
THE sl3 SELBERG INTEGRAL

S. OLE WARNAAR

Abstract. Using an extension of the well-known evaluation symmetry, a new

Cauchy-type identity for Macdonald polynomials is proved. After taking the

classical limit this yields a new sl3 generalisation of the famous Selberg integral.
Closely related results obtained in this paper are an sl3-analogue of the Askey–

Habsieger–Kadell q-Selberg integral and an extension of the q-Selberg integral

to a transformation between q-integrals of different dimensions.

1. Introduction

Let g be a simple Lie algebra of rank n, with simple roots, fundamental weights
and Chevalley generators given by αi, Λi and ei, fi, hi for 1 ≤ i ≤ n. The roots of g
are normalised such that the maximal root θ has length

√
2, i.e., (θ, θ) = 2, where

(· , ·) is the standard bilinear symmetric form on the dual of the Cartan subalgebra.
Let Vλ and Vµ be highest weight modules of g with highest weights λ and µ, and

denote by Singλ,µ[ν] the space of singular vectors of weight ν in Vλ ⊗ Vµ:

Singλ,µ[ν] =
{
v ∈ Vλ ⊗ Vµ : hiv = ν(hi)v, eiv = 0, 1 ≤ i ≤ n

}
.

For fixed nonnegative integers k1, . . . , kn assign k := k1 + · · · + kn integration
variables t1, . . . , tk to g by attaching the ki variables

t1+k1+···+ki−1
, . . . , tk1+···+ki

to the simple root αi. In other words, the first k1 integration variables are attached
to α1, the second k2 to α2 and so on. By a mild abuse of notation, also set

αtj = αi if k1 + · · ·+ ki−1 < j ≤ k1 + · · ·+ ki.

Exploiting the connection between Knizhnik–Zamolodchikov equations and hy-
pergeometric integrals, see e.g., [3, 22, 26], Mukhin and Varchenko [20] conjectured
in 2000 that if the space

Singλ,µ

[
λ+ µ−

n∑
i=1

kiαi

]
is one-dimensional, then there exists a real integration domain Γ such that a closed-
form evaluation exists (in terms of products of ratios of Gamma functions) for the
g Selberg integral

(1.1)

∫
Γ

[ k∏
i=1

t
−(λ,αti )

i (1− ti)−(µ,αti )
∏

1≤i<j≤k

|ti − tj |(αti ,αtj )

]γ
dt1 · · · dtk.
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For g = sl2 the evaluation of (1.1) is well-known and corresponds to the cele-
brated Selberg integral [23, 18, 4]:

(1.2)

∫
0<t1<···<tk<1

k∏
i=1

tα−1
i (1− ti)β−1

∏
1≤i<j≤k

|ti − tj |2γ dt1 · · · dtk

=

k−1∏
i=0

Γ(α+ iγ)Γ(β + iγ)Γ((i+ 1)γ)

Γ(α+ β + (i+ k − 1)γ)Γ(γ)
,

where

Re(α) > 0, Re(β) > 0, Re(γ) > −min{1/k,Re(α)/(k − 1),Re(β)/(k − 1)}.

The prospect that generalisations of this extremely important integral exist for all
simple Lie algebras has led to much recent progress in evaluating hypergeometric
integrals, see e.g., [4, 8, 19, 25, 27, 29, 30, 31].

In [25] Tarasov and Varchenko obtained an evaluation of (1.1) for g = sl3,
λ = λ1Λ1 + λ2Λ2, µ = µ2Λ2 and k1 ≤ k2 as follows.

Theorem 1.1 (Tarasov–Varchenko). For 0 ≤ k1 ≤ k2 let t = (t1, . . . , tk1), s =
(s1, . . . , sk2), and let α1, α2, β2, γ ∈ C such that Re(α1),Re(α2),Re(β2) > 0 and |γ|
is sufficiently small. Then∫

C
k1,k2
γ [0,1]

k1∏
i=1

tα1−1
i

k2∏
i=1

sα2−1
i (1− si)β2−1(1.3)

×
∏

1≤i<j≤k1

|ti − tj |2γ
∏

1≤i<j≤k2

|si − sj |2γ
k1∏
i=1

k2∏
j=1

|ti − sj |−γ dtds

=

k1−1∏
i=0

Γ(α1 + iγ)Γ(1 + (i− k2)γ)Γ((i+ 1)γ)

Γ(α1 + 1 + (i+ k1 − k2 − 1)γ)Γ(γ)

×
k2−1∏
i=0

Γ(α2 + iγ)Γ(β2 + iγ)Γ((i+ 1)γ)

Γ(α2 + β2 + (i+ k2 − k1 − 1)γ)Γ(γ)

×
k1−1∏
i=0

Γ(α1 + α2 + (i− 1)γ)

Γ(α1 + α2 + β2 + (i+ k2 − 2)γ)

×
k1−1∏
i=0

Γ(α2 + β2 + (i+ k2 − k1 − 1)γ)

Γ(α2 + (i+ k2 − k1)γ)
,

where dt = dt1 · · · dtk1 and ds = ds1 · · · dsk2 .

In the above, Ck1,k2γ [0, 1] is a somewhat complicated integration chain defined in
(3.8) on page 16. Since

C0,k
γ [0, 1] = {(s1, . . . , sk) ∈ Rk : 0 < s1 < · · · < sk < 1}

the Tarasov–Varchenko integral simplifies to the Selberg integral when (k1, k2) =
(0, k).

In [29, 31] the present author developed a method for proving Selberg-type in-
tegrals using Macdonald polynomials. This resulted in an evaluation of (1.1) for
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g = sln where λ =
∑
i λiΛi, µ = µnΛn and k1 ≤ k2 ≤ · · · ≤ kn, generalising

the Selberg and Tarasov–Varchenko integrals. In this paper we again employ the
theory of Macdonald polynomials to establish the following Cauchy-type identity.
For λ and µ partitions (and not, as above, weights of g) let Pλ be a suitably nor-
malised Macdonald polynomial. Furthermore, let (a)n be a q-shifted factorial and
(a)λ a generalised q-shifted factorial. (For precise definitions of all of the above, see
Section 2.1.)

Theorem 1.2. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Then

∑
λ,µ

t|λ|−n|µ|Pλ(X)Pµ(Y ) (atm−1)λ(qtn/a)µ

n∏
i=1

m∏
j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

=

n∏
i=1

(axi)∞
(txi)∞

m∏
j=1

(qyj/a)∞
(yj)∞

n∏
i=1

m∏
j=1

(txiyj)∞
(xiyj)∞

.

For m = 0 (n = 0) the above identity reduces to the q-binomial theorem for
Macdonald polynomials in X (Y ). Theorem 1.2 may thus be viewed as two cou-
pled, multidimensional q-binomial theorems. In the special case (X,Y, a, q, t) 7→
(X/q, qY,−q2, q2, q2) the theorem simplifies to Kawanaka’s q-Cauchy identity for
Schur functions [13] (with the proviso that Kawanaka’s description of the summand
is significantly more involved).

After a limiting procedure, which turns the sums over λ and µ into integrals,
Theorem 1.2 becomes a new evaluation of the Selberg integral (1.1) for g = sl3 as
follows.

Theorem 1.3. Let t = (t1, . . . , tk1), s = (s1, . . . , sk2) and let α1, α2, β1, β2, γ ∈ C
such that Re(α1),Re(α2),Re(β1),Re(β2) > 0, |γ| is sufficiently small,

β1 + (i− k2 − 1)γ 6∈ Z for 1 ≤ i ≤ min{k1, k2}

and

β1 + β2 = γ + 1.

Then ∫
C
k1,k2
β1,γ

[0,1]

k1∏
i=1

tα1−1
i (1− ti)β1−1

k2∏
i=1

sα2−1
i (1− si)β2−1(1.4)

×
∏

1≤i<j≤k1

|ti − tj |2γ
∏

1≤i<j≤k2

|si − sj |2γ
k1∏
i=1

k2∏
j=1

|ti − sj |−γ dtds

=

k1−1∏
i=0

Γ(α1 + iγ)Γ(β1 + (i− k2)γ)Γ((i+ 1)γ)

Γ(α1 + β1 + (i+ k1 − k2 − 1)γ)Γ(γ)

×
k2−1∏
i=0

Γ(α2 + iγ)Γ(β2 + iγ)Γ((i+ 1)γ)

Γ(α2 + β2 + (i+ k2 − k1 − 1)γ)Γ(γ)

×
k1−1∏
i=0

Γ(α1 + α2 + (i− 1)γ)

Γ(α1 + α2 + (i+ k2 − 1)γ)
,
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where dt = dt1 · · · dtk1 , ds = ds1 · · · dsk2 and Ck1,k2β,γ [0, 1] the integration chain

defined in (3.5) on page 15.

Since

Ck,0β,γ [0, 1] = {(t1, . . . , tk) ∈ Rk : 0 < t1 < · · · < tk < 1},

the integral (1.4) again contains the Selberg integral (1.2) as special case. Unlike
(1.3), however, (1.4) exhibits Z2 symmetry thanks to

(1.5) Ck2,k1β2,γ
[0, 1] = Ck1,k2β1,γ

[0, 1]

k1−1∏
i=0

Γ(β1 + iγ)

Γ(β1 + (i− k2)γ)

k2−1∏
i=0

Γ(β2 + (i− k1)γ)

Γ(β2 + iγ)

for β1 + β2 = γ + 1, and

k1−1∏
i=0

Γ(α1 + α2 + (i− 1)γ)

Γ(α1 + α2 + (i+ k2 − 1)γ)
=

k2−1∏
i=0

Γ(α1 + α2 + (i− 1)γ)

Γ(α1 + α2 + (i+ k1 − 1)γ)
.

If we specialise β2 = γ in (1.3) and (β1, β2) = (1, γ) in (1.4) then the respective
products over gamma functions on the right coincide. Since also

(1.6) Ck1,k21,γ [0, 1] = Ck1,k2γ [0, 1]

(see Section 3.1 for more details) the two sl3 integrals are indeed identical for this
particular specialisation.

2. Macdonald Polynomials

2.1. Definitions and notation. Let λ = (λ1, λ2, . . . ) be a partition, i.e., λ1 ≥
λ2 ≥ . . . with finitely many λi unequal to zero. The length and weight of λ,
denoted by l(λ) and |λ|, are the number and sum of the nonzero λi, respectively.
Two partitions that differ only in their string of zeros are identified, and the unique
partition of length (and weight) 0 is itself denoted by 0. The multiplicity of the
part i in the partition λ is denoted by mi = mi(λ), and occasionally we will write
λ = (1m12m2 . . . ).

We identify a partition with its diagram or Ferrers graph, defined by the set of
points in (i, j) ∈ Z2 such that 1 ≤ j ≤ λi. The conjugate λ′ of λ is the partition
obtained by reflecting the diagram of λ in the main diagonal, so that, in particular,
mi(λ) = λ′i − λ′i+1. The statistic n(λ) is given by

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)
.

The dominance partial order on the set of partitions of N is defined by λ ≥ µ if
λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i ≥ 1. If λ ≥ µ and λ 6= µ then λ > µ.

If λ and µ are partitions then µ ⊆ λ if (the diagram of) µ is contained in (the
diagram of) λ, i.e., µi ≤ λi for all i ≥ 1.

For s = (i, j) ∈ λ the integers a(s), a′(s), l(s) and l′(s), known as the arm-length,
arm-colength, leg-length and leg-colength of s, are defined as

a(s) = λi − j, a′(s) = j − 1,

l(s) = λ′j − i, l′(s) = i− 1.
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Note that n(λ) =
∑
s∈λ l(s). Using the above we define the generalised hook-length

polynomials cλ and c′λ as

cλ = cλ(q, t) :=
∏
s∈λ

(
1− qa(s)tl(s)+1

)
,

c′λ = c′λ(q, t) :=
∏
s∈λ

(
1− qa(s)+1tl(s)

)
.

The ordinary q-shifted factorial are given by

(a)∞ = (a; q)∞ :=

∞∏
i=0

(1− aqi)

and

(b)z = (a; q)z :=
(b)∞

(bqz)∞
.

Note in particular that for N a positive integer (b)N = (1−b)(1−bq) · · · (1−bqN−1),
and 1/(q)−N = 0. Also note that c′(k) = (q)k. The q-shifted factorials can be

generalised to allow for a partition as indexing set:

(b)λ = (b; q, t)λ :=
∏
s∈λ

(
1− bqa

′(s)t−l
′(s)
)

=

l(λ)∏
i=1

(bt1−i)λi .

With this notation,

cλ = (tn)λ
∏

1≤i<j≤n

(tj−i)λi−λj
(tj−i+1)λi−λj

,(2.1a)

c′λ = (qtn−1)λ
∏

1≤i<j≤n

(qtj−i−1)λi−λj
(qtj−i)λi−λj

,(2.1b)

where n is an arbitrary integer such that n ≥ l(λ). We also introduce the usual
condensed notation

(a1, . . . , ak)N = (a1)N · · · (ak)N

and likewise for q-shifted factorials indexed by partitions.

2.2. Macdonald polynomials. Let Sn denote the symmetric group, and Λn =
Z[x1, . . . , xn]Sn the ring of symmetric polynomials in n independent variables.

For X = {x1, . . . , xn} and λ = (λ1, . . . , λn) a partition of length at most n the
monomial symmetric function mλ(X) is defined as

mλ(X) =
∑
α

xα1
1 · · ·xαnn ,

where the sum is over all distinct permutations α = (α1, . . . , αn) of λ. If l(λ) > n
then mλ(X) := 0. The monomial symmetric functions mλ(X) for l(λ) ≤ n form a
Z-basis of Λn.

A Q-basis of Λn is given by the power-sum symmetric functions pλ(X), defined
as

pr(X) =

n∑
i=1

xri

for r ≥ 0 and pλ(X) = pλ1
(X) · · · pλn(X). The power-sum symmetric functions

may be used to define an extremely powerful notational tool in symmetric-function
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theory, known as plethystic or λ-ring notation, see [7, 14]. First we define the
plethystic bracket by

f [x1 + · · ·+ xn] = f(x1, . . . , xn)

where f is a symmetric function. More simply we just write

f [X] = f(X)

where on the left we assume the additive notation for sets (or alphabets), i.e.,
X = x1 + · · ·+ xn and on the right the more conventional X = {x1, . . . , xn}. With
this notation f [X + Y ] takes on the obvious meaning of the symmetric function f
acting on the disjoint union of the alphabets X and Y . Plethystic notation also
allows for the definition of symmetric functions acting on differences X − Y of
alphabets, or for symmetric functions acting on such alphabets as (X −Y )/(1− t),
see e.g., [14]. In this paper we repeatedly need this last alphabet when both X and
Y contain a single letter, say a and b, respectively. We may then take as definition

pr

[
a− b
1− t

]
=
ar − br

1− tr
,

and extend this by linearity to any symmetric function. Note in particular that

f

[
1− tn

1− t

]
= f(tn−1, . . . , t, 1) =: f(〈0〉)

corresponds to the so-called principal specialisation, where more generally,

〈λ〉 = 〈λ〉n := (qλ1tn−1, qλ2tn−2, . . . , qλnt0),

for l(λ) ≤ n.

After this digression we turn to the definition of the Macdonald polynomials and
to some of its basic properties [15, 16]. First we define the scalar product 〈· , ·〉 on
symmetric functions by

〈pλ, pµ〉 = δλµzλ

n∏
i=1

1− qλi
1− tλi

,

where zλ =
∏
i≥1mi! i

mi and mi = mi(λ). If we denote the ring of symmetric

functions in n variables over the field F = Q(q, t) of rational functions in q and t by
Λn,F, then the Macdonald polynomial Pλ(X) = Pλ(X; q, t) is the unique symmetric
polynomial in Λn,F such that:

Pλ(X) = mλ(X) +
∑
µ<λ

uλµmµ(X)

(where uλµ = uλµ(q, t)) and

〈Pλ, Pµ〉 = 0 if λ 6= µ.

The Macdonald polynomials Pλ(X) with l(λ) ≤ n form an F-basis of Λn,F. If
l(λ) > n then Pλ(X) := 0. From the definition it follows that Pλ(X) for l(λ) ≤ n
is homogeneous of (total) degree |λ|; Pλ(zX) = z|λ|Pλ(X). A second Macdonald
polynomial Qλ(X) = Qλ(X; q, t) is defined as

Qλ(X) = bλPλ(X),

where bλ = bλ(q, t) := cλ/c
′
λ. Then

〈Pλ, Qµ〉 = δλµ.
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This last result may equivalently be stated as the Cauchy identity∑
λ

Pλ(X)Qλ(Y ) =

n∏
i,j=1

(txiyj)∞
(xiyj)∞

.

We also need the skew Macdonald polynomials Pλ/µ(X) and Qλ/µ(X) given by

Pλ[X + Y ] =
∑
λ

Pλ/µ[X]Pµ[Y ]

Qλ[X + Y ] =
∑
λ

Qλ/µ[X]Qµ[Y ],

so that Pλ/0(X) = Pλ(X) and Qλ/µ(X) = bλb
−1
µ Pλ/µ(X). Equivalently,

Qλ/µ(X) =
∑
ν

fλµνQν(X),

where fλµν = fλµν are the q, t-Littlewood–Richardson coefficients:

Pµ(X)Pν(X) =
∑
λ

fλµνPλ(X).

From the homogeneity of the Macdonald polynomial it immediately follows that
fλµν(q, t) = 0 if |λ| 6= |µ|+ |ν|. It may also be shown that fλµν(q, t) = 0 if µ, ν 6⊆ λ,
so that Pλ/µ(X) vanishes if µ 6⊆ λ.

To conclude this section we introduce normalisations of the Macdonald poly-
nomials convenient for dealing with basic hypergeometric series with Macdonald
polynomial argument:

Pλ/µ(X) = tn(λ)−n(µ)
c′µ
c′λ
Pλ/µ(X)(2.2a)

Qλ/µ(X) = tn(µ)−n(λ) c
′
λ

c′µ
Qλ/µ(X).(2.2b)

Note that

(2.3) Qλ/µ(X) = t2n(µ)−2n(λ) cλc
′
λ

cµc′µ
Pλ/µ(X).

If we also normalise the q, t-Littlewood–Richardson coefficients as

fλµν = tn(µ)+n(ν)−n(λ) c′λ
c′µc
′
ν

fλµν ,

then all of the preceding formulae have perfect analogues:

Pλ[X + Y ] =
∑
µ

Pλ/µ[Y ]Pµ[X],(2.4a)

Qλ[X + Y ] =
∑
µ

Qλ/µ[Y ]Qµ[X],(2.4b)

(2.5)
∑
λ

Pλ(X)Qλ(Y ) =

n∏
i,j=1

(txiyj)∞
(xiyj)∞

,

(2.6) Qλ/µ(X) =
∑
ν

fλµνQν(X)
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and

(2.7) Pµ(X)Pν(X) =
∑
λ

fλµνPλ(X).

2.3. Generalised evaluation symmetry. One of the many striking results in
Macdonald polynomial theory — first proved in unpublished work by Koornwinder
— is the evaluation symmetry

(2.8)
Pλ(〈µ〉)
Pλ(〈0〉)

=
Pµ(〈λ〉)
Pµ(〈0〉)

,

where λ and µ are partitions of length at most n. As we shall see in Section 2.5,
a simple generalisation of this result is the key to proving Theorem 1.2. Before
stating this generalisation we put (2.8) in plethystic notation as

Pλ

[
1− tn

1− t

]
Pµ
[
〈λ〉
]

= Pµ

[
1− tn

1− t

]
Pλ
[
〈µ〉
]
,

where

f [〈λ〉] = f
[
qλ1tn−1 + · · ·+ qλnt0

]
= f

(
qλ1tn−1, . . . , qλnt0

)
= f(〈λ〉).

Proposition 2.1 (Generalised evaluation symmetry. I). For λ and µ partitions of
length at most n,

(2.9) Pλ

[
1− atnm

1− t

]
Pµ

[
a〈λ〉+

1− a
1− t

]
= Pµ

[
1− atnm

1− t

]
Pλ

[
a〈µ〉+

1− a
1− t

]
.

Proof. Both sides are polynomials in a of degree |λ|+ |µ| with coefficients in Q(q, t).
It thus suffices to verify (2.9) for a = tp, where p ranges over the nonnegative
integers. We now write 〈λ〉 = 〈λ〉n and use that

f

[
a〈λ〉n +

1− a
1− t

]∣∣∣∣
a=tp

= f
[
〈λ〉n+p

]
,

where, since l(λ) ≤ n,

f
[
〈λ〉n+p

]
= f

(
qλ1tn+p−1, . . . , qλntp, tp−1, . . . , t0

)
.

As a result we obtain

Pλ
(
〈0〉n+p

)
Pµ
(
〈λ〉n+p

)
= Pµ

(
〈0〉n+p

)
Pλ
(
〈µ〉n+p

)
which follows from ordinary evaluation symmetry for Macdonald polynomials on
(n+ p)-letter alphabets. �

The generalised evaluation symmetry can also be stated without resorting to
plethystic notation as a symmetry for skew Macdonald polynomials.

Proposition 2.2 (Generalised evaluation symmetry. II).

(2.10) (atn)λ
∑
ν

(a)νQµ/ν(a〈λ〉) = (atn)µ
∑
ν

(a)νQλ/ν(a〈µ〉).

When a = 1 both sums vanish unless ν = 0. Thanks to the principal specialisa-
tion formula [16, page 337]

(2.11) Qλ(〈0〉) = (tn)λ

the a = 1 case of (2.10) thus corresponds to (2.8) in the equivalent form

Qλ(〈µ〉)
Qλ(〈0〉)

=
Qµ(〈λ〉)
Qµ(〈0〉)

.
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Proof of Proposition 2.2. By changing normalisation we may replace (Pλ,Pµ) in
(2.9) by (Qλ,Qµ). Using [16, page 338]

(2.12) (a)λ = Qλ

[
1− a
1− t

]
(for a = tn this is (2.11)) and (2.4b) this gives rise to

(atn)λ
∑
ν

Qµ/ν
[
a〈λ〉

]
Qν

[
1− a
1− t

]
= (atn)µ

∑
ν

Qλ/ν
[
a〈µ〉

]
Qν

[
1− a
1− t

]
.

Once again using (2.12) and dispensing with the remaining plethystic brackets
yields (2.10). �

2.4. sln basic hypergeometric series. Before we deal with the most important
application of the generalised evaluation symmetry — the proof of Theorem 1.2 —
we will show how it implies a multivariable generalisation of Heine’s transformation
formula.

Let

τλ = τλ(q, t) := (−1)|λ|qn(λ′)t−n(λ)

and X = {x1, . . . , xn}. Then the sln basic hypergeometric series rΦs is defined as

(2.13) rΦs

[
a1, . . . , ar
b1, . . . , bs

;X

]
=
∑
λ

(a1, . . . , ar)λ
(b1, . . . , bs)λ

τs−r+1
λ Pλ(X).

For n = 1 this is in accordance with the standard definition of single-variable basic
hypergeometric series rφs as may be found in [1, 5]:

rΦs

[
a1, . . . , ar
b1, . . . , bs

; {z}
]

=

∞∑
k=0

(a1, . . . , ar)k
(q, b1, . . . , bs)k

(
(−1)kq(

k
2)
)s−r+1

zk

= rφs

[
a1, . . . , ar
b1, . . . , bs

; z

]
,

where in the second line the q-dependence of the rφs series has been suppressed.

Theorem 2.3 (sln– slm transformation formula). Let X = {x1, . . . , xn} and Y =
{y1, . . . , ym}. Then

m+1Φm

[
a, ay1/t, . . . , aym/t

ay1, . . . , aym
;X

]
=

( n∏
i=1

(axi)∞
(xi)∞

)( m∏
j=1

(yj)∞
(ayj)∞

)
n+1Φn

[
a, ax1/t, . . . , axn/t

ax1, . . . , axn
;Y

]
.

For m = 0 this is the q-binomial theorem for Macdonald polynomials [11, 17]

(2.14) 1Φ0

[
a

–
;X

]
=

n∏
i=1

(axi)∞
(xi)∞

and for m = n = 1 it is Heine’s 2φ1 transformation formula [5, Equation (III.2)]

2φ1

[
a, ay/t

ay
;x

]
=

(y, ax)∞
(x, ay)∞

2φ1

[
a, ax/t

ax
; y

]
.
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Proof of Theorem 2.3. First assume that m = n, multiply (2.10) by Pλ(X)Pµ(Y )
and sum over λ and µ to get

(2.15)
∑
ν,µ,λ

(a)ν(atn)λQµ/ν(a〈λ〉)Pλ(X)Pµ(Y )

=
∑
ν,µ,λ

(a)ν(atn)µQλ/ν(a〈µ〉)Pλ(X)Pµ(Y ).

If we multiply (2.7) by Pν(Y ) and sum over ν then (2.5) and (2.6) permit this
ν-sum to be carried out explicitly on both sides. As a result we obtain the skew
Cauchy identity (see also [16, page 352])

(2.16)
∑
λ

Pλ(X)Qλ/µ(Y ) = Pµ(X)

n∏
i,j=1

(txiyj)∞
(xiyj)∞

.

Applying this to (2.15) we can perform the sum over µ on the left and the sum over
λ on the right, leading to

∑
ν,λ

(a)ν(atn)λPλ(X)Pν(Y )

n∏
i,j=1

(atyi〈λ〉j)∞
(ayi〈λ〉j)∞

=
∑
ν,µ

(a)ν(atn)µPµ(Y )Pν(X)

n∏
i,j=1

(atxi〈µ〉j)∞
(axi〈µ〉j)∞

.

Using the q-binomial theorem (2.14) to perform both sums over ν gives

∑
λ

(atn)λPλ(X)

n∏
i=1

(ayi)∞
(yi)∞

n∏
i,j=1

(atyi〈λ〉j)∞
(ayi〈λ〉j)∞

=
∑
µ

(atn)µPµ(Y )

n∏
i=1

(axi)∞
(xi)∞

n∏
i,j=1

(atxi〈µ〉j)∞
(axi〈µ〉j)∞

.

Simplifying the products and replacing a 7→ at−n completes the proof of the theorem
for m = n.

The general m,n case trivially follows from m = n; assuming without loss of
generality that m ≤ n we set ym+1, . . . , yn = 0 and use that

Pλ(y1, . . . , ym, 0, . . . , 0︸ ︷︷ ︸
n−m

) =

{
Pλ(y1, . . . , ym) if l(λ) ≤ m,

0 if l(λ) > m.
�

2.5. Proof of Theorem 1.2. Using the generalised evaluation symmetry to prove
Theorem 1.2 is much more difficult than the proof of Theorem 2.3, and we proceed
by first proving an identity for skew Macdonald polynomials.

Theorem 2.4. For λ and µ partitions of length at most n,∑
ν

t−|ν|Pµ/ν

[
1− a
1− t

]
Qλ/ν

[
1− q/at

1− t

]

= t−n|µ|Pµ

[
1− atn

1− t

]
Qλ

[
1− qtn−1/a

1− t

] n∏
i,j=1

(qtj−i−1/a)λi−µj
(qtj−i/a)λi−µj

.
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Recalling (2.12) and (2.3) it follows that the right-hand side is completely fac-
torised. Moreover, for a = 1 the summand vanishes unless ν = µ so that we recover
the known factorisation of Qλ/µ[(1− q/t)/(1− t)], see [21, Equation (8.20)] or [28,
Proposition 3.2]:

Qλ/µ

[
1− q/t
1− t

]
= t(1−n)|µ|(qtn−1)λPµ(〈0〉)

n∏
i,j=1

(qtj−i−1)λi−µj
(qtj−i)λi−µj

.

Proof. In the first few steps we follow the proof of Theorem 2.3 but in an asymmetric
manner. That is, we take (2.10), multiply both sides by Pλ(X) and sum over λ.
By the Cauchy identity (2.16) followed by the q-binomial theorem (2.14) we can
perform both sums on the right to find

(2.17)
∑
λ,ν

(atn)λ(a)νQµ/ν(a〈λ〉)Pλ(X) = (atn)µ

n∏
i=1

(axi)∞
(xi)∞

n∏
i,j=1

(atxi〈µ〉j)∞
(axi〈µ〉j)∞

.

On the left we use (2.12) and (2.4b) (twice) to rewrite the sum over ν as∑
ν

(a)νQµ/ν(a〈λ〉) = Qµ

[
a〈λ〉+

1− a
1− t

]
=
∑
ν

Qµ/ν

[
1− a
1− t

]
Qν(a〈λ〉).

On the right we use (2.12) to trade (atn)µ for Qµ[(1− atn)/(1− t)]. Also renaming
the summation index λ as ω, (2.17) thus takes the form∑
ν,ω

(atn)ωQµ/ν

[
1− a
1− t

]
Qν(a〈ω〉)Pω(X) = Qµ

[
1− atn

1− t

] n∏
i=1

(axi)∞
(xi)∞

n∏
i,j=1

(atxi〈µ〉j)∞
(axi〈µ〉j)∞

.

By (2.3) it readily follows that we may replace all occurrences of Q in the above by
P. Then specialising X = b〈λ〉 we find

(2.18)
∑
ν,ω

(atn)ωPµ/ν

[
1− a
1− t

]
Pν(a〈ω〉)Pω(b〈λ〉)

= Pµ

[
1− atn

1− t

] n∏
i=1

(ab〈λ〉i)∞
(b〈λ〉i)∞

n∏
i,j=1

(abt〈λ〉i〈µ〉j)∞
(ab〈λ〉i〈µ〉j)∞

.

The next few steps focus on the left-hand side of this identity. First, by homogeneity
followed by an application of the evaluation symmetry (2.8),

LHS(2.18) =
∑
ν,ω

a|ν|b|ω|(atn)ωPµ/ν

[
1− a
1− t

]
Pω(〈0〉)
Pλ(〈0〉)

Pλ(〈ω〉)Pν(〈ω〉).

Using (2.7) this can be further rewritten as

LHS(2.18) =
∑
η,ν,ω

a|ν|b|ω|(atn)ω f
η
λνPµ/ν

[
1− a
1− t

]
Pω(〈0〉)
Pλ(〈0〉)

Pη(〈ω〉).

By another appeal to evaluation symmetry this yields

LHS(2.18) =
∑
η,ν,ω

a|ν|b|ω|(atn)ω f
η
λνPµ/ν

[
1− a
1− t

]
Pη(〈0〉)
Pλ(〈0〉)

Pω(〈η〉).
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The sum over ω can now be performed by (2.14) so that

LHS(2.18) =
∑
η,ν

a|ν| fηλνPµ/ν

[
1− a
1− t

]
Pη(〈0〉)
Pλ(〈0〉)

n∏
i=1

(abtn〈η〉i)∞
(b〈η〉i)∞

.

Equating this with the right-hand side of (2.18), manipulating the (infinite) q-
shifted factorials and finally replacing b 7→ bt1−n we find∑

η,ν

a|ν|
(b)η

(abtn)η
fηλνPµ/ν

[
1− a
1− t

]
Pη(〈0〉)

=
(b)λ
(ab)λ

Pλ(〈0〉)Pµ
[

1− atn

1− t

] n∏
i,j=1

(abtn−i−j+1)λi+µj
(abtn−i−j+2)λi+µj

.

For a = 1 the summand vanishes unless ν = µ and we recover [28, Proposition 3.1].
Next we specialise b = q−N and then replace λ and η by their complements

with respect to the rectangular partition (Nn). Denoting these complementary

partitions by λ̂ and η̂, we have λ̂i = N − λn−i+1 for 1 ≤ i ≤ n (and a similar
relation between η and η̂). Using the relations [28, pp. 259 & 263]

f η̂
λ̂ν

= (−qN t1−n)|λ−η|qn(η′)−n(λ′)tn(λ)−n(η)fλην
(q−N )λ
(q−N )η

Pλ(〈0〉)
Pη(〈0〉)

,

(a)λ̂
(b)λ̂

=
( b
a

)|λ| (a)(Nn)

(b)(Nn)

(q1−N tn−1/b)λ
(q1−N tn−1/a)λ

,

and

Pλ̂(〈0〉) = (−1)|λ|qN |λ|−n(λ′)t2N(n2)+n(λ)−2(n−1)|λ| (q
−N , qtn−1)λ

(qtn−1)(Nn)
Pλ(〈0〉),

as well as the fact that the summand vanishes unless |ν|+ |η| = |λ|, we end up with∑
η,ν

t−|ν|(q/at)ηf
λ
ην Pµ/ν

[
1− a
1− t

]

= t−n|µ|(qtn−1/a)λPµ

[
1− atn

1− t

] n∏
i,j=1

(qtj−i−1/a)λi−µj
(qtj−i/a)λi−µj

.

By (2.6) and (2.12)

(2.19)
∑
ν

(b)ν f
λ
µν =

∑
ν

fλµνQν

[
1− b
1− t

]
= Qλ/µ

[
1− b
1− t

]
,

so that the sum over η can be performed. By a final appeal to (2.12) the proof is
done. �

Equipped with Theorem 2.4 it is not difficult to prove Theorem 1.2. To stream-
line the proof given below we first prepare an easy lemma.

Lemma 2.5. For X = {x1, . . . , xn} and µ a partition of length at most n,∑
λ

Qλ/µ

[
a− b
1− t

]
Pλ(X) = Pµ(X)

n∏
i=1

(bxi)∞
(axi)∞



THE sl3 SELBERG INTEGRAL 13

and

∑
λ

Pλ/µ

[
a− b
1− t

]
Qλ(X) = Qµ(X)

n∏
i=1

(bxi)∞
(axi)∞

.

For µ = 0 this is just the q-binomial theorem (2.14) for Macdonald polynomials.

Proof. By (2.3) the two identities are in fact one and the same result and we only
need to prove the first claim. To achieve this we multiply (2.19) by Pλ(aX) and
sum over λ. By (2.7) and homogeneity this yields

Pµ(X)
∑
ν

(b)νPν(aX) =
∑
λ

Qλ/µ

[
a− ab
1− t

]
Pλ(X).

On the left we can sum over ν using the q-binomial theorem (2.14) leading to the
desired result (with b 7→ ab). �

Proof of Theorem 1.2. Elementary manipulations show that the theorem is invari-
ant under the simultaneous changes n↔ m, tX ↔ Y and a 7→ qt/a. Without loss
of generality we may thus assume that m ≤ n. But

(atn−1)λ

n∏
i,j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

∣∣∣∣
µm+1=···=µn=0

= (atm−1)λ

n∏
i=1

m∏
j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

so that the case m < n follows from the case m = n by setting ym+1 = · · · = yn = 0.
In the remainder we assume that m = n, in which case the theorem simplifies to

(2.20)
∑
λ,µ

t|λ|−n|µ|Pλ(X)Pµ(Y ) (atn−1)λ(qtn/a)µ

n∏
i,j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

=

n∏
i=1

(axi)∞
(txi)∞

n∏
j=1

(qyj/a)∞
(yj)∞

n∏
i,j=1

(txiyj)∞
(xiyj)∞

.

To prove this we take Theorem 2.4, replace a 7→ q/a, multiply both sides by

t|λ|Pλ(X)Qµ(Y )

and sum over λ and µ. Hence

∑
λ,µ,ν

Pλ(X)Qµ(Y )Pµ/ν

[
1− q/a

1− t

]
Qλ/ν

[
t− a
1− t

]

=
∑
λ,µ

t|λ|−n|µ|Pλ(X)Qµ(Y )(atn−1)λ Pµ

[
1− qtn/a

1− t

] n∏
i,j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

.

On the right we apply (2.3) and (2.12) to rewrite

Qµ(Y )Pµ

[
1− qtn/a

1− t

]
= (qtn/a)µPµ(Y ),
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and on the left we employ Lemma 2.5 to carry out the sums over λ and µ. Hence

∑
ν

Pν(X)Qν(Y )

n∏
i=1

(axi)∞
(txi)∞

n∏
j=1

(qyj/a)∞
(yj)∞

=
∑
λ,µ

t|λ|−n|µ|Pλ(X)Pµ(Y )(atn−1)λ(qtn/a)µ

n∏
i,j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

.

Performing the remaining sum on the left by (2.5) results in (2.20). �

We conclude this section with a remark about a generalisation of Theorem 1.2.
Let X = {x1, . . . , xn} and let λ be a partition of length n. Then

Pλ(X) = x1 · · ·xn Pµ(X),

where µ = (λ1 − 1, . . . , λn − 1). Now let P denote the set of weakly decreasing
integer sequences of finite length. Then we may turn things around and use the
above recursion to extend Pλ to all λ ∈ P. It is then readily verified that

(qtn−1)λPλ(X) = tn(λ) (qtn−1)λ
c′λ

Pλ(X)

is well-defined for λ ∈ P (unlike Pλ(X)).
We now state without proof the following generalisation of Theorem 1.2.

Theorem 2.6. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Then

∑
λ∈P

∑
µ

t|λ|−n|µ|Pλ(X)Pµ(Y )
(atm−1, qtn−1)λ(btn)µ

(abtn−1)λ

n∏
i=1

m∏
j=1

(atj−i−1)λi−µj
(atj−i)λi−µj

=

n∏
i=1

(qti−1, bti, axi, q/axi)∞
(abti−1, qti/a, txi, b/xi)∞

m∏
j=1

(byj)∞
(yj)∞

n∏
i=1

m∏
j=1

(txiyj)∞
(xiyj)∞

.

For m = 0 this reduces to Kaneko’s 1Ψ1 sum for Macdonald polynomials [12] and
for n = 0 to the 1Φ0 sum (2.14). When ab = q the summand on the left vanishes
unless λ is an actual partition and we recover Theorem 1.2.

3. The sl3 Selberg integral

3.1. The integration chains Ck1,k2β,γ [0, 1] and Ck1,k2γ [0, 1]. Before proving The-

orem 1.3 we give two descriptions of the chain Ck1,k2β,γ [0, 1]. We also identify the

special case β = 1 with the chain Ck1,k2γ [0, 1] defined by Tarasov and Varchenko in
[25].

Let

(3.1) Ik1,k2 [0, 1] = {(x1, . . . , xk1 , y1, . . . , yk2) ∈ Rk1+k2 :

0 < x1 < · · · < xk1 < 1 and 0 < y1 < · · · < yk2 < 1},

and fix a total ordering among the xi and yj as follows. Let a = (a1, . . . , ak1) be a
weakly increasing sequence of nonnegative integers not exceeding k2:

(3.2) 0 ≤ a1 ≤ · · · ≤ ak1 ≤ k2.
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Then the domain Ik1,k2a [0, 1] ⊆ Ik1,k2 [0, 1] is formed by imposing the additional
inequalities

xi < yai+1 < yai+2 < · · · < yai+1 < xi+1 for 0 ≤ i ≤ k1,

where x0 := 0, xk1+1 := 1, a0 := 0 and ak1+1 := k2. Equivalently,

(3.3)

{
0 < y1 < y2 < · · · < yai < xi

xi < yai+1 < · · · < yk2−1 < yk2 < 1
for 1 ≤ i ≤ k1.

Clearly, as a chain,

(3.4) Ik1,k2 [0, 1] =
∑
a

Ik1,k2a [0, 1],

where the sum is over all sequences a = (a1, . . . , ak1) satisfying (3.2). To lift

Ik1,k2 [0, 1] to Ck1,k2β,γ [0, 1] we replace the right-hand side of (3.4) by a weighted sum:

(3.5) Ck1,k2β,γ [0, 1] =
∑
a

( k1∏
i=1

sinπ(β − (i− ai − k1 + k2)γ)

sinπ(β − (i− k1 + k2)γ)

)
Ik1,k2a [0, 1],

where it is assumed that β, γ ∈ C such that

β + (i− k2 − 1)γ 6∈ Z for 1 ≤ i ≤ min{k1, k2}.
This is a necessary and sufficient condition for

k1∏
i=1

sinπ(β − (i− ai − k1 + k2)γ)

sinπ(β − (i− k1 + k2)γ)

to be free of poles for all admissible sequences a.
By viewing (ak1 , . . . , a2, a1) as a partition with largest part not exceeding k2

and length not exceeding k1, the operations of conjugation and/or complementa-
tion yield several alternative descriptions of the chain (3.5). Below we give one
such description, reflecting the Z2 symmetry of Theorem 1.3 with respect to the
interchange of the labels 1 and 2 in ki, αi and βi.

Assume (3.1) and fix a total ordering among the xi and yj as follows. Let b =
(b1, . . . , bk2) be a weakly increasing sequence of nonnegative integers not exceeding
k1:

(3.6) 0 ≤ b1 ≤ · · · ≤ bk2 ≤ k1.

Then the domain Īk1,k2b [0, 1] ⊆ Ik1,k2 [0, 1] is formed by assuming the further in-
equalities

yi < xbi+1 < xbi+2 < · · · < xbi+1
< yi+1 for 0 ≤ i ≤ k2,

where y0 := 0, yk2+1 := 1, b0 := 0 and bk2+1 := k1. It is easily seen that if
µ = (bk2 , . . . , b1) and λ = (ak1 , . . . , a1), then µ′ is the conjugate of λ with respect

to (kk12 ), i.e., µ′i = k2 − λk1−i+1 = k2 − ai for 1 ≤ i ≤ k1. Hence, for a pair of
admissible sequences (a, b) related by “conjugation–complementation”,

Īk1,k2b [0, 1] = Ik1,k2a [0, 1]

and
k2∏
i=1

sinπ(β + (i− bi + k1 − k2 − 1)γ)

sinπ(β + (i− k2 − 1)γ)
=

k1∏
i=1

sinπ(β − (i− ai − k1 + k2)γ)

sinπ(β − (i− k1 + k2)γ)
.
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In other words,

(3.7) Ck1,k2β,γ [0, 1] =
∑
b

( k2∏
i=1

sinπ(β + (i− bi + k1 − k2 − 1)γ)

sinπ(β + (i− k2 − 1)γ)

)
Īk1,k2b [0, 1]

summed over all sequences b = (b1, . . . , bk2) subject to (3.6). Comparing (3.5) and
(3.7), and using that for β1 + β2 = γ + 1,

k1∏
i=1

sinπ(β1 − (i− k1 + k2))γ)

sinπ(β2 + (i− k1 − 1)γ)
=

k1−1∏
i=0

Γ(β1 + iγ)

Γ(β1 + (i− k2)γ)

k2−1∏
i=0

Γ(β2 + (i− k1)γ)

Γ(β2 + iγ)

it readily follows that the symmetry relation (1.5) holds.

To conclude this section we consider (3.5) for β = 1:

Ck1,k21,γ [0, 1] =
∑
a

( k1∏
i=1

sinπ((i− ai − k1 + k2)γ)

sinπ((i− k1 + k2)γ)

)
Ik1,k2a [0, 1].

The summand vanishes if ai = i− k1 + k2 for some 1 ≤ i ≤ k1 so that we may add
the additional restrictions

ai 6= i− k1 + k2 for 1 ≤ i ≤ k1

to the sum over a. Recalling (3.2) this in fact implies that the much stronger

ai < i− k1 + k2 for 1 ≤ i ≤ k1.

Therefore,

Ck1,k21,γ [0, 1] =
∑
a

ai<i−k1+k2

( k1∏
i=1

sinπ((i− ai − k1 + k2)γ)

sinπ((i− k1 + k2)γ)

)
Ik1,k2a [0, 1].

Defining M(i) = ai + 1, so that

1 ≤M(1) ≤M(2) ≤ · · · ≤M(k1) ≤ k2

and

M(i) ≤ i− ki + k2 for 1 ≤ i ≤ k1,

and writing M = (M(1), . . . ,M(k1)), we finally obtain

Ck1,k21,γ [0, 1] =
∑
M

( k1∏
i=1

sinπ((i−M(i)− k1 + k2 + 1)γ)

sinπ((i− k1 + k2)γ)

)
Ik1,k2M [0, 1](3.8)

=: Ck1,k2γ [0, 1].

In the above, by abuse of notation, Ik1,k2M [0, 1] = Ik1,k2a [0, 1] if M = (a1+1, . . . , ak1 +
1). The chain Ck1,k2γ [0, 1] is precisely that of Tarasov and Varchenko (up to an
interchange of k1 and k2), see [25, page 177].
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3.2. Proof of Theorem 1.3. We are now prepared to prove Theorem 1.3. In fact,
we will prove a more general integral, generalising Kadell’s extension of the Selberg
integral [10] to sl3. To shorten some of the subsequent equations we introduce
another normalised Macdonald polynomial, and for X = {x1, . . . , xn}

P̃λ(X) =
Pλ(X)

Pλ(〈0〉)
=

Pλ(X)

Pλ(〈0〉)
.

Similarly we define a (normalised) Jack polynomial as

P̃
(α)
λ (X) = lim

q→1
P̃λ(X; qα, q).

Hence

P̃
(α)
λ (X) =

P
(α)
λ (X)

P
(α)
λ (1n)

,

where P
(α)
λ (X) is the Jack polynomial [16, 24].

Theorem 3.1. Set X = {x1, . . . , xk1}, Y = {y1, . . . , yk2},

dX = dx1 · · · dxk1 and dY = dy1 · · · dyk1 .

For α1, α2, β1, β2, γ ∈ C such that |γ| is sufficiently small,

min{Re(α1) + λk1 ,Re(α2) + µk2 ,Re(β1),Re(β2)} > 0,

β1 + (i− k2 − 1)γ 6∈ Z for 1 ≤ i ≤ min{k1, k2}

and

β1 + β2 = γ + 1

there holds∫
C
k1,k2
β1,γ

[0,1]

P̃
(1/γ)
λ (X)P̃(1/γ)

µ (Y )

k1∏
i=1

xα1−1
i (1− xi)β1−1

k2∏
i=1

yα2−1
i (1− yi)β2−1

×
∏

1≤i<j≤k1

|xi − xj |2γ
∏

1≤i<j≤k2

|yi − yj |2γ
k1∏
i=1

k2∏
j=1

|xi − yj |−γ dX dY

=

k1∏
i=1

Γ(α1 + (k1 − i)γ + λi)Γ(β1 + (i− k2 − 1)γ)Γ(iγ)

Γ(α1 + β1 + (2k1 − k2 − i− 1)γ + λi)Γ(γ)

×
k2∏
i=1

Γ(α2 + (k2 − i)γ + µi)Γ(β2 + (i− 1)γ)Γ(iγ)

Γ(α2 + β2 + (2k2 − k1 − i− 1)γ + µi)Γ(γ)

×
k1∏
i=1

k2∏
j=1

Γ(α1 + α2 + (k1 + k2 − i− j − 1)γ + λi + µj)

Γ(α1 + α2 + (k1 + k2 − i− j)γ + λi + µj)
.

Theorem 1.3 corresponds to the case special case λ = µ = 0, and Kadell’s integral
arises by taking k1 = 0 or k2 = 0.
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Proof. Throughout the proof 0 < q < 1.
We take Theorem 1.2 with (λ, µ) replaced by (η, ν) and (n,m) replaced by

(k1, k2). If we then specialise X = z〈λ〉k1 and Y = w〈µ〉k2 and use the evalua-
tion symmetry (2.8) on both Macdonald polynomials in the summand, we obtain∑

η,ν

t|η|−k1|ν|P̃λ(〈η〉k1)P̃µ(〈ν〉k2)Pη(z〈0〉k1)Pν(w〈0〉k2)

× (atk2−1)λ(qtk1/a)ν

k1∏
i=1

k2∏
j=1

(atj−i−1)ηi−νj
(atj−i)ηi−νj

=

k1∏
i=1

(azqλitk1−i)∞
(zqλitk1−i+1)∞

k2∏
j=1

(wqµj+1tk2−j/a)∞
(wqµj tk2−j)∞

k1∏
i=1

k2∏
j=1

(wztqλi+µj tk1+k2−i−j)∞
(wzqλi+µj tk1+k2−i−j)∞

.

Next we set

(z, w, a, t) = (qα1−γ , qα2 , qβ1+(k1−k2)γ , qγ)

and introduce the auxiliary variable β2 by β1 + β2 = γ + 1. Equations (2.1), (2.3)
and (2.12) imply the principal specialisation formula

Pλ(〈0〉n) =
t2n(λ)

(qtn−1)λ

∏
1≤i<j≤n

1− qλi−λj tj−i

1− tj−i
(tj−i+1)λi−λj
(qtj−i−1)λi−λj

.

Using this as well as the definition of the q-Gamma function

Γq(x) =
(q)x−1

(1− q)x−1
, x ∈ C,

we can rewrite the above identity as

(1− q)k1+k2
∑
η,ν

P̃λ(x1q
(k1−1)γ , x2q

(k1−2)γ , . . . , xk1)

× P̃µ(y1q
(k2−1)γ , y2q

(k2−2)γ , . . . , yk1)

×
k1∏
i=1

xα1
i (q1+(k1−i)γxi)β1−1

∏
1≤i<j≤k1

x2γ
j

(
1− q(j−i)γxi/xj

)
(q1+(j−i−1)γxi/xj)2γ−1

×
k2∏
i=1

yα2
i (q1+(k2−i)γyi)β2−1

∏
1≤i<j≤k2

y2γ
j

(
1− q(j−i)γyi/yj

)
(q1+(j−i−1)γyi/yj)2γ−1

×
k1∏
i=1

k2∏
j=1

y−γj (qβ1+(k1−k2+j−i)γxi/yj)−γ

=

k1∏
i=1

Γq(α1 + (k1 − i)γ + λi)Γq(β1 + (i− k2 − 1)γ)Γq(iγ)

Γq(α1 + β1 + (2k1 − k2 − i− 1)γ + λi)Γq(γ)

×
k2∏
i=1

Γq(α2 + (k2 − i)γ + µi)Γq(β2 + (i− 1)γ)Γq(iγ)

Γq(α2 + β2 + (2k2 − k1 − i− 1)γ + µi)Γq(γ)

×
k1∏
i=1

k2∏
j=1

Γq(α1 + α2 + (k1 + k2 − i− j − 1)γ + λi + µj)

Γq(α1 + α2 + (k1 + k2 − i− j)γ + λi + µj)
.
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Here xi := qηi and yi := qνi , so that

(3.9) 0 < x1 < · · · < xk1 ≤ 1 and 0 < y1 < · · · < yk1 ≤ 1.

The above is essentially a (k1 + k2)-dimensional q-integral (more on this in the
next section) and all that remains is to let q tend to 1 from below. The resulting
integrand, however, depends sensitively on the relative ordering between the xi and
yj . Indeed [31],

lim
q→1−

y−γj (qβ1+(k1−k2+j−i)γxi/yj)−γ

= |xi − yj |−γ ×


1 if xi < yj

sinπ(β1 − (i− j − k1 + k2)γ)

sinπ(β1 − (i− j − k1 + k2 + 1)γ)
if xi > yj .

Consequently, before we can take the required limit we must fix a complete ordering
among the integration variables (compatible with (3.9)) and sum over all admissible
orderings. This is exactly what is done at the beginning of this section and in the
remainder we assume that

(x1, . . . , xk1 , y1, . . . , yk2) ∈ Ik1,k2a1,...,ak1
[0, 1].

To find how to weigh this domain we recall that according to (3.3) yai+1 > xi >
yai > · · · > y1. The correct weight is thus

k1∏
i=1

ai∏
j=1

sinπ(β1 − (i− j − k1 + k2)γ)

sinπ(β1 − (i− j − k1 + k2 + 1)γ)
=

k1∏
i=1

sinπ(β1 − (i− ai − k1 + k2)γ)

sinπ(β1 − (i− k1 + k2)γ)
,

in accordance with Ck1,k2β1,γ
[0, 1], see (3.5). �

4. The Askey–Habsieger–Kadell integral

For 0 < q < 1 the q-integral on [0, 1] is defined as

(4.1)

∫ 1

0

f(x)dqx = (1− q)
∞∑
k=0

f(qk)qk,

where it is assumed the series on the right converges. When q → 1− the q-integral
reduces, at least formally, to the Riemann integral of f on the unit interval. An
obvious n-dimensional analogue of (4.1) is∫

[0,1]n

f(X)dqX = (1− q)n
∞∑

k1,...,kn=0

f(qk1 , . . . , qkn)qk1+···+kn ,

where the multiple sum on the right is assumed to be absolutely convergent and
where f(X) = f(x1, . . . , xn) and dqX = dqx1 · · · dqxn.
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In 1980 Askey [2] conjectured a q-analogue of the Selberg integral when the
parameter γ is a nonnegative integer, say k:∫

[0,1]n

n∏
i=1

xα−1
i (xiq)β−1

∏
1≤i<j≤n

x2k
i (q1−kxj/xi)2k dqX

= qαk(
n
2)+2k2(n3)

n−1∏
i=0

Γq(α+ ik)Γq(β + ik)Γq(1 + (i+ 1)k)

Γq(α+ β + (n+ i− 1)k)Γq(1 + k)
,

for Re(α) > 0 and β 6= 0,−1,−2, . . . . Askey’s conjecture was proved independently
by Habsieger [6] and Kadell [9].

Just as the ordinary Selberg integral, the Askey–Habsieger–Kadell integral can
be generalised by the inclusion of symmetric functions in the integrand. Specifically,
Kaneko [11] and Macdonald [16] proved that

(4.2)

∫
[0,1]n

P̃λ(X; q, qk)

n∏
i=1

xα−1
i (xiq)β−1

∏
1≤i<j≤n

x2k
i (q1−kxj/xi)2k dqX

= qαk(
n
2)+2k2(n3)

n∏
i=1

Γq(α+ (n− i)k + λi)Γq(β + (i− 1)k)Γq(ik + 1)

Γq(α+ β + (2n− i− 1)k + λi)Γq(k + 1)
,

for Re(α) > −λn and β 6= 0,−1,−2, . . . .
The sln– slm transformation formula of Theorem 2.3 allows the for the Askey–

Habsieger–Kadell integral as well as its generalisation (4.2) to be extended to a
transformation between integrals of different dimensions. For λ = (λ1, . . . , λn) and
µ = (µ1, . . . , µm) define

S
(n,m)
λµ (α1, α2, β; k) =

∫
[0,1]n

P̃λ(X; q, qk)

n∏
i=1

xα1−1
i (xiq)β−(n−1)k−1

×
n∏
i=1

m∏
j=1

(xiq)α2+β+µj+(m−n−j)k−1

(xiq)α2+β+µj+(m−n−j+1)k−1

∏
1≤i<j≤n

x2k
i (q1−kxj/xi)2k dqX.

Theorem 4.1. Let λ = (λ1, . . . , λn), µ = (µ1, . . . , µm) be partitions, k a nonnega-
tive integer and α1, α2, β ∈ C. Then

S
(n,m)
λµ (α1, α2, β; k) = qα1k(n2)−α2k(m2 )+2k2(n3)−2k2(m3 ) S

(m,n)
µλ (α2, α1, β; k)

×
n∏
i=1

Γq(β − (i− 1)k)Γq(α1 + λi + (n− i)k)Γq(ik + 1)

Γq(α1 + β + λi + (n−m− i)k)Γq(k + 1)

×
m∏
i=1

Γq(α2 + β + µi + (m− n− i)k)Γq(k + 1)

Γq(β − (i− 1)k)Γq(α2 + µi + (m− i)k)Γq(ik + 1)

for Re(α1) > −λn, Re(α2) > −µm, and generic β.

By “generic β” it is meant that β should avoid a countable set of isolated singu-
larities. More precisely, β should be such that none of β − (n− 1)k, β − (m− 1)k,
α1 +β+λj + (n−m− j)k and α2 +β+µj + (m−n− j)k take nonpositive integer

values. Since S
(0,n)
0,λ (α2, α1, β; k) = 1 the m = 0 case of the theorem corresponds to

(4.2) with (α, β) 7→ (α1, β − (n− 1)k).
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Proof. The method of proof is identical to that employed in [28, Theorem 1.1] and
we only sketch the details of what are essentially elementary manipulations.

We specialise X 7→ c〈λ〉n and Y 7→ b〈µ〉m in Theorem 2.3 and apply the evalua-
tion symmetry (2.8) to obtain∑

ν

(a, abqµ1tm−2, . . . , abqµmt−1)ν
(abqµ1tm−1, . . . , abqµm)ν

Pν(c〈0〉n)P̃λ(〈ν〉n)

=

( n∏
i=1

(acqλitn−i)∞
(cqλitn−i)∞

)( m∏
i=1

(bqµitm−i)∞
(abqµitm−i)∞

)
×
∑
ν

(a, acqλ1tn−2, . . . , acqλnt−1)ν
(acqλ1tn−1, . . . , acqλn)ν

Pν(b〈0〉m)P̃µ(〈ν〉m).

Next we replace t 7→ qk with k a positive integer and replace a 7→ qβ , b 7→ qα2 and
c 7→ qα1 . Then we apply [28, Lemma 3.1] to write the ν-sums as n-fold unrestricted
sums, and the claim follows. �

The above derivation can be repeated starting from Theorem 1.2. The result is
an sl3 variant of the q-integral (4.2). Problem with the theorem below is, however,
that it does not converge in the q → 1− limit unless m or n is 0. (This can
be remedied by replacing [0, 1]m+n by appropriate multiple Pochhammer double
loops).

Theorem 4.2. Let λ = (λ1, . . . , λn), µ = (µ1, . . . , µm) be partitions, k a nonnega-
tive integer and α1, α2, β1, β2 ∈ C such that β1 + β2 = k + 1. Then∫

[0,1]n+m

P̃λ(X; q, qk)

n∏
i=1

xα1
i (qxi)β1−1

∏
1≤i<j≤n

x2k
j (q1−kxi/xj)2k

× P̃µ(Y ; q, qk)

m∏
i=1

yα2
i (qyi)β2−1

∏
1≤i<j≤m

y2k
j (q1−kyi/yj)2k

×
n∏
i=1

m∏
j=1

y−kj (qβ1xi/yj)−k dqX dqY

= qα1k(n2)+α2k(m2 )+2k2(n3)+2k2(n3)−k
2n(m2 )

×
n∏
i=1

Γq(α1 + (n− i)k + λi)Γq(β1 + (i−m− 1)k)Γq(ik + 1)

Γq(α1 + β1 + (2n−m− i− 1)k + λi)Γq(k)

×
m∏
i=1

Γq(α2 + (m− i)k + µi)Γq(β2 + (i− 1)k)Γq(ik + 1)

Γq(α2 + β2 + (2m− n− i− 1)k + µi)Γq(k)

×
n∏
i=1

m∏
j=1

Γq(α1 + α2 + (n+m− i− j − 1)k + λi + µj)

Γq(α1 + α2 + (n+m− i− j)k + λi + µj)
,

for Re(α1) > −λn, for Re(α2) > −µm, and β1, β2 6= 0,−1,−2, . . . .
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