left-most 5 gets the higher power of t.)
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Definition (Knop–Sahi)

Let x = (x1, . . . , xn). Up to normalisation, the interpolation Mac-
donald polynomial Mu(x) is the unique polynomial of (maximal)
degree |u| := u1 + · · ·+ un such that

Mu(〈v〉) = 0 for |v | ≤ |u|, v 6= u

Note that an arbitrary polynomial of degree |u| is of the form∑
v

|v |≤|u|

cvx
v

where xv = xv1
1 · · · xvn

n , so that we have exactly the right number of
conditions.

It requires a little lemma to show that the conditions are consistent.
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There is another way to describe the polynomials Mu, generalising the
recurrence for the Newton interpolation polynomials.

Below all operators act on the left.

Let si ∈ Sn be the elementary transposition interchanging the variables
xi and xi+1. Then Ti is the operator (acting on polynomials in x1, . . . , xn)
defined by

Ti := t + (si − 1)
txi+1 − xi

xi+1 − xi

The easiest way to remember Ti is that it is the unique operator that
commutes with functions symmetric in xi and xi+1, such that

1Ti = t

xi+1Ti = xi
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One may verify that the Ti for i = 1, . . . , n − 1 satisfy the defining
relations of the Hecke algebra of the symmetric group:

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi for |i − j | 6= 1

(Ti + 1)(Ti − t) = 0

The Ti are degree preserving operators. To be able to generate the
interpolation Macdonald polynomials we also need to be able to increase
the degree (like in the recurrence for the Newton interpolation
polynomials).
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This requires the extension of the Hecke algebra to the affine Hecke
algebra.

Let xτ = (xn/q, x1, . . . , xn−1).

Then the raising operator φ is defined as

f (x)φ := f (xτ)(xn − 1)

Note that for n = 1 this exactly generates the recursion for the Newton
interpolation polynomials:

Mu(x)φ = Mu(x/q)(x − 1) = Mu+1(x)
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The algebraic construction of the interpolation Macdonald polynomials
can now be described as follows.

Initial condition
M(0,...,0)(x) = 1

Affine operation=degree raising

M(u2,...,un−1,u1+1)(x) = Mu(x)φ

Hecke operation=permuting the u
If ui < ui+1

Musi (x) = Mu(x)

(
Ti +

t − 1

〈u〉i+1/〈u〉i − 1

)

The above construction is analogous to that of the Schubert and
Grotendieck polynomials.
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200 020 002 110 101 011

100 010 001

000

φ

φφφ

2

12

2

21

For this to be consistent (for arbitrary n) we must have

Ti+1φ = φTi
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021 012

002 101

100 010

φ

φφ

φ

2

1

For this to be consistent (for arbitrary n) we must have

T1φ
2 = φ2Tn−1
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In summary, the generators T1, . . . ,Tn−1, φ satisfy the affine Hecke
algebra

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi for |i − j | 6= 1

(Ti + 1)(Ti − t) = 0

Ti+1φ = φTi

T1φ
2 = φ2Tn−1
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It requires another little lemma to show that the definition of the Mu

using the affine Hecke algebra is consistent with the definition using the
vanishing conditions.

Once the Mu are understood the rest of Macdonald polynomial theory is
easy:

Mu
symmetrisation−−−−−−−−→ MSλ

homogenisation

y yhomogenisation

Eu
symmetrisation−−−−−−−−→ Pλ

where “symmetrisation” is easy and “homogenisation” is even easier.

Specifically, homogenisation just means taking the top-degree term:

Eu(x) = lim
a→0

a|u|Mu(x/a)
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There is a further extension of the Hecke algebra that plays a central role
in the theory. Let Xi denote the operator “multiplication by xi”:

f (x)Xi = f (x)xi

One readily checks that

XiXj = XjXi

TiXi+1Ti = tXi

Ti (Xi + Xi+1) = (Xi + Xi+1)Ti

TiXj = XjTi for j 6= i , i + 1
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Let Yi be the Cherednik operator

Yi = t i−1Ti · · ·Tn−1τ
−1T−1

1 · · ·T−1
i−1

for 1 ≤ i ≤ n.

A little-less-little lemma shows that

Eu(x)Yi = 〈u〉iEu(x)

That is, the nonsymmetric Macdonald polynomials are the eigenfunctions
of the Yi .

Macdonald polynomials made easy



Motivation Symmetric functions Macdonald polynomials Macdonald interpolation polynomials

With a bit of pain one checks the following amazing facts

YiYj = YjYi

TiYi+1Ti = tYi

Ti (Yi + Yi+1) = (Yi + Yi+1)Ti

TiYj = YjTi for j 6= i , i + 1

In other words, at the level of the algebra the “difficult” operators Yi are
not at all harder than the “easy” operators Xi .
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Finally one can check that

T 2
i Xi+1Yi = tYiXi+1

The algebra generated by the Ti ,Xi ,Yi subject to all the is

known as the double affine Hecke algebra (DAHA) (of type An−1), and
was discovered by Ivan Cherednik.
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The DAHA for arbitrary G can be used to prove the Macdonald CT
conjecture.

Cherednik’s CT theorem

Let Φ be a finite, reduced root system and Φ+ the set of
positive roots. Let D be the set of degrees of the fundamental
invariants of Φ. Then

CT

( ∏
α∈Φ+

(eα; q)k(qe−α; q)k

)
=
∏
d∈D

[
dk

k

]
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The End
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