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The infinite wedge space

Let V be a linear space with basis {k}k∈Z+ 1
2

A semi-infinite monomial vS is an expression of the form

vS = s1 ∧ s2 ∧ s3 ∧ · · ·

where the si ∈ Z + 1
2 , si > si+1 and si − si+1 = 1 for i � 1.

We say that vS has charge c if

si = c − i + 1
2 for i � 1

Examples:

− 1
2 ∧ −

3
2 ∧ −

5
2 ∧ −

7
2 ∧ −

9
2 ∧ · · · c = 0

7
2 ∧

3
2 ∧ −

1
2 ∧ −

3
2 ∧ −

5
2 ∧ · · · c = 2

and

5
2 ∧ −

1
2 ∧ −

7
2 ∧ −

9
2 ∧ −

11
2 ∧ · · · c = −1



The infinite wedge space (or fermionic Fock space) Λ
∞
2 V is the linear

space with basis {vS}, equipped with an inner product for which this
basis is orthonormal.

The wedging operator ψk , k ∈ Z + 1
2 is defined by

ψk : Λ
∞
2 V → Λ

∞
2 V , f 7→ k ∧ f

Together with its adjoint, the contraction operator ψ∗k (which
“sign-removes k”), this yields the anti-commutation relations of the
infinite Clifford algebra:{

ψk , ψ
∗
l

}
= δkl ,

{
ψk , ψl

}
=
{
ψ∗k , ψ

∗
l

}
= 0

Obviously,

ψkψ
∗
k (vS) =

{
vS if k ∈ S

0 otherwise
ψ∗kψk(vS) =

{
vS if k 6∈ S

0 otherwise



Using the free fermions ψk and ψ∗k one can further define the free bosons

αn =
∑

k∈Z+ 1
2

ψk−nψ
∗
k n ∈ Z \ {0}

with Heisenberg commutation relations

[αn, αm] = nδn,−m

and adjoint a∗n = a−n.

Finally we use these to define the vertex operators

Γ±(z) = exp

(∑
n>1

zn

n
α±n

)



Partitions

The infinite wedge space Λ
∞
2 V is a direct sum of charge-c subspaces

Λ
∞
2 V =

⊕
c∈Z

(
Λ
∞
2 V
)
c

The semi-infinite monomials spanning each subspace are in one-to-one
correspondence with integer partitions: If

vS = s1 ∧ s2 ∧ s3 ∧ · · ·
has charge c then the partition corresponding to vS is

λ = (λ1, λ2, . . . ) where λi = si + i − c − 1
2

Examples:

c = 0 − 1
2 ∧ −

3
2 ∧ −

5
2 ∧ −

7
2 ∧ −

9
2 ∧ · · · λ = 0

c = 2 7
2 ∧

3
2 ∧ −

1
2 ∧ −

3
2 ∧ −

5
2 ∧ · · · λ = (2, 1)

and

c = −1 5
2 ∧ −

1
2 ∧ −

7
2 ∧ −

9
2 ∧ −

11
2 ∧ · · · λ = (3, 2)



For c = 0 Okounkov introduced the following graphical description
obtained by rotating a partition, such as

(8, 5, 4, 2, 2, 1) =

by 135◦ to get
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Using partitions to represent the charge-0 semi-infinite monomials and
adopting “bra” and “ket” notation, for n > 1 the operators α−n and αn

act on |λ〉 by adding/deleting border strips of length n, weighted by the
factor (−1)h+1 where h is the height of the border strip.

α−37−→

1

−

2

+

3

(2,1,1) (5,1,1) (3,3,1) (2,1,1,1,1)

α−3
∣∣(2, 1, 1)

〉
=
∣∣(5, 1, 1)

〉
−
∣∣(3, 3, 1)

〉
+
∣∣(2, 1, 1, 1, 1)

〉



Accordingly, the vertex operators Γ±(z) satisfy

Γ−(z)|µ〉 =
∑
λ�µ

z |λ−µ||λ〉 and Γ+(z)|λ〉 =
∑
µ≺λ

z |λ−µ||µ〉

where a pair of partitions λ, µ is interlacing, denoted as λ � µ, if

λ1 > µ1 > λ2 > µ2 > · · ·

(8, 5, 2, 1) � (5, 3, 1, 1)



Schur functions

The Schur functions sλ(x1, x2, . . . , xn) are the characters of the
irreducible polynomial representations of GL(n,C) of highest weight λ.

For λ, µ partitions such that µ ⊆ λ, the skew Schur function sλ/µ(x) may
be computed combinatorially as

sλ/µ(x) =
∑
T

xT

where the sum is over semi-standard Young tableaux on {1, 2, 3, . . . , n}
of skew shape λ/µ.

For example

s(3,2,2)/(2,1)(x1, x2) “ = ”
1

1
1 2

+
2

1
2 2

+
2

1
1 2

+
1

1
2 2

= x1x2(x21 + x22 ) + 2x21 x
2
2



Since a semi-standard Young tableaux of shape λ/µ on {1, 2, . . . , n} is in
one-to-one correspondence with sequences of interlacing partitions

µ = λ(0) ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(n) = λ

1
1

1 2

(2,1)≺(3,2,1) (3,2,1)≺(3,2,2)

λ(0) = (2, 1) = µ

λ(1) = (3, 2, 1)

λ(2) = (3, 2, 2) = λ

we have

sλ/µ(x) =
∑

λ(0)≺λ(1)≺···≺λ(n)

λ(0)=µ

λ(n)=λ

x
|λ(1)−λ(0)|
1 x

|λ(2)−λ(1)|
2 · · · x |λ

(n)−λ(n−1)|
n

Hence 〈
λ
∣∣∣∏
i>1

Γ−(xi )
∣∣∣µ〉 =

〈
µ
∣∣∣∏
i>1

Γ+(xi )
∣∣∣λ〉 = sλ/µ(x1, x2, . . . )



3-dimensional partitions

A plane partition or 3-dimensional partition is a two-dimensional array of
nonnegative integers such that the numbers are weakly decreasing from
left to right and from top to bottom, and such that finitely many
numbers are positive.

Geometrically, a plane partition may also be thought of as a configuration
of stacked unit cubes, such that . . .

For example,

4 3 3 2 1
3 2 1
3 1
2
1

and

represent the same plane partition of 26.



A famous result of MacMahon is the following closed-form formula for
the generating function of plane partitions

∑
π

q|π| =
∏
n>1

1

(1− qn)n

where |π| is the number of unit cubes in π.

Okounkov and Reshetikhin showed that the above formula follows as a
straightforward application of the vertex operators Γ±(z).



Given a plane partition
5 3 2 1
4 2 1
2 1 1
1 1

we can read off its sequence of diagonal slices to obtain a sequence of
interlacing partitions

0 ≺ (1) ≺ (2, 1) ≺ (4, 1) ≺ (5, 2, 1) � (3, 1) � (2) � (1) � 0



Each partition λ in the sequence of diagonal slices contributes q|λ| to the
weight qπ of π. For this we need the operator

Q|λ〉 = q|λ||λ〉

which q-commutes with the vertex operators Γ±(z):

Γ±(z)Q = Q Γ±(zq±1)

Putting this all together yields∑
π

qπ =
〈

0
∣∣∣∏
i>1

(
Γ+(1)Q

)∏
i>1

(
Γ−(1)Q

)∣∣∣0〉
= · · · Γ+(z)Γ−(1/w) =

1

1− z/w
Γ−(z)Γ+(1/w)

=
∏
n>1

1

(1− qn)n



In their work on the limit shape of 3-
d partitions, Okounkov, Reshetikhin and
Vafa introduced the following model for
3-d partitions:

λ = (3, 2) N1 = 16

µ = (3, 1) N2 = 16

ν = (3, 1, 1) N3 = 16

P(λ, µ, ν) := lim
N1,N2,N3→∞

q−N1|λ|−N2|µ|−N3|ν|PN1,N2,N3(λ, µ, ν)



Okounkov, Reshetikhin and Vafa first let N3 →∞ and then again read
off the sequence of diagonal slices, now of the form

λ′ ≺ · · · � µ

with possible shapes of the slices determined by the choice of ν.
Using the vertex operator formalism, they then show that

P(λ, µ, ν) =
q−n(λ

′)−n(µ)−n(ν′)∏
n>1(1− qn)n

× sν′(q
ρ)
∑
η

q−|η|sλ′/η(q−ν+ρ)sµ/η(q−ν
′+ρ)

where n(λ) =
∑

i>1(i − 1)λi , ρ = (0, 1, 2, . . . ) and

f (q−λ+ρ) = f (q−λ1+0, q−λ2+1, q−λ3+2, . . . )

For λ = µ = ν = 0 this simplifies to MacMahon’s formula.



The Nekrasov–Okounkov formula

The topological vertex Cλµν(q) was introduced by Aganagic, Klemm,
Marino and Vafa to compute Gromov–Witten and Donaldson–Thomas
invariants of toric Calabi–Yau threefolds. It may be expressed in terms of
skew Schur functions as

Cλµν(q) = qn(λ)−n(λ
′)+n(ν)−n(ν′)+ 1

2 (|λ|+|µ|+|ν|)

× sν′(q
ρ)
∑
η

q−|η|sλ′/η
(
q−ν+ρ

)
sµ/η

(
q−ν

′+ρ
)

Comparing this with the Okounkov–Reshetikhin–Vafa formula we get

Cλµν(q) = qn(λ)+n(µ)+n(ν)+ 1
2 (|λ|+|µ|+|ν|)P(λ, µ, ν)

∏
n>1

(1− qn)n

Since P(λ, µ, ν) clearly is cyclically symmetric, we may infer that

Cλµν(q) = Cµνλ(q) = Cνλµ(q)



The hook-length h(s) of a square s ∈ λ is the number of squares
immediately to the right and below s, including s itself. For example, the
square s = (3, 2) = in (8, 7, 7, 6, 4, 3, 1) has hook-length 9.

Using the cyclic symmetry of the topological vertex to compute the sum∑
λ,µ

T |λ|(−u)|λ|−|µ|C0λµ(q)C0λ′µ′(q)

in two different ways yields

∑
λ

T |λ|
∏
s∈λ

(1− uqh(s))(1− u−1qh(s))

(1− qh(s))2

=
∏

k,r>1

(1− uqrT k)r (1− u−1qrT k)r

(1− qr−1T k)r (1− qr+1T k)r



Setting u = qz and letting q tend to 1 yields the Nekrasov–Okounkov
formula for an arbitrary power of the Dedekind η-function

∏
k>1

(1− T k)z
2−1 =

∑
λ

T |λ|
∏
s∈λ

(
1− z2

h(s)2

)
z ∈ C



Mixed Hodge polynomials of character varieties

In the following we are interested in the affine variety

Mn :=
{
A1,B1, . . . ,Ag ,Bg ∈ GL(n,C) :

A1B1A
−1
1 B−11 · · ·AgBgA

−1
g B−1g = ζnI

}
//GL(n,C)

where g is a nonnegative integer, ζn a primitive nth-root of unity and //
a GIT quotient.

Mn is the twisted character variety of a closed Riemann surface Σ of
genus g with points the twisted homomorphisms from π1(Σ) to GL(n,C)
modulo conjugation. It is nonsingular of dimension dn given by

dn = 2n2(g − 1) + 2 g > 1

Hausel and Rodriguez-Villegas considered the problem of computing the
Poincaré polynomials

P(Mn; t) =
∑
i

bi (Mn)t i

with bi (Mn) the Betti numbers of Mn—extending earlier work of
Hitchin (n = 2) and Gothen (n = 3).



Mn admits a mixed Hodge structure (in the sense of Deligne) on its
cohomology which is of “diagonal type”. Hence its (mixed) Hodge
polynomial, which is a 3-parameter deformation of the Poincaré
polynomial, is effectively a 2-variable polynomial, H(Mn; q, t).

Moreover

P(Mn; t) = H(Mn; 1, t)

E (Mn; q) = qdnH(Mn; 1/q,−1)

where E (Mn; q) is the E -polynomial of Mn, counting the number of
points of Mn when considered over the finite field Fq instead of C.

More generally, Hausel and Rodriguez-Villegas tried to get a handle on
H(Mn; q, t).



We refine the hook-length of a square s ∈ λ by defining the arm-length
a(s) and leg-length l(s) as the number of squares immediately to the
right respectively below s, excluding s itself.
Hence h(s) = a(s) + l(s) + 1.

For example, the square s = (3, 3) = in (8, 7, 7, 6, 4, 3, 1) has
arm-length 4 and leg-length 3.



Defining the function Hn(u, q, t) = Hn(u, q, t; g) by

∑
λ

T |λ|t(1−g)(2n(λ)+|λ|)
∏
s∈λ

((1− uqa(s)+1t l(s))(1− u−1qa(s)t l(s)+1))g

(1− qa(s)+1t l(s))(1− qa(s)t l(s)+1)

= Exp

(∑
n>1

Hn(u, q, t)T n

(1− q)(t−1 − 1)

)
where Exp is a plethystic exponential; if

f (u, q, t;T ) =
∑
n>1

cn(u, q, t)T n

then

Exp
(
f (u, q, t;T )

)
= exp

(∑
n>1

f (un, qn, tn;T n)

n

)

Example

Exp
( T

1− T

)
=
∏
n>1

1

1− T n



Conjecture. (Hausel, Rodriguez-Villegas)

The mixed Hodge polynomial of Mn is given by

H
(
Mn; q, t

)
= (q1/2t)dn Hn

(
−t−1, qt2, q

)

In the genus-0 case Mn consists of a single point for n = 1 and has no
points for n > 1. Hence H(Mn; q, t) = δn,1 which is consistent with the
conjecture.

Theorem. (Rains–SOW, Carlsson–Rodriguez-Villegas (2016))

The conjecture holds for genus g = 1.



Proof.

The following q, t-analogue of the Nekrasov–Okounkov formula holds:

Theorem.

∑
λ

T |λ|
∏
s∈λ

(1− uqa(s)+1t l(s))(1− u−1qa(s)t l(s)+1)

(1− qa(s)+1t l(s))(1− qa(s)t l(s)+1)

=
∏

i,j,k>1

(1− uqi t j−1T k)(1− u−1qi−1t jT k)

(1− qi−1t j−1T k)(1− qi t jT k)

This may either be proved using Macdonald polynomial theory or the
equivariant Dijkgraaf–Moore–Verlinde–Verlinde (DMVV) formula for the
Hilbert scheme of n points in the plane, (C2)[n], due to Waelder.



Let (u1, u2) be the equivariant parameters of the natural torus action on
(C2)[n], and set q := e−2πiu1 and t := e2πiu2 . Let Ell

(
(C2)[n]; u, p, q, t

)
be

the equivariant elliptic genus of (C2)[n], where p := exp(2πiτ) and
u := exp(2πiz) for τ ∈ H and z ∈ C. According to the equivariant
DMVV formula:∑

n>0

T n Ell
(
(C2)[n]; u, p, q, t

)
=
∏
m>0

∏
k>1

∏
`,n1,n2∈Z

1

(1− pmT ku`qn1tn2)c(km,`,n1,n2)

The integers c(m, `, n1, n2) are determined by the equivariant elliptic
genus of C2 given by

Ell(C2, u, p, q, t) =
θ(uq; p)θ(u−1t; p)

θ(q; p)θ(t; p)

=
∑
m>0

∑
`,n1,n2∈Z

c(m, `, n1, n2)pmu`qn1tn2

where
θ(u; p) :=

∑
k∈Z

(−u)kp(k
2)



Li, Liu and Zhou obtained an explicit formula in terms of arm- and
leg-lengths for the generating function (over n) of elliptic genera of the
framed moduli spaces M(r , n) of torsion-free sheaves on P2 of rank r and
c2 = n.

Since M(1, n) coincides with (C2)[n] this implies∑
n>0

T n Ell
(
(C2)[n]; u, p, q, t

)
=
∑
λ

T |λ|
∏
s∈λ

θ(uqa(s)+1t l(s); p)θ(u−1qa(s)t l(s)+1; p)

θ(qa(s)+1t l(s); p)θ(qa(s)t l(s)+1; p)

This gives the elliptic Nekrasov–Okounkov formula

∑
λ

T |λ|
∏
s∈λ

θ(uqa(s)+1t l(s); p)θ(u−1qa(s)t l(s)+1; p)

θ(qa(s)+1t l(s); p)θ(qa(s)t l(s)+1; p)

=
∏
m>0

∏
k>1

∏
`,n1,n2∈Z

1

(1− pmT ku`qn1tn2)c(km,`,n1,n2)


